diff options
Diffstat (limited to 'kernel/pid.c')
-rw-r--r-- | kernel/pid.c | 705 |
1 files changed, 705 insertions, 0 deletions
diff --git a/kernel/pid.c b/kernel/pid.c new file mode 100644 index 000000000..4856818c9 --- /dev/null +++ b/kernel/pid.c @@ -0,0 +1,705 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Generic pidhash and scalable, time-bounded PID allocator + * + * (C) 2002-2003 Nadia Yvette Chambers, IBM + * (C) 2004 Nadia Yvette Chambers, Oracle + * (C) 2002-2004 Ingo Molnar, Red Hat + * + * pid-structures are backing objects for tasks sharing a given ID to chain + * against. There is very little to them aside from hashing them and + * parking tasks using given ID's on a list. + * + * The hash is always changed with the tasklist_lock write-acquired, + * and the hash is only accessed with the tasklist_lock at least + * read-acquired, so there's no additional SMP locking needed here. + * + * We have a list of bitmap pages, which bitmaps represent the PID space. + * Allocating and freeing PIDs is completely lockless. The worst-case + * allocation scenario when all but one out of 1 million PIDs possible are + * allocated already: the scanning of 32 list entries and at most PAGE_SIZE + * bytes. The typical fastpath is a single successful setbit. Freeing is O(1). + * + * Pid namespaces: + * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc. + * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM + * Many thanks to Oleg Nesterov for comments and help + * + */ + +#include <linux/mm.h> +#include <linux/export.h> +#include <linux/slab.h> +#include <linux/init.h> +#include <linux/rculist.h> +#include <linux/memblock.h> +#include <linux/pid_namespace.h> +#include <linux/init_task.h> +#include <linux/syscalls.h> +#include <linux/proc_ns.h> +#include <linux/refcount.h> +#include <linux/anon_inodes.h> +#include <linux/sched/signal.h> +#include <linux/sched/task.h> +#include <linux/idr.h> +#include <net/sock.h> +#include <uapi/linux/pidfd.h> + +struct pid init_struct_pid = { + .count = REFCOUNT_INIT(1), + .tasks = { + { .first = NULL }, + { .first = NULL }, + { .first = NULL }, + }, + .level = 0, + .numbers = { { + .nr = 0, + .ns = &init_pid_ns, + }, } +}; + +int pid_max = PID_MAX_DEFAULT; + +#define RESERVED_PIDS 300 + +int pid_max_min = RESERVED_PIDS + 1; +int pid_max_max = PID_MAX_LIMIT; + +/* + * PID-map pages start out as NULL, they get allocated upon + * first use and are never deallocated. This way a low pid_max + * value does not cause lots of bitmaps to be allocated, but + * the scheme scales to up to 4 million PIDs, runtime. + */ +struct pid_namespace init_pid_ns = { + .kref = KREF_INIT(2), + .idr = IDR_INIT(init_pid_ns.idr), + .pid_allocated = PIDNS_ADDING, + .level = 0, + .child_reaper = &init_task, + .user_ns = &init_user_ns, + .ns.inum = PROC_PID_INIT_INO, +#ifdef CONFIG_PID_NS + .ns.ops = &pidns_operations, +#endif +}; +EXPORT_SYMBOL_GPL(init_pid_ns); + +/* + * Note: disable interrupts while the pidmap_lock is held as an + * interrupt might come in and do read_lock(&tasklist_lock). + * + * If we don't disable interrupts there is a nasty deadlock between + * detach_pid()->free_pid() and another cpu that does + * spin_lock(&pidmap_lock) followed by an interrupt routine that does + * read_lock(&tasklist_lock); + * + * After we clean up the tasklist_lock and know there are no + * irq handlers that take it we can leave the interrupts enabled. + * For now it is easier to be safe than to prove it can't happen. + */ + +static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock); + +void put_pid(struct pid *pid) +{ + struct pid_namespace *ns; + + if (!pid) + return; + + ns = pid->numbers[pid->level].ns; + if (refcount_dec_and_test(&pid->count)) { + kmem_cache_free(ns->pid_cachep, pid); + put_pid_ns(ns); + } +} +EXPORT_SYMBOL_GPL(put_pid); + +static void delayed_put_pid(struct rcu_head *rhp) +{ + struct pid *pid = container_of(rhp, struct pid, rcu); + put_pid(pid); +} + +void free_pid(struct pid *pid) +{ + /* We can be called with write_lock_irq(&tasklist_lock) held */ + int i; + unsigned long flags; + + spin_lock_irqsave(&pidmap_lock, flags); + for (i = 0; i <= pid->level; i++) { + struct upid *upid = pid->numbers + i; + struct pid_namespace *ns = upid->ns; + switch (--ns->pid_allocated) { + case 2: + case 1: + /* When all that is left in the pid namespace + * is the reaper wake up the reaper. The reaper + * may be sleeping in zap_pid_ns_processes(). + */ + wake_up_process(ns->child_reaper); + break; + case PIDNS_ADDING: + /* Handle a fork failure of the first process */ + WARN_ON(ns->child_reaper); + ns->pid_allocated = 0; + break; + } + + idr_remove(&ns->idr, upid->nr); + } + spin_unlock_irqrestore(&pidmap_lock, flags); + + call_rcu(&pid->rcu, delayed_put_pid); +} + +struct pid *alloc_pid(struct pid_namespace *ns, pid_t *set_tid, + size_t set_tid_size) +{ + struct pid *pid; + enum pid_type type; + int i, nr; + struct pid_namespace *tmp; + struct upid *upid; + int retval = -ENOMEM; + + /* + * set_tid_size contains the size of the set_tid array. Starting at + * the most nested currently active PID namespace it tells alloc_pid() + * which PID to set for a process in that most nested PID namespace + * up to set_tid_size PID namespaces. It does not have to set the PID + * for a process in all nested PID namespaces but set_tid_size must + * never be greater than the current ns->level + 1. + */ + if (set_tid_size > ns->level + 1) + return ERR_PTR(-EINVAL); + + pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL); + if (!pid) + return ERR_PTR(retval); + + tmp = ns; + pid->level = ns->level; + + for (i = ns->level; i >= 0; i--) { + int tid = 0; + + if (set_tid_size) { + tid = set_tid[ns->level - i]; + + retval = -EINVAL; + if (tid < 1 || tid >= pid_max) + goto out_free; + /* + * Also fail if a PID != 1 is requested and + * no PID 1 exists. + */ + if (tid != 1 && !tmp->child_reaper) + goto out_free; + retval = -EPERM; + if (!checkpoint_restore_ns_capable(tmp->user_ns)) + goto out_free; + set_tid_size--; + } + + idr_preload(GFP_KERNEL); + spin_lock_irq(&pidmap_lock); + + if (tid) { + nr = idr_alloc(&tmp->idr, NULL, tid, + tid + 1, GFP_ATOMIC); + /* + * If ENOSPC is returned it means that the PID is + * alreay in use. Return EEXIST in that case. + */ + if (nr == -ENOSPC) + nr = -EEXIST; + } else { + int pid_min = 1; + /* + * init really needs pid 1, but after reaching the + * maximum wrap back to RESERVED_PIDS + */ + if (idr_get_cursor(&tmp->idr) > RESERVED_PIDS) + pid_min = RESERVED_PIDS; + + /* + * Store a null pointer so find_pid_ns does not find + * a partially initialized PID (see below). + */ + nr = idr_alloc_cyclic(&tmp->idr, NULL, pid_min, + pid_max, GFP_ATOMIC); + } + spin_unlock_irq(&pidmap_lock); + idr_preload_end(); + + if (nr < 0) { + retval = (nr == -ENOSPC) ? -EAGAIN : nr; + goto out_free; + } + + pid->numbers[i].nr = nr; + pid->numbers[i].ns = tmp; + tmp = tmp->parent; + } + + /* + * ENOMEM is not the most obvious choice especially for the case + * where the child subreaper has already exited and the pid + * namespace denies the creation of any new processes. But ENOMEM + * is what we have exposed to userspace for a long time and it is + * documented behavior for pid namespaces. So we can't easily + * change it even if there were an error code better suited. + */ + retval = -ENOMEM; + + get_pid_ns(ns); + refcount_set(&pid->count, 1); + spin_lock_init(&pid->lock); + for (type = 0; type < PIDTYPE_MAX; ++type) + INIT_HLIST_HEAD(&pid->tasks[type]); + + init_waitqueue_head(&pid->wait_pidfd); + INIT_HLIST_HEAD(&pid->inodes); + + upid = pid->numbers + ns->level; + spin_lock_irq(&pidmap_lock); + if (!(ns->pid_allocated & PIDNS_ADDING)) + goto out_unlock; + for ( ; upid >= pid->numbers; --upid) { + /* Make the PID visible to find_pid_ns. */ + idr_replace(&upid->ns->idr, pid, upid->nr); + upid->ns->pid_allocated++; + } + spin_unlock_irq(&pidmap_lock); + + return pid; + +out_unlock: + spin_unlock_irq(&pidmap_lock); + put_pid_ns(ns); + +out_free: + spin_lock_irq(&pidmap_lock); + while (++i <= ns->level) { + upid = pid->numbers + i; + idr_remove(&upid->ns->idr, upid->nr); + } + + /* On failure to allocate the first pid, reset the state */ + if (ns->pid_allocated == PIDNS_ADDING) + idr_set_cursor(&ns->idr, 0); + + spin_unlock_irq(&pidmap_lock); + + kmem_cache_free(ns->pid_cachep, pid); + return ERR_PTR(retval); +} + +void disable_pid_allocation(struct pid_namespace *ns) +{ + spin_lock_irq(&pidmap_lock); + ns->pid_allocated &= ~PIDNS_ADDING; + spin_unlock_irq(&pidmap_lock); +} + +struct pid *find_pid_ns(int nr, struct pid_namespace *ns) +{ + return idr_find(&ns->idr, nr); +} +EXPORT_SYMBOL_GPL(find_pid_ns); + +struct pid *find_vpid(int nr) +{ + return find_pid_ns(nr, task_active_pid_ns(current)); +} +EXPORT_SYMBOL_GPL(find_vpid); + +static struct pid **task_pid_ptr(struct task_struct *task, enum pid_type type) +{ + return (type == PIDTYPE_PID) ? + &task->thread_pid : + &task->signal->pids[type]; +} + +/* + * attach_pid() must be called with the tasklist_lock write-held. + */ +void attach_pid(struct task_struct *task, enum pid_type type) +{ + struct pid *pid = *task_pid_ptr(task, type); + hlist_add_head_rcu(&task->pid_links[type], &pid->tasks[type]); +} + +static void __change_pid(struct task_struct *task, enum pid_type type, + struct pid *new) +{ + struct pid **pid_ptr = task_pid_ptr(task, type); + struct pid *pid; + int tmp; + + pid = *pid_ptr; + + hlist_del_rcu(&task->pid_links[type]); + *pid_ptr = new; + + for (tmp = PIDTYPE_MAX; --tmp >= 0; ) + if (pid_has_task(pid, tmp)) + return; + + free_pid(pid); +} + +void detach_pid(struct task_struct *task, enum pid_type type) +{ + __change_pid(task, type, NULL); +} + +void change_pid(struct task_struct *task, enum pid_type type, + struct pid *pid) +{ + __change_pid(task, type, pid); + attach_pid(task, type); +} + +void exchange_tids(struct task_struct *left, struct task_struct *right) +{ + struct pid *pid1 = left->thread_pid; + struct pid *pid2 = right->thread_pid; + struct hlist_head *head1 = &pid1->tasks[PIDTYPE_PID]; + struct hlist_head *head2 = &pid2->tasks[PIDTYPE_PID]; + + /* Swap the single entry tid lists */ + hlists_swap_heads_rcu(head1, head2); + + /* Swap the per task_struct pid */ + rcu_assign_pointer(left->thread_pid, pid2); + rcu_assign_pointer(right->thread_pid, pid1); + + /* Swap the cached value */ + WRITE_ONCE(left->pid, pid_nr(pid2)); + WRITE_ONCE(right->pid, pid_nr(pid1)); +} + +/* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */ +void transfer_pid(struct task_struct *old, struct task_struct *new, + enum pid_type type) +{ + if (type == PIDTYPE_PID) + new->thread_pid = old->thread_pid; + hlist_replace_rcu(&old->pid_links[type], &new->pid_links[type]); +} + +struct task_struct *pid_task(struct pid *pid, enum pid_type type) +{ + struct task_struct *result = NULL; + if (pid) { + struct hlist_node *first; + first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]), + lockdep_tasklist_lock_is_held()); + if (first) + result = hlist_entry(first, struct task_struct, pid_links[(type)]); + } + return result; +} +EXPORT_SYMBOL(pid_task); + +/* + * Must be called under rcu_read_lock(). + */ +struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns) +{ + RCU_LOCKDEP_WARN(!rcu_read_lock_held(), + "find_task_by_pid_ns() needs rcu_read_lock() protection"); + return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID); +} + +struct task_struct *find_task_by_vpid(pid_t vnr) +{ + return find_task_by_pid_ns(vnr, task_active_pid_ns(current)); +} + +struct task_struct *find_get_task_by_vpid(pid_t nr) +{ + struct task_struct *task; + + rcu_read_lock(); + task = find_task_by_vpid(nr); + if (task) + get_task_struct(task); + rcu_read_unlock(); + + return task; +} + +struct pid *get_task_pid(struct task_struct *task, enum pid_type type) +{ + struct pid *pid; + rcu_read_lock(); + pid = get_pid(rcu_dereference(*task_pid_ptr(task, type))); + rcu_read_unlock(); + return pid; +} +EXPORT_SYMBOL_GPL(get_task_pid); + +struct task_struct *get_pid_task(struct pid *pid, enum pid_type type) +{ + struct task_struct *result; + rcu_read_lock(); + result = pid_task(pid, type); + if (result) + get_task_struct(result); + rcu_read_unlock(); + return result; +} +EXPORT_SYMBOL_GPL(get_pid_task); + +struct pid *find_get_pid(pid_t nr) +{ + struct pid *pid; + + rcu_read_lock(); + pid = get_pid(find_vpid(nr)); + rcu_read_unlock(); + + return pid; +} +EXPORT_SYMBOL_GPL(find_get_pid); + +pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns) +{ + struct upid *upid; + pid_t nr = 0; + + if (pid && ns->level <= pid->level) { + upid = &pid->numbers[ns->level]; + if (upid->ns == ns) + nr = upid->nr; + } + return nr; +} +EXPORT_SYMBOL_GPL(pid_nr_ns); + +pid_t pid_vnr(struct pid *pid) +{ + return pid_nr_ns(pid, task_active_pid_ns(current)); +} +EXPORT_SYMBOL_GPL(pid_vnr); + +pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, + struct pid_namespace *ns) +{ + pid_t nr = 0; + + rcu_read_lock(); + if (!ns) + ns = task_active_pid_ns(current); + nr = pid_nr_ns(rcu_dereference(*task_pid_ptr(task, type)), ns); + rcu_read_unlock(); + + return nr; +} +EXPORT_SYMBOL(__task_pid_nr_ns); + +struct pid_namespace *task_active_pid_ns(struct task_struct *tsk) +{ + return ns_of_pid(task_pid(tsk)); +} +EXPORT_SYMBOL_GPL(task_active_pid_ns); + +/* + * Used by proc to find the first pid that is greater than or equal to nr. + * + * If there is a pid at nr this function is exactly the same as find_pid_ns. + */ +struct pid *find_ge_pid(int nr, struct pid_namespace *ns) +{ + return idr_get_next(&ns->idr, &nr); +} + +struct pid *pidfd_get_pid(unsigned int fd, unsigned int *flags) +{ + struct fd f; + struct pid *pid; + + f = fdget(fd); + if (!f.file) + return ERR_PTR(-EBADF); + + pid = pidfd_pid(f.file); + if (!IS_ERR(pid)) { + get_pid(pid); + *flags = f.file->f_flags; + } + + fdput(f); + return pid; +} + +/** + * pidfd_create() - Create a new pid file descriptor. + * + * @pid: struct pid that the pidfd will reference + * @flags: flags to pass + * + * This creates a new pid file descriptor with the O_CLOEXEC flag set. + * + * Note, that this function can only be called after the fd table has + * been unshared to avoid leaking the pidfd to the new process. + * + * Return: On success, a cloexec pidfd is returned. + * On error, a negative errno number will be returned. + */ +static int pidfd_create(struct pid *pid, unsigned int flags) +{ + int fd; + + fd = anon_inode_getfd("[pidfd]", &pidfd_fops, get_pid(pid), + flags | O_RDWR | O_CLOEXEC); + if (fd < 0) + put_pid(pid); + + return fd; +} + +/** + * pidfd_open() - Open new pid file descriptor. + * + * @pid: pid for which to retrieve a pidfd + * @flags: flags to pass + * + * This creates a new pid file descriptor with the O_CLOEXEC flag set for + * the process identified by @pid. Currently, the process identified by + * @pid must be a thread-group leader. This restriction currently exists + * for all aspects of pidfds including pidfd creation (CLONE_PIDFD cannot + * be used with CLONE_THREAD) and pidfd polling (only supports thread group + * leaders). + * + * Return: On success, a cloexec pidfd is returned. + * On error, a negative errno number will be returned. + */ +SYSCALL_DEFINE2(pidfd_open, pid_t, pid, unsigned int, flags) +{ + int fd; + struct pid *p; + + if (flags & ~PIDFD_NONBLOCK) + return -EINVAL; + + if (pid <= 0) + return -EINVAL; + + p = find_get_pid(pid); + if (!p) + return -ESRCH; + + if (pid_has_task(p, PIDTYPE_TGID)) + fd = pidfd_create(p, flags); + else + fd = -EINVAL; + + put_pid(p); + return fd; +} + +void __init pid_idr_init(void) +{ + /* Verify no one has done anything silly: */ + BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_ADDING); + + /* bump default and minimum pid_max based on number of cpus */ + pid_max = min(pid_max_max, max_t(int, pid_max, + PIDS_PER_CPU_DEFAULT * num_possible_cpus())); + pid_max_min = max_t(int, pid_max_min, + PIDS_PER_CPU_MIN * num_possible_cpus()); + pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min); + + idr_init(&init_pid_ns.idr); + + init_pid_ns.pid_cachep = KMEM_CACHE(pid, + SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT); +} + +static struct file *__pidfd_fget(struct task_struct *task, int fd) +{ + struct file *file; + int ret; + + ret = down_read_killable(&task->signal->exec_update_lock); + if (ret) + return ERR_PTR(ret); + + if (ptrace_may_access(task, PTRACE_MODE_ATTACH_REALCREDS)) + file = fget_task(task, fd); + else + file = ERR_PTR(-EPERM); + + up_read(&task->signal->exec_update_lock); + + return file ?: ERR_PTR(-EBADF); +} + +static int pidfd_getfd(struct pid *pid, int fd) +{ + struct task_struct *task; + struct file *file; + int ret; + + task = get_pid_task(pid, PIDTYPE_PID); + if (!task) + return -ESRCH; + + file = __pidfd_fget(task, fd); + put_task_struct(task); + if (IS_ERR(file)) + return PTR_ERR(file); + + ret = receive_fd(file, O_CLOEXEC); + fput(file); + + return ret; +} + +/** + * sys_pidfd_getfd() - Get a file descriptor from another process + * + * @pidfd: the pidfd file descriptor of the process + * @fd: the file descriptor number to get + * @flags: flags on how to get the fd (reserved) + * + * This syscall gets a copy of a file descriptor from another process + * based on the pidfd, and file descriptor number. It requires that + * the calling process has the ability to ptrace the process represented + * by the pidfd. The process which is having its file descriptor copied + * is otherwise unaffected. + * + * Return: On success, a cloexec file descriptor is returned. + * On error, a negative errno number will be returned. + */ +SYSCALL_DEFINE3(pidfd_getfd, int, pidfd, int, fd, + unsigned int, flags) +{ + struct pid *pid; + struct fd f; + int ret; + + /* flags is currently unused - make sure it's unset */ + if (flags) + return -EINVAL; + + f = fdget(pidfd); + if (!f.file) + return -EBADF; + + pid = pidfd_pid(f.file); + if (IS_ERR(pid)) + ret = PTR_ERR(pid); + else + ret = pidfd_getfd(pid, fd); + + fdput(f); + return ret; +} |