diff options
Diffstat (limited to '')
-rw-r--r-- | mm/khugepaged.c | 2400 |
1 files changed, 2400 insertions, 0 deletions
diff --git a/mm/khugepaged.c b/mm/khugepaged.c new file mode 100644 index 000000000..28e18777e --- /dev/null +++ b/mm/khugepaged.c @@ -0,0 +1,2400 @@ +// SPDX-License-Identifier: GPL-2.0 +#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt + +#include <linux/mm.h> +#include <linux/sched.h> +#include <linux/sched/mm.h> +#include <linux/sched/coredump.h> +#include <linux/mmu_notifier.h> +#include <linux/rmap.h> +#include <linux/swap.h> +#include <linux/mm_inline.h> +#include <linux/kthread.h> +#include <linux/khugepaged.h> +#include <linux/freezer.h> +#include <linux/mman.h> +#include <linux/hashtable.h> +#include <linux/userfaultfd_k.h> +#include <linux/page_idle.h> +#include <linux/swapops.h> +#include <linux/shmem_fs.h> + +#include <asm/tlb.h> +#include <asm/pgalloc.h> +#include "internal.h" + +enum scan_result { + SCAN_FAIL, + SCAN_SUCCEED, + SCAN_PMD_NULL, + SCAN_EXCEED_NONE_PTE, + SCAN_EXCEED_SWAP_PTE, + SCAN_EXCEED_SHARED_PTE, + SCAN_PTE_NON_PRESENT, + SCAN_PTE_UFFD_WP, + SCAN_PAGE_RO, + SCAN_LACK_REFERENCED_PAGE, + SCAN_PAGE_NULL, + SCAN_SCAN_ABORT, + SCAN_PAGE_COUNT, + SCAN_PAGE_LRU, + SCAN_PAGE_LOCK, + SCAN_PAGE_ANON, + SCAN_PAGE_COMPOUND, + SCAN_ANY_PROCESS, + SCAN_VMA_NULL, + SCAN_VMA_CHECK, + SCAN_ADDRESS_RANGE, + SCAN_SWAP_CACHE_PAGE, + SCAN_DEL_PAGE_LRU, + SCAN_ALLOC_HUGE_PAGE_FAIL, + SCAN_CGROUP_CHARGE_FAIL, + SCAN_TRUNCATED, + SCAN_PAGE_HAS_PRIVATE, +}; + +#define CREATE_TRACE_POINTS +#include <trace/events/huge_memory.h> + +static struct task_struct *khugepaged_thread __read_mostly; +static DEFINE_MUTEX(khugepaged_mutex); + +/* default scan 8*512 pte (or vmas) every 30 second */ +static unsigned int khugepaged_pages_to_scan __read_mostly; +static unsigned int khugepaged_pages_collapsed; +static unsigned int khugepaged_full_scans; +static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000; +/* during fragmentation poll the hugepage allocator once every minute */ +static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000; +static unsigned long khugepaged_sleep_expire; +static DEFINE_SPINLOCK(khugepaged_mm_lock); +static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait); +/* + * default collapse hugepages if there is at least one pte mapped like + * it would have happened if the vma was large enough during page + * fault. + */ +static unsigned int khugepaged_max_ptes_none __read_mostly; +static unsigned int khugepaged_max_ptes_swap __read_mostly; +static unsigned int khugepaged_max_ptes_shared __read_mostly; + +#define MM_SLOTS_HASH_BITS 10 +static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS); + +static struct kmem_cache *mm_slot_cache __read_mostly; + +#define MAX_PTE_MAPPED_THP 8 + +/** + * struct mm_slot - hash lookup from mm to mm_slot + * @hash: hash collision list + * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head + * @mm: the mm that this information is valid for + */ +struct mm_slot { + struct hlist_node hash; + struct list_head mm_node; + struct mm_struct *mm; + + /* pte-mapped THP in this mm */ + int nr_pte_mapped_thp; + unsigned long pte_mapped_thp[MAX_PTE_MAPPED_THP]; +}; + +/** + * struct khugepaged_scan - cursor for scanning + * @mm_head: the head of the mm list to scan + * @mm_slot: the current mm_slot we are scanning + * @address: the next address inside that to be scanned + * + * There is only the one khugepaged_scan instance of this cursor structure. + */ +struct khugepaged_scan { + struct list_head mm_head; + struct mm_slot *mm_slot; + unsigned long address; +}; + +static struct khugepaged_scan khugepaged_scan = { + .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head), +}; + +#ifdef CONFIG_SYSFS +static ssize_t scan_sleep_millisecs_show(struct kobject *kobj, + struct kobj_attribute *attr, + char *buf) +{ + return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs); +} + +static ssize_t scan_sleep_millisecs_store(struct kobject *kobj, + struct kobj_attribute *attr, + const char *buf, size_t count) +{ + unsigned long msecs; + int err; + + err = kstrtoul(buf, 10, &msecs); + if (err || msecs > UINT_MAX) + return -EINVAL; + + khugepaged_scan_sleep_millisecs = msecs; + khugepaged_sleep_expire = 0; + wake_up_interruptible(&khugepaged_wait); + + return count; +} +static struct kobj_attribute scan_sleep_millisecs_attr = + __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show, + scan_sleep_millisecs_store); + +static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj, + struct kobj_attribute *attr, + char *buf) +{ + return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs); +} + +static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj, + struct kobj_attribute *attr, + const char *buf, size_t count) +{ + unsigned long msecs; + int err; + + err = kstrtoul(buf, 10, &msecs); + if (err || msecs > UINT_MAX) + return -EINVAL; + + khugepaged_alloc_sleep_millisecs = msecs; + khugepaged_sleep_expire = 0; + wake_up_interruptible(&khugepaged_wait); + + return count; +} +static struct kobj_attribute alloc_sleep_millisecs_attr = + __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show, + alloc_sleep_millisecs_store); + +static ssize_t pages_to_scan_show(struct kobject *kobj, + struct kobj_attribute *attr, + char *buf) +{ + return sprintf(buf, "%u\n", khugepaged_pages_to_scan); +} +static ssize_t pages_to_scan_store(struct kobject *kobj, + struct kobj_attribute *attr, + const char *buf, size_t count) +{ + int err; + unsigned long pages; + + err = kstrtoul(buf, 10, &pages); + if (err || !pages || pages > UINT_MAX) + return -EINVAL; + + khugepaged_pages_to_scan = pages; + + return count; +} +static struct kobj_attribute pages_to_scan_attr = + __ATTR(pages_to_scan, 0644, pages_to_scan_show, + pages_to_scan_store); + +static ssize_t pages_collapsed_show(struct kobject *kobj, + struct kobj_attribute *attr, + char *buf) +{ + return sprintf(buf, "%u\n", khugepaged_pages_collapsed); +} +static struct kobj_attribute pages_collapsed_attr = + __ATTR_RO(pages_collapsed); + +static ssize_t full_scans_show(struct kobject *kobj, + struct kobj_attribute *attr, + char *buf) +{ + return sprintf(buf, "%u\n", khugepaged_full_scans); +} +static struct kobj_attribute full_scans_attr = + __ATTR_RO(full_scans); + +static ssize_t khugepaged_defrag_show(struct kobject *kobj, + struct kobj_attribute *attr, char *buf) +{ + return single_hugepage_flag_show(kobj, attr, buf, + TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); +} +static ssize_t khugepaged_defrag_store(struct kobject *kobj, + struct kobj_attribute *attr, + const char *buf, size_t count) +{ + return single_hugepage_flag_store(kobj, attr, buf, count, + TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); +} +static struct kobj_attribute khugepaged_defrag_attr = + __ATTR(defrag, 0644, khugepaged_defrag_show, + khugepaged_defrag_store); + +/* + * max_ptes_none controls if khugepaged should collapse hugepages over + * any unmapped ptes in turn potentially increasing the memory + * footprint of the vmas. When max_ptes_none is 0 khugepaged will not + * reduce the available free memory in the system as it + * runs. Increasing max_ptes_none will instead potentially reduce the + * free memory in the system during the khugepaged scan. + */ +static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj, + struct kobj_attribute *attr, + char *buf) +{ + return sprintf(buf, "%u\n", khugepaged_max_ptes_none); +} +static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj, + struct kobj_attribute *attr, + const char *buf, size_t count) +{ + int err; + unsigned long max_ptes_none; + + err = kstrtoul(buf, 10, &max_ptes_none); + if (err || max_ptes_none > HPAGE_PMD_NR-1) + return -EINVAL; + + khugepaged_max_ptes_none = max_ptes_none; + + return count; +} +static struct kobj_attribute khugepaged_max_ptes_none_attr = + __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show, + khugepaged_max_ptes_none_store); + +static ssize_t khugepaged_max_ptes_swap_show(struct kobject *kobj, + struct kobj_attribute *attr, + char *buf) +{ + return sprintf(buf, "%u\n", khugepaged_max_ptes_swap); +} + +static ssize_t khugepaged_max_ptes_swap_store(struct kobject *kobj, + struct kobj_attribute *attr, + const char *buf, size_t count) +{ + int err; + unsigned long max_ptes_swap; + + err = kstrtoul(buf, 10, &max_ptes_swap); + if (err || max_ptes_swap > HPAGE_PMD_NR-1) + return -EINVAL; + + khugepaged_max_ptes_swap = max_ptes_swap; + + return count; +} + +static struct kobj_attribute khugepaged_max_ptes_swap_attr = + __ATTR(max_ptes_swap, 0644, khugepaged_max_ptes_swap_show, + khugepaged_max_ptes_swap_store); + +static ssize_t khugepaged_max_ptes_shared_show(struct kobject *kobj, + struct kobj_attribute *attr, + char *buf) +{ + return sprintf(buf, "%u\n", khugepaged_max_ptes_shared); +} + +static ssize_t khugepaged_max_ptes_shared_store(struct kobject *kobj, + struct kobj_attribute *attr, + const char *buf, size_t count) +{ + int err; + unsigned long max_ptes_shared; + + err = kstrtoul(buf, 10, &max_ptes_shared); + if (err || max_ptes_shared > HPAGE_PMD_NR-1) + return -EINVAL; + + khugepaged_max_ptes_shared = max_ptes_shared; + + return count; +} + +static struct kobj_attribute khugepaged_max_ptes_shared_attr = + __ATTR(max_ptes_shared, 0644, khugepaged_max_ptes_shared_show, + khugepaged_max_ptes_shared_store); + +static struct attribute *khugepaged_attr[] = { + &khugepaged_defrag_attr.attr, + &khugepaged_max_ptes_none_attr.attr, + &khugepaged_max_ptes_swap_attr.attr, + &khugepaged_max_ptes_shared_attr.attr, + &pages_to_scan_attr.attr, + &pages_collapsed_attr.attr, + &full_scans_attr.attr, + &scan_sleep_millisecs_attr.attr, + &alloc_sleep_millisecs_attr.attr, + NULL, +}; + +struct attribute_group khugepaged_attr_group = { + .attrs = khugepaged_attr, + .name = "khugepaged", +}; +#endif /* CONFIG_SYSFS */ + +int hugepage_madvise(struct vm_area_struct *vma, + unsigned long *vm_flags, int advice) +{ + switch (advice) { + case MADV_HUGEPAGE: +#ifdef CONFIG_S390 + /* + * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390 + * can't handle this properly after s390_enable_sie, so we simply + * ignore the madvise to prevent qemu from causing a SIGSEGV. + */ + if (mm_has_pgste(vma->vm_mm)) + return 0; +#endif + *vm_flags &= ~VM_NOHUGEPAGE; + *vm_flags |= VM_HUGEPAGE; + /* + * If the vma become good for khugepaged to scan, + * register it here without waiting a page fault that + * may not happen any time soon. + */ + if (!(*vm_flags & VM_NO_KHUGEPAGED) && + khugepaged_enter_vma_merge(vma, *vm_flags)) + return -ENOMEM; + break; + case MADV_NOHUGEPAGE: + *vm_flags &= ~VM_HUGEPAGE; + *vm_flags |= VM_NOHUGEPAGE; + /* + * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning + * this vma even if we leave the mm registered in khugepaged if + * it got registered before VM_NOHUGEPAGE was set. + */ + break; + } + + return 0; +} + +int __init khugepaged_init(void) +{ + mm_slot_cache = kmem_cache_create("khugepaged_mm_slot", + sizeof(struct mm_slot), + __alignof__(struct mm_slot), 0, NULL); + if (!mm_slot_cache) + return -ENOMEM; + + khugepaged_pages_to_scan = HPAGE_PMD_NR * 8; + khugepaged_max_ptes_none = HPAGE_PMD_NR - 1; + khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8; + khugepaged_max_ptes_shared = HPAGE_PMD_NR / 2; + + return 0; +} + +void __init khugepaged_destroy(void) +{ + kmem_cache_destroy(mm_slot_cache); +} + +static inline struct mm_slot *alloc_mm_slot(void) +{ + if (!mm_slot_cache) /* initialization failed */ + return NULL; + return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL); +} + +static inline void free_mm_slot(struct mm_slot *mm_slot) +{ + kmem_cache_free(mm_slot_cache, mm_slot); +} + +static struct mm_slot *get_mm_slot(struct mm_struct *mm) +{ + struct mm_slot *mm_slot; + + hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm) + if (mm == mm_slot->mm) + return mm_slot; + + return NULL; +} + +static void insert_to_mm_slots_hash(struct mm_struct *mm, + struct mm_slot *mm_slot) +{ + mm_slot->mm = mm; + hash_add(mm_slots_hash, &mm_slot->hash, (long)mm); +} + +static inline int khugepaged_test_exit(struct mm_struct *mm) +{ + return atomic_read(&mm->mm_users) == 0; +} + +static bool hugepage_vma_check(struct vm_area_struct *vma, + unsigned long vm_flags) +{ + if (!transhuge_vma_enabled(vma, vm_flags)) + return false; + + if (vma->vm_file && !IS_ALIGNED((vma->vm_start >> PAGE_SHIFT) - + vma->vm_pgoff, HPAGE_PMD_NR)) + return false; + + /* Enabled via shmem mount options or sysfs settings. */ + if (shmem_file(vma->vm_file)) + return shmem_huge_enabled(vma); + + /* THP settings require madvise. */ + if (!(vm_flags & VM_HUGEPAGE) && !khugepaged_always()) + return false; + + /* Only regular file is valid */ + if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && vma->vm_file && + (vm_flags & VM_DENYWRITE)) { + struct inode *inode = vma->vm_file->f_inode; + + return S_ISREG(inode->i_mode); + } + + if (!vma->anon_vma || vma->vm_ops) + return false; + if (vma_is_temporary_stack(vma)) + return false; + return !(vm_flags & VM_NO_KHUGEPAGED); +} + +int __khugepaged_enter(struct mm_struct *mm) +{ + struct mm_slot *mm_slot; + int wakeup; + + mm_slot = alloc_mm_slot(); + if (!mm_slot) + return -ENOMEM; + + /* __khugepaged_exit() must not run from under us */ + VM_BUG_ON_MM(atomic_read(&mm->mm_users) == 0, mm); + if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) { + free_mm_slot(mm_slot); + return 0; + } + + spin_lock(&khugepaged_mm_lock); + insert_to_mm_slots_hash(mm, mm_slot); + /* + * Insert just behind the scanning cursor, to let the area settle + * down a little. + */ + wakeup = list_empty(&khugepaged_scan.mm_head); + list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head); + spin_unlock(&khugepaged_mm_lock); + + mmgrab(mm); + if (wakeup) + wake_up_interruptible(&khugepaged_wait); + + return 0; +} + +int khugepaged_enter_vma_merge(struct vm_area_struct *vma, + unsigned long vm_flags) +{ + unsigned long hstart, hend; + + /* + * khugepaged only supports read-only files for non-shmem files. + * khugepaged does not yet work on special mappings. And + * file-private shmem THP is not supported. + */ + if (!hugepage_vma_check(vma, vm_flags)) + return 0; + + hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK; + hend = vma->vm_end & HPAGE_PMD_MASK; + if (hstart < hend) + return khugepaged_enter(vma, vm_flags); + return 0; +} + +void __khugepaged_exit(struct mm_struct *mm) +{ + struct mm_slot *mm_slot; + int free = 0; + + spin_lock(&khugepaged_mm_lock); + mm_slot = get_mm_slot(mm); + if (mm_slot && khugepaged_scan.mm_slot != mm_slot) { + hash_del(&mm_slot->hash); + list_del(&mm_slot->mm_node); + free = 1; + } + spin_unlock(&khugepaged_mm_lock); + + if (free) { + clear_bit(MMF_VM_HUGEPAGE, &mm->flags); + free_mm_slot(mm_slot); + mmdrop(mm); + } else if (mm_slot) { + /* + * This is required to serialize against + * khugepaged_test_exit() (which is guaranteed to run + * under mmap sem read mode). Stop here (after we + * return all pagetables will be destroyed) until + * khugepaged has finished working on the pagetables + * under the mmap_lock. + */ + mmap_write_lock(mm); + mmap_write_unlock(mm); + } +} + +static void release_pte_page(struct page *page) +{ + mod_node_page_state(page_pgdat(page), + NR_ISOLATED_ANON + page_is_file_lru(page), + -compound_nr(page)); + unlock_page(page); + putback_lru_page(page); +} + +static void release_pte_pages(pte_t *pte, pte_t *_pte, + struct list_head *compound_pagelist) +{ + struct page *page, *tmp; + + while (--_pte >= pte) { + pte_t pteval = *_pte; + + page = pte_page(pteval); + if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)) && + !PageCompound(page)) + release_pte_page(page); + } + + list_for_each_entry_safe(page, tmp, compound_pagelist, lru) { + list_del(&page->lru); + release_pte_page(page); + } +} + +static bool is_refcount_suitable(struct page *page) +{ + int expected_refcount; + + expected_refcount = total_mapcount(page); + if (PageSwapCache(page)) + expected_refcount += compound_nr(page); + + return page_count(page) == expected_refcount; +} + +static int __collapse_huge_page_isolate(struct vm_area_struct *vma, + unsigned long address, + pte_t *pte, + struct list_head *compound_pagelist) +{ + struct page *page = NULL; + pte_t *_pte; + int none_or_zero = 0, shared = 0, result = 0, referenced = 0; + bool writable = false; + + for (_pte = pte; _pte < pte+HPAGE_PMD_NR; + _pte++, address += PAGE_SIZE) { + pte_t pteval = *_pte; + if (pte_none(pteval) || (pte_present(pteval) && + is_zero_pfn(pte_pfn(pteval)))) { + if (!userfaultfd_armed(vma) && + ++none_or_zero <= khugepaged_max_ptes_none) { + continue; + } else { + result = SCAN_EXCEED_NONE_PTE; + goto out; + } + } + if (!pte_present(pteval)) { + result = SCAN_PTE_NON_PRESENT; + goto out; + } + if (pte_uffd_wp(pteval)) { + result = SCAN_PTE_UFFD_WP; + goto out; + } + page = vm_normal_page(vma, address, pteval); + if (unlikely(!page)) { + result = SCAN_PAGE_NULL; + goto out; + } + + VM_BUG_ON_PAGE(!PageAnon(page), page); + + if (page_mapcount(page) > 1 && + ++shared > khugepaged_max_ptes_shared) { + result = SCAN_EXCEED_SHARED_PTE; + goto out; + } + + if (PageCompound(page)) { + struct page *p; + page = compound_head(page); + + /* + * Check if we have dealt with the compound page + * already + */ + list_for_each_entry(p, compound_pagelist, lru) { + if (page == p) + goto next; + } + } + + /* + * We can do it before isolate_lru_page because the + * page can't be freed from under us. NOTE: PG_lock + * is needed to serialize against split_huge_page + * when invoked from the VM. + */ + if (!trylock_page(page)) { + result = SCAN_PAGE_LOCK; + goto out; + } + + /* + * Check if the page has any GUP (or other external) pins. + * + * The page table that maps the page has been already unlinked + * from the page table tree and this process cannot get + * an additinal pin on the page. + * + * New pins can come later if the page is shared across fork, + * but not from this process. The other process cannot write to + * the page, only trigger CoW. + */ + if (!is_refcount_suitable(page)) { + unlock_page(page); + result = SCAN_PAGE_COUNT; + goto out; + } + if (!pte_write(pteval) && PageSwapCache(page) && + !reuse_swap_page(page, NULL)) { + /* + * Page is in the swap cache and cannot be re-used. + * It cannot be collapsed into a THP. + */ + unlock_page(page); + result = SCAN_SWAP_CACHE_PAGE; + goto out; + } + + /* + * Isolate the page to avoid collapsing an hugepage + * currently in use by the VM. + */ + if (isolate_lru_page(page)) { + unlock_page(page); + result = SCAN_DEL_PAGE_LRU; + goto out; + } + mod_node_page_state(page_pgdat(page), + NR_ISOLATED_ANON + page_is_file_lru(page), + compound_nr(page)); + VM_BUG_ON_PAGE(!PageLocked(page), page); + VM_BUG_ON_PAGE(PageLRU(page), page); + + if (PageCompound(page)) + list_add_tail(&page->lru, compound_pagelist); +next: + /* There should be enough young pte to collapse the page */ + if (pte_young(pteval) || + page_is_young(page) || PageReferenced(page) || + mmu_notifier_test_young(vma->vm_mm, address)) + referenced++; + + if (pte_write(pteval)) + writable = true; + } + + if (unlikely(!writable)) { + result = SCAN_PAGE_RO; + } else if (unlikely(!referenced)) { + result = SCAN_LACK_REFERENCED_PAGE; + } else { + result = SCAN_SUCCEED; + trace_mm_collapse_huge_page_isolate(page, none_or_zero, + referenced, writable, result); + return 1; + } +out: + release_pte_pages(pte, _pte, compound_pagelist); + trace_mm_collapse_huge_page_isolate(page, none_or_zero, + referenced, writable, result); + return 0; +} + +static void __collapse_huge_page_copy(pte_t *pte, struct page *page, + struct vm_area_struct *vma, + unsigned long address, + spinlock_t *ptl, + struct list_head *compound_pagelist) +{ + struct page *src_page, *tmp; + pte_t *_pte; + for (_pte = pte; _pte < pte + HPAGE_PMD_NR; + _pte++, page++, address += PAGE_SIZE) { + pte_t pteval = *_pte; + + if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) { + clear_user_highpage(page, address); + add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1); + if (is_zero_pfn(pte_pfn(pteval))) { + /* + * ptl mostly unnecessary. + */ + spin_lock(ptl); + /* + * paravirt calls inside pte_clear here are + * superfluous. + */ + pte_clear(vma->vm_mm, address, _pte); + spin_unlock(ptl); + } + } else { + src_page = pte_page(pteval); + copy_user_highpage(page, src_page, address, vma); + if (!PageCompound(src_page)) + release_pte_page(src_page); + /* + * ptl mostly unnecessary, but preempt has to + * be disabled to update the per-cpu stats + * inside page_remove_rmap(). + */ + spin_lock(ptl); + /* + * paravirt calls inside pte_clear here are + * superfluous. + */ + pte_clear(vma->vm_mm, address, _pte); + page_remove_rmap(src_page, false); + spin_unlock(ptl); + free_page_and_swap_cache(src_page); + } + } + + list_for_each_entry_safe(src_page, tmp, compound_pagelist, lru) { + list_del(&src_page->lru); + release_pte_page(src_page); + } +} + +static void khugepaged_alloc_sleep(void) +{ + DEFINE_WAIT(wait); + + add_wait_queue(&khugepaged_wait, &wait); + freezable_schedule_timeout_interruptible( + msecs_to_jiffies(khugepaged_alloc_sleep_millisecs)); + remove_wait_queue(&khugepaged_wait, &wait); +} + +static int khugepaged_node_load[MAX_NUMNODES]; + +static bool khugepaged_scan_abort(int nid) +{ + int i; + + /* + * If node_reclaim_mode is disabled, then no extra effort is made to + * allocate memory locally. + */ + if (!node_reclaim_mode) + return false; + + /* If there is a count for this node already, it must be acceptable */ + if (khugepaged_node_load[nid]) + return false; + + for (i = 0; i < MAX_NUMNODES; i++) { + if (!khugepaged_node_load[i]) + continue; + if (node_distance(nid, i) > node_reclaim_distance) + return true; + } + return false; +} + +/* Defrag for khugepaged will enter direct reclaim/compaction if necessary */ +static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void) +{ + return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT; +} + +#ifdef CONFIG_NUMA +static int khugepaged_find_target_node(void) +{ + static int last_khugepaged_target_node = NUMA_NO_NODE; + int nid, target_node = 0, max_value = 0; + + /* find first node with max normal pages hit */ + for (nid = 0; nid < MAX_NUMNODES; nid++) + if (khugepaged_node_load[nid] > max_value) { + max_value = khugepaged_node_load[nid]; + target_node = nid; + } + + /* do some balance if several nodes have the same hit record */ + if (target_node <= last_khugepaged_target_node) + for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES; + nid++) + if (max_value == khugepaged_node_load[nid]) { + target_node = nid; + break; + } + + last_khugepaged_target_node = target_node; + return target_node; +} + +static bool khugepaged_prealloc_page(struct page **hpage, bool *wait) +{ + if (IS_ERR(*hpage)) { + if (!*wait) + return false; + + *wait = false; + *hpage = NULL; + khugepaged_alloc_sleep(); + } else if (*hpage) { + put_page(*hpage); + *hpage = NULL; + } + + return true; +} + +static struct page * +khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node) +{ + VM_BUG_ON_PAGE(*hpage, *hpage); + + *hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER); + if (unlikely(!*hpage)) { + count_vm_event(THP_COLLAPSE_ALLOC_FAILED); + *hpage = ERR_PTR(-ENOMEM); + return NULL; + } + + prep_transhuge_page(*hpage); + count_vm_event(THP_COLLAPSE_ALLOC); + return *hpage; +} +#else +static int khugepaged_find_target_node(void) +{ + return 0; +} + +static inline struct page *alloc_khugepaged_hugepage(void) +{ + struct page *page; + + page = alloc_pages(alloc_hugepage_khugepaged_gfpmask(), + HPAGE_PMD_ORDER); + if (page) + prep_transhuge_page(page); + return page; +} + +static struct page *khugepaged_alloc_hugepage(bool *wait) +{ + struct page *hpage; + + do { + hpage = alloc_khugepaged_hugepage(); + if (!hpage) { + count_vm_event(THP_COLLAPSE_ALLOC_FAILED); + if (!*wait) + return NULL; + + *wait = false; + khugepaged_alloc_sleep(); + } else + count_vm_event(THP_COLLAPSE_ALLOC); + } while (unlikely(!hpage) && likely(khugepaged_enabled())); + + return hpage; +} + +static bool khugepaged_prealloc_page(struct page **hpage, bool *wait) +{ + /* + * If the hpage allocated earlier was briefly exposed in page cache + * before collapse_file() failed, it is possible that racing lookups + * have not yet completed, and would then be unpleasantly surprised by + * finding the hpage reused for the same mapping at a different offset. + * Just release the previous allocation if there is any danger of that. + */ + if (*hpage && page_count(*hpage) > 1) { + put_page(*hpage); + *hpage = NULL; + } + + if (!*hpage) + *hpage = khugepaged_alloc_hugepage(wait); + + if (unlikely(!*hpage)) + return false; + + return true; +} + +static struct page * +khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node) +{ + VM_BUG_ON(!*hpage); + + return *hpage; +} +#endif + +/* + * If mmap_lock temporarily dropped, revalidate vma + * before taking mmap_lock. + * Return 0 if succeeds, otherwise return none-zero + * value (scan code). + */ + +static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address, + struct vm_area_struct **vmap) +{ + struct vm_area_struct *vma; + unsigned long hstart, hend; + + if (unlikely(khugepaged_test_exit(mm))) + return SCAN_ANY_PROCESS; + + *vmap = vma = find_vma(mm, address); + if (!vma) + return SCAN_VMA_NULL; + + hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK; + hend = vma->vm_end & HPAGE_PMD_MASK; + if (address < hstart || address + HPAGE_PMD_SIZE > hend) + return SCAN_ADDRESS_RANGE; + if (!hugepage_vma_check(vma, vma->vm_flags)) + return SCAN_VMA_CHECK; + /* Anon VMA expected */ + if (!vma->anon_vma || vma->vm_ops) + return SCAN_VMA_CHECK; + return 0; +} + +/* + * Bring missing pages in from swap, to complete THP collapse. + * Only done if khugepaged_scan_pmd believes it is worthwhile. + * + * Called and returns without pte mapped or spinlocks held, + * but with mmap_lock held to protect against vma changes. + */ + +static bool __collapse_huge_page_swapin(struct mm_struct *mm, + struct vm_area_struct *vma, + unsigned long address, pmd_t *pmd, + int referenced) +{ + int swapped_in = 0; + vm_fault_t ret = 0; + struct vm_fault vmf = { + .vma = vma, + .address = address, + .flags = FAULT_FLAG_ALLOW_RETRY, + .pmd = pmd, + .pgoff = linear_page_index(vma, address), + }; + + vmf.pte = pte_offset_map(pmd, address); + for (; vmf.address < address + HPAGE_PMD_NR*PAGE_SIZE; + vmf.pte++, vmf.address += PAGE_SIZE) { + vmf.orig_pte = *vmf.pte; + if (!is_swap_pte(vmf.orig_pte)) + continue; + swapped_in++; + ret = do_swap_page(&vmf); + + /* do_swap_page returns VM_FAULT_RETRY with released mmap_lock */ + if (ret & VM_FAULT_RETRY) { + mmap_read_lock(mm); + if (hugepage_vma_revalidate(mm, address, &vmf.vma)) { + /* vma is no longer available, don't continue to swapin */ + trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0); + return false; + } + /* check if the pmd is still valid */ + if (mm_find_pmd(mm, address) != pmd) { + trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0); + return false; + } + } + if (ret & VM_FAULT_ERROR) { + trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0); + return false; + } + /* pte is unmapped now, we need to map it */ + vmf.pte = pte_offset_map(pmd, vmf.address); + } + vmf.pte--; + pte_unmap(vmf.pte); + + /* Drain LRU add pagevec to remove extra pin on the swapped in pages */ + if (swapped_in) + lru_add_drain(); + + trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 1); + return true; +} + +static void collapse_huge_page(struct mm_struct *mm, + unsigned long address, + struct page **hpage, + int node, int referenced, int unmapped) +{ + LIST_HEAD(compound_pagelist); + pmd_t *pmd, _pmd; + pte_t *pte; + pgtable_t pgtable; + struct page *new_page; + spinlock_t *pmd_ptl, *pte_ptl; + int isolated = 0, result = 0; + struct vm_area_struct *vma; + struct mmu_notifier_range range; + gfp_t gfp; + + VM_BUG_ON(address & ~HPAGE_PMD_MASK); + + /* Only allocate from the target node */ + gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE; + + /* + * Before allocating the hugepage, release the mmap_lock read lock. + * The allocation can take potentially a long time if it involves + * sync compaction, and we do not need to hold the mmap_lock during + * that. We will recheck the vma after taking it again in write mode. + */ + mmap_read_unlock(mm); + new_page = khugepaged_alloc_page(hpage, gfp, node); + if (!new_page) { + result = SCAN_ALLOC_HUGE_PAGE_FAIL; + goto out_nolock; + } + + if (unlikely(mem_cgroup_charge(new_page, mm, gfp))) { + result = SCAN_CGROUP_CHARGE_FAIL; + goto out_nolock; + } + count_memcg_page_event(new_page, THP_COLLAPSE_ALLOC); + + mmap_read_lock(mm); + result = hugepage_vma_revalidate(mm, address, &vma); + if (result) { + mmap_read_unlock(mm); + goto out_nolock; + } + + pmd = mm_find_pmd(mm, address); + if (!pmd) { + result = SCAN_PMD_NULL; + mmap_read_unlock(mm); + goto out_nolock; + } + + /* + * __collapse_huge_page_swapin always returns with mmap_lock locked. + * If it fails, we release mmap_lock and jump out_nolock. + * Continuing to collapse causes inconsistency. + */ + if (unmapped && !__collapse_huge_page_swapin(mm, vma, address, + pmd, referenced)) { + mmap_read_unlock(mm); + goto out_nolock; + } + + mmap_read_unlock(mm); + /* + * Prevent all access to pagetables with the exception of + * gup_fast later handled by the ptep_clear_flush and the VM + * handled by the anon_vma lock + PG_lock. + */ + mmap_write_lock(mm); + result = hugepage_vma_revalidate(mm, address, &vma); + if (result) + goto out; + /* check if the pmd is still valid */ + if (mm_find_pmd(mm, address) != pmd) + goto out; + + anon_vma_lock_write(vma->anon_vma); + + mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL, mm, + address, address + HPAGE_PMD_SIZE); + mmu_notifier_invalidate_range_start(&range); + + pte = pte_offset_map(pmd, address); + pte_ptl = pte_lockptr(mm, pmd); + + pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */ + /* + * This removes any huge TLB entry from the CPU so we won't allow + * huge and small TLB entries for the same virtual address to + * avoid the risk of CPU bugs in that area. + * + * Parallel fast GUP is fine since fast GUP will back off when + * it detects PMD is changed. + */ + _pmd = pmdp_collapse_flush(vma, address, pmd); + spin_unlock(pmd_ptl); + mmu_notifier_invalidate_range_end(&range); + tlb_remove_table_sync_one(); + + spin_lock(pte_ptl); + isolated = __collapse_huge_page_isolate(vma, address, pte, + &compound_pagelist); + spin_unlock(pte_ptl); + + if (unlikely(!isolated)) { + pte_unmap(pte); + spin_lock(pmd_ptl); + BUG_ON(!pmd_none(*pmd)); + /* + * We can only use set_pmd_at when establishing + * hugepmds and never for establishing regular pmds that + * points to regular pagetables. Use pmd_populate for that + */ + pmd_populate(mm, pmd, pmd_pgtable(_pmd)); + spin_unlock(pmd_ptl); + anon_vma_unlock_write(vma->anon_vma); + result = SCAN_FAIL; + goto out; + } + + /* + * All pages are isolated and locked so anon_vma rmap + * can't run anymore. + */ + anon_vma_unlock_write(vma->anon_vma); + + __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl, + &compound_pagelist); + pte_unmap(pte); + __SetPageUptodate(new_page); + pgtable = pmd_pgtable(_pmd); + + _pmd = mk_huge_pmd(new_page, vma->vm_page_prot); + _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma); + + /* + * spin_lock() below is not the equivalent of smp_wmb(), so + * this is needed to avoid the copy_huge_page writes to become + * visible after the set_pmd_at() write. + */ + smp_wmb(); + + spin_lock(pmd_ptl); + BUG_ON(!pmd_none(*pmd)); + page_add_new_anon_rmap(new_page, vma, address, true); + lru_cache_add_inactive_or_unevictable(new_page, vma); + pgtable_trans_huge_deposit(mm, pmd, pgtable); + set_pmd_at(mm, address, pmd, _pmd); + update_mmu_cache_pmd(vma, address, pmd); + spin_unlock(pmd_ptl); + + *hpage = NULL; + + khugepaged_pages_collapsed++; + result = SCAN_SUCCEED; +out_up_write: + mmap_write_unlock(mm); +out_nolock: + if (!IS_ERR_OR_NULL(*hpage)) + mem_cgroup_uncharge(*hpage); + trace_mm_collapse_huge_page(mm, isolated, result); + return; +out: + goto out_up_write; +} + +static int khugepaged_scan_pmd(struct mm_struct *mm, + struct vm_area_struct *vma, + unsigned long address, + struct page **hpage) +{ + pmd_t *pmd; + pte_t *pte, *_pte; + int ret = 0, result = 0, referenced = 0; + int none_or_zero = 0, shared = 0; + struct page *page = NULL; + unsigned long _address; + spinlock_t *ptl; + int node = NUMA_NO_NODE, unmapped = 0; + bool writable = false; + + VM_BUG_ON(address & ~HPAGE_PMD_MASK); + + pmd = mm_find_pmd(mm, address); + if (!pmd) { + result = SCAN_PMD_NULL; + goto out; + } + + memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load)); + pte = pte_offset_map_lock(mm, pmd, address, &ptl); + for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR; + _pte++, _address += PAGE_SIZE) { + pte_t pteval = *_pte; + if (is_swap_pte(pteval)) { + if (++unmapped <= khugepaged_max_ptes_swap) { + /* + * Always be strict with uffd-wp + * enabled swap entries. Please see + * comment below for pte_uffd_wp(). + */ + if (pte_swp_uffd_wp(pteval)) { + result = SCAN_PTE_UFFD_WP; + goto out_unmap; + } + continue; + } else { + result = SCAN_EXCEED_SWAP_PTE; + goto out_unmap; + } + } + if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) { + if (!userfaultfd_armed(vma) && + ++none_or_zero <= khugepaged_max_ptes_none) { + continue; + } else { + result = SCAN_EXCEED_NONE_PTE; + goto out_unmap; + } + } + if (!pte_present(pteval)) { + result = SCAN_PTE_NON_PRESENT; + goto out_unmap; + } + if (pte_uffd_wp(pteval)) { + /* + * Don't collapse the page if any of the small + * PTEs are armed with uffd write protection. + * Here we can also mark the new huge pmd as + * write protected if any of the small ones is + * marked but that could bring uknown + * userfault messages that falls outside of + * the registered range. So, just be simple. + */ + result = SCAN_PTE_UFFD_WP; + goto out_unmap; + } + if (pte_write(pteval)) + writable = true; + + page = vm_normal_page(vma, _address, pteval); + if (unlikely(!page)) { + result = SCAN_PAGE_NULL; + goto out_unmap; + } + + if (page_mapcount(page) > 1 && + ++shared > khugepaged_max_ptes_shared) { + result = SCAN_EXCEED_SHARED_PTE; + goto out_unmap; + } + + page = compound_head(page); + + /* + * Record which node the original page is from and save this + * information to khugepaged_node_load[]. + * Khupaged will allocate hugepage from the node has the max + * hit record. + */ + node = page_to_nid(page); + if (khugepaged_scan_abort(node)) { + result = SCAN_SCAN_ABORT; + goto out_unmap; + } + khugepaged_node_load[node]++; + if (!PageLRU(page)) { + result = SCAN_PAGE_LRU; + goto out_unmap; + } + if (PageLocked(page)) { + result = SCAN_PAGE_LOCK; + goto out_unmap; + } + if (!PageAnon(page)) { + result = SCAN_PAGE_ANON; + goto out_unmap; + } + + /* + * Check if the page has any GUP (or other external) pins. + * + * Here the check is racy it may see totmal_mapcount > refcount + * in some cases. + * For example, one process with one forked child process. + * The parent has the PMD split due to MADV_DONTNEED, then + * the child is trying unmap the whole PMD, but khugepaged + * may be scanning the parent between the child has + * PageDoubleMap flag cleared and dec the mapcount. So + * khugepaged may see total_mapcount > refcount. + * + * But such case is ephemeral we could always retry collapse + * later. However it may report false positive if the page + * has excessive GUP pins (i.e. 512). Anyway the same check + * will be done again later the risk seems low. + */ + if (!is_refcount_suitable(page)) { + result = SCAN_PAGE_COUNT; + goto out_unmap; + } + if (pte_young(pteval) || + page_is_young(page) || PageReferenced(page) || + mmu_notifier_test_young(vma->vm_mm, address)) + referenced++; + } + if (!writable) { + result = SCAN_PAGE_RO; + } else if (!referenced || (unmapped && referenced < HPAGE_PMD_NR/2)) { + result = SCAN_LACK_REFERENCED_PAGE; + } else { + result = SCAN_SUCCEED; + ret = 1; + } +out_unmap: + pte_unmap_unlock(pte, ptl); + if (ret) { + node = khugepaged_find_target_node(); + /* collapse_huge_page will return with the mmap_lock released */ + collapse_huge_page(mm, address, hpage, node, + referenced, unmapped); + } +out: + trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced, + none_or_zero, result, unmapped); + return ret; +} + +static void collect_mm_slot(struct mm_slot *mm_slot) +{ + struct mm_struct *mm = mm_slot->mm; + + lockdep_assert_held(&khugepaged_mm_lock); + + if (khugepaged_test_exit(mm)) { + /* free mm_slot */ + hash_del(&mm_slot->hash); + list_del(&mm_slot->mm_node); + + /* + * Not strictly needed because the mm exited already. + * + * clear_bit(MMF_VM_HUGEPAGE, &mm->flags); + */ + + /* khugepaged_mm_lock actually not necessary for the below */ + free_mm_slot(mm_slot); + mmdrop(mm); + } +} + +#ifdef CONFIG_SHMEM +/* + * Notify khugepaged that given addr of the mm is pte-mapped THP. Then + * khugepaged should try to collapse the page table. + */ +static int khugepaged_add_pte_mapped_thp(struct mm_struct *mm, + unsigned long addr) +{ + struct mm_slot *mm_slot; + + VM_BUG_ON(addr & ~HPAGE_PMD_MASK); + + spin_lock(&khugepaged_mm_lock); + mm_slot = get_mm_slot(mm); + if (likely(mm_slot && mm_slot->nr_pte_mapped_thp < MAX_PTE_MAPPED_THP)) + mm_slot->pte_mapped_thp[mm_slot->nr_pte_mapped_thp++] = addr; + spin_unlock(&khugepaged_mm_lock); + return 0; +} + +/** + * Try to collapse a pte-mapped THP for mm at address haddr. + * + * This function checks whether all the PTEs in the PMD are pointing to the + * right THP. If so, retract the page table so the THP can refault in with + * as pmd-mapped. + */ +void collapse_pte_mapped_thp(struct mm_struct *mm, unsigned long addr) +{ + unsigned long haddr = addr & HPAGE_PMD_MASK; + struct vm_area_struct *vma = find_vma(mm, haddr); + struct page *hpage; + pte_t *start_pte, *pte; + pmd_t *pmd, _pmd; + spinlock_t *ptl; + int count = 0; + int i; + struct mmu_notifier_range range; + + if (!vma || !vma->vm_file || + vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE) + return; + + /* + * This vm_flags may not have VM_HUGEPAGE if the page was not + * collapsed by this mm. But we can still collapse if the page is + * the valid THP. Add extra VM_HUGEPAGE so hugepage_vma_check() + * will not fail the vma for missing VM_HUGEPAGE + */ + if (!hugepage_vma_check(vma, vma->vm_flags | VM_HUGEPAGE)) + return; + + hpage = find_lock_page(vma->vm_file->f_mapping, + linear_page_index(vma, haddr)); + if (!hpage) + return; + + if (!PageHead(hpage)) + goto drop_hpage; + + pmd = mm_find_pmd(mm, haddr); + if (!pmd) + goto drop_hpage; + + /* + * We need to lock the mapping so that from here on, only GUP-fast and + * hardware page walks can access the parts of the page tables that + * we're operating on. + */ + i_mmap_lock_write(vma->vm_file->f_mapping); + + /* + * This spinlock should be unnecessary: Nobody else should be accessing + * the page tables under spinlock protection here, only + * lockless_pages_from_mm() and the hardware page walker can access page + * tables while all the high-level locks are held in write mode. + */ + start_pte = pte_offset_map_lock(mm, pmd, haddr, &ptl); + + /* step 1: check all mapped PTEs are to the right huge page */ + for (i = 0, addr = haddr, pte = start_pte; + i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) { + struct page *page; + + /* empty pte, skip */ + if (pte_none(*pte)) + continue; + + /* page swapped out, abort */ + if (!pte_present(*pte)) + goto abort; + + page = vm_normal_page(vma, addr, *pte); + + /* + * Note that uprobe, debugger, or MAP_PRIVATE may change the + * page table, but the new page will not be a subpage of hpage. + */ + if (hpage + i != page) + goto abort; + count++; + } + + /* step 2: adjust rmap */ + for (i = 0, addr = haddr, pte = start_pte; + i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) { + struct page *page; + + if (pte_none(*pte)) + continue; + page = vm_normal_page(vma, addr, *pte); + page_remove_rmap(page, false); + } + + pte_unmap_unlock(start_pte, ptl); + + /* step 3: set proper refcount and mm_counters. */ + if (count) { + page_ref_sub(hpage, count); + add_mm_counter(vma->vm_mm, mm_counter_file(hpage), -count); + } + + /* step 4: collapse pmd */ + /* we make no change to anon, but protect concurrent anon page lookup */ + if (vma->anon_vma) + anon_vma_lock_write(vma->anon_vma); + + mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL, mm, haddr, + haddr + HPAGE_PMD_SIZE); + mmu_notifier_invalidate_range_start(&range); + _pmd = pmdp_collapse_flush(vma, haddr, pmd); + mm_dec_nr_ptes(mm); + tlb_remove_table_sync_one(); + mmu_notifier_invalidate_range_end(&range); + pte_free(mm, pmd_pgtable(_pmd)); + + if (vma->anon_vma) + anon_vma_unlock_write(vma->anon_vma); + i_mmap_unlock_write(vma->vm_file->f_mapping); + +drop_hpage: + unlock_page(hpage); + put_page(hpage); + return; + +abort: + pte_unmap_unlock(start_pte, ptl); + i_mmap_unlock_write(vma->vm_file->f_mapping); + goto drop_hpage; +} + +static int khugepaged_collapse_pte_mapped_thps(struct mm_slot *mm_slot) +{ + struct mm_struct *mm = mm_slot->mm; + int i; + + if (likely(mm_slot->nr_pte_mapped_thp == 0)) + return 0; + + if (!mmap_write_trylock(mm)) + return -EBUSY; + + if (unlikely(khugepaged_test_exit(mm))) + goto out; + + for (i = 0; i < mm_slot->nr_pte_mapped_thp; i++) + collapse_pte_mapped_thp(mm, mm_slot->pte_mapped_thp[i]); + +out: + mm_slot->nr_pte_mapped_thp = 0; + mmap_write_unlock(mm); + return 0; +} + +static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff) +{ + struct vm_area_struct *vma; + struct mm_struct *mm; + unsigned long addr; + pmd_t *pmd, _pmd; + + i_mmap_lock_write(mapping); + vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { + /* + * Check vma->anon_vma to exclude MAP_PRIVATE mappings that + * got written to. These VMAs are likely not worth investing + * mmap_write_lock(mm) as PMD-mapping is likely to be split + * later. + * + * Not that vma->anon_vma check is racy: it can be set up after + * the check but before we took mmap_lock by the fault path. + * But page lock would prevent establishing any new ptes of the + * page, so we are safe. + * + * An alternative would be drop the check, but check that page + * table is clear before calling pmdp_collapse_flush() under + * ptl. It has higher chance to recover THP for the VMA, but + * has higher cost too. It would also probably require locking + * the anon_vma. + */ + if (vma->anon_vma) + continue; + addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); + if (addr & ~HPAGE_PMD_MASK) + continue; + if (vma->vm_end < addr + HPAGE_PMD_SIZE) + continue; + mm = vma->vm_mm; + pmd = mm_find_pmd(mm, addr); + if (!pmd) + continue; + /* + * We need exclusive mmap_lock to retract page table. + * + * We use trylock due to lock inversion: we need to acquire + * mmap_lock while holding page lock. Fault path does it in + * reverse order. Trylock is a way to avoid deadlock. + */ + if (mmap_write_trylock(mm)) { + if (!khugepaged_test_exit(mm)) { + struct mmu_notifier_range range; + + mmu_notifier_range_init(&range, + MMU_NOTIFY_CLEAR, 0, + NULL, mm, addr, + addr + HPAGE_PMD_SIZE); + mmu_notifier_invalidate_range_start(&range); + /* assume page table is clear */ + _pmd = pmdp_collapse_flush(vma, addr, pmd); + mm_dec_nr_ptes(mm); + tlb_remove_table_sync_one(); + pte_free(mm, pmd_pgtable(_pmd)); + mmu_notifier_invalidate_range_end(&range); + } + mmap_write_unlock(mm); + } else { + /* Try again later */ + khugepaged_add_pte_mapped_thp(mm, addr); + } + } + i_mmap_unlock_write(mapping); +} + +/** + * collapse_file - collapse filemap/tmpfs/shmem pages into huge one. + * + * Basic scheme is simple, details are more complex: + * - allocate and lock a new huge page; + * - scan page cache replacing old pages with the new one + * + swap/gup in pages if necessary; + * + fill in gaps; + * + keep old pages around in case rollback is required; + * - if replacing succeeds: + * + copy data over; + * + free old pages; + * + unlock huge page; + * - if replacing failed; + * + put all pages back and unfreeze them; + * + restore gaps in the page cache; + * + unlock and free huge page; + */ +static void collapse_file(struct mm_struct *mm, + struct file *file, pgoff_t start, + struct page **hpage, int node) +{ + struct address_space *mapping = file->f_mapping; + gfp_t gfp; + struct page *new_page; + pgoff_t index, end = start + HPAGE_PMD_NR; + LIST_HEAD(pagelist); + XA_STATE_ORDER(xas, &mapping->i_pages, start, HPAGE_PMD_ORDER); + int nr_none = 0, result = SCAN_SUCCEED; + bool is_shmem = shmem_file(file); + + VM_BUG_ON(!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && !is_shmem); + VM_BUG_ON(start & (HPAGE_PMD_NR - 1)); + + /* Only allocate from the target node */ + gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE; + + new_page = khugepaged_alloc_page(hpage, gfp, node); + if (!new_page) { + result = SCAN_ALLOC_HUGE_PAGE_FAIL; + goto out; + } + + if (unlikely(mem_cgroup_charge(new_page, mm, gfp))) { + result = SCAN_CGROUP_CHARGE_FAIL; + goto out; + } + count_memcg_page_event(new_page, THP_COLLAPSE_ALLOC); + + /* This will be less messy when we use multi-index entries */ + do { + xas_lock_irq(&xas); + xas_create_range(&xas); + if (!xas_error(&xas)) + break; + xas_unlock_irq(&xas); + if (!xas_nomem(&xas, GFP_KERNEL)) { + result = SCAN_FAIL; + goto out; + } + } while (1); + + __SetPageLocked(new_page); + if (is_shmem) + __SetPageSwapBacked(new_page); + new_page->index = start; + new_page->mapping = mapping; + + /* + * At this point the new_page is locked and not up-to-date. + * It's safe to insert it into the page cache, because nobody would + * be able to map it or use it in another way until we unlock it. + */ + + xas_set(&xas, start); + for (index = start; index < end; index++) { + struct page *page = xas_next(&xas); + + VM_BUG_ON(index != xas.xa_index); + if (is_shmem) { + if (!page) { + /* + * Stop if extent has been truncated or + * hole-punched, and is now completely + * empty. + */ + if (index == start) { + if (!xas_next_entry(&xas, end - 1)) { + result = SCAN_TRUNCATED; + goto xa_locked; + } + xas_set(&xas, index); + } + if (!shmem_charge(mapping->host, 1)) { + result = SCAN_FAIL; + goto xa_locked; + } + xas_store(&xas, new_page); + nr_none++; + continue; + } + + if (xa_is_value(page) || !PageUptodate(page)) { + xas_unlock_irq(&xas); + /* swap in or instantiate fallocated page */ + if (shmem_getpage(mapping->host, index, &page, + SGP_NOHUGE)) { + result = SCAN_FAIL; + goto xa_unlocked; + } + } else if (trylock_page(page)) { + get_page(page); + xas_unlock_irq(&xas); + } else { + result = SCAN_PAGE_LOCK; + goto xa_locked; + } + } else { /* !is_shmem */ + if (!page || xa_is_value(page)) { + xas_unlock_irq(&xas); + page_cache_sync_readahead(mapping, &file->f_ra, + file, index, + end - index); + /* drain pagevecs to help isolate_lru_page() */ + lru_add_drain(); + page = find_lock_page(mapping, index); + if (unlikely(page == NULL)) { + result = SCAN_FAIL; + goto xa_unlocked; + } + } else if (PageDirty(page)) { + /* + * khugepaged only works on read-only fd, + * so this page is dirty because it hasn't + * been flushed since first write. There + * won't be new dirty pages. + * + * Trigger async flush here and hope the + * writeback is done when khugepaged + * revisits this page. + * + * This is a one-off situation. We are not + * forcing writeback in loop. + */ + xas_unlock_irq(&xas); + filemap_flush(mapping); + result = SCAN_FAIL; + goto xa_unlocked; + } else if (PageWriteback(page)) { + xas_unlock_irq(&xas); + result = SCAN_FAIL; + goto xa_unlocked; + } else if (trylock_page(page)) { + get_page(page); + xas_unlock_irq(&xas); + } else { + result = SCAN_PAGE_LOCK; + goto xa_locked; + } + } + + /* + * The page must be locked, so we can drop the i_pages lock + * without racing with truncate. + */ + VM_BUG_ON_PAGE(!PageLocked(page), page); + + /* make sure the page is up to date */ + if (unlikely(!PageUptodate(page))) { + result = SCAN_FAIL; + goto out_unlock; + } + + /* + * If file was truncated then extended, or hole-punched, before + * we locked the first page, then a THP might be there already. + */ + if (PageTransCompound(page)) { + result = SCAN_PAGE_COMPOUND; + goto out_unlock; + } + + if (page_mapping(page) != mapping) { + result = SCAN_TRUNCATED; + goto out_unlock; + } + + if (!is_shmem && (PageDirty(page) || + PageWriteback(page))) { + /* + * khugepaged only works on read-only fd, so this + * page is dirty because it hasn't been flushed + * since first write. + */ + result = SCAN_FAIL; + goto out_unlock; + } + + if (isolate_lru_page(page)) { + result = SCAN_DEL_PAGE_LRU; + goto out_unlock; + } + + if (page_has_private(page) && + !try_to_release_page(page, GFP_KERNEL)) { + result = SCAN_PAGE_HAS_PRIVATE; + putback_lru_page(page); + goto out_unlock; + } + + if (page_mapped(page)) + unmap_mapping_pages(mapping, index, 1, false); + + xas_lock_irq(&xas); + xas_set(&xas, index); + + VM_BUG_ON_PAGE(page != xas_load(&xas), page); + VM_BUG_ON_PAGE(page_mapped(page), page); + + /* + * The page is expected to have page_count() == 3: + * - we hold a pin on it; + * - one reference from page cache; + * - one from isolate_lru_page; + */ + if (!page_ref_freeze(page, 3)) { + result = SCAN_PAGE_COUNT; + xas_unlock_irq(&xas); + putback_lru_page(page); + goto out_unlock; + } + + /* + * Add the page to the list to be able to undo the collapse if + * something go wrong. + */ + list_add_tail(&page->lru, &pagelist); + + /* Finally, replace with the new page. */ + xas_store(&xas, new_page); + continue; +out_unlock: + unlock_page(page); + put_page(page); + goto xa_unlocked; + } + + if (is_shmem) + __inc_node_page_state(new_page, NR_SHMEM_THPS); + else { + __inc_node_page_state(new_page, NR_FILE_THPS); + filemap_nr_thps_inc(mapping); + } + + if (nr_none) { + __mod_lruvec_page_state(new_page, NR_FILE_PAGES, nr_none); + if (is_shmem) + __mod_lruvec_page_state(new_page, NR_SHMEM, nr_none); + } + +xa_locked: + xas_unlock_irq(&xas); +xa_unlocked: + + if (result == SCAN_SUCCEED) { + struct page *page, *tmp; + + /* + * Replacing old pages with new one has succeeded, now we + * need to copy the content and free the old pages. + */ + index = start; + list_for_each_entry_safe(page, tmp, &pagelist, lru) { + while (index < page->index) { + clear_highpage(new_page + (index % HPAGE_PMD_NR)); + index++; + } + copy_highpage(new_page + (page->index % HPAGE_PMD_NR), + page); + list_del(&page->lru); + page->mapping = NULL; + page_ref_unfreeze(page, 1); + ClearPageActive(page); + ClearPageUnevictable(page); + unlock_page(page); + put_page(page); + index++; + } + while (index < end) { + clear_highpage(new_page + (index % HPAGE_PMD_NR)); + index++; + } + + SetPageUptodate(new_page); + page_ref_add(new_page, HPAGE_PMD_NR - 1); + if (is_shmem) + set_page_dirty(new_page); + lru_cache_add(new_page); + + /* + * Remove pte page tables, so we can re-fault the page as huge. + */ + retract_page_tables(mapping, start); + *hpage = NULL; + + khugepaged_pages_collapsed++; + } else { + struct page *page; + + /* Something went wrong: roll back page cache changes */ + xas_lock_irq(&xas); + mapping->nrpages -= nr_none; + + if (is_shmem) + shmem_uncharge(mapping->host, nr_none); + + xas_set(&xas, start); + xas_for_each(&xas, page, end - 1) { + page = list_first_entry_or_null(&pagelist, + struct page, lru); + if (!page || xas.xa_index < page->index) { + if (!nr_none) + break; + nr_none--; + /* Put holes back where they were */ + xas_store(&xas, NULL); + continue; + } + + VM_BUG_ON_PAGE(page->index != xas.xa_index, page); + + /* Unfreeze the page. */ + list_del(&page->lru); + page_ref_unfreeze(page, 2); + xas_store(&xas, page); + xas_pause(&xas); + xas_unlock_irq(&xas); + unlock_page(page); + putback_lru_page(page); + xas_lock_irq(&xas); + } + VM_BUG_ON(nr_none); + xas_unlock_irq(&xas); + + new_page->mapping = NULL; + } + + unlock_page(new_page); +out: + VM_BUG_ON(!list_empty(&pagelist)); + if (!IS_ERR_OR_NULL(*hpage)) + mem_cgroup_uncharge(*hpage); + /* TODO: tracepoints */ +} + +static void khugepaged_scan_file(struct mm_struct *mm, + struct file *file, pgoff_t start, struct page **hpage) +{ + struct page *page = NULL; + struct address_space *mapping = file->f_mapping; + XA_STATE(xas, &mapping->i_pages, start); + int present, swap; + int node = NUMA_NO_NODE; + int result = SCAN_SUCCEED; + + present = 0; + swap = 0; + memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load)); + rcu_read_lock(); + xas_for_each(&xas, page, start + HPAGE_PMD_NR - 1) { + if (xas_retry(&xas, page)) + continue; + + if (xa_is_value(page)) { + if (++swap > khugepaged_max_ptes_swap) { + result = SCAN_EXCEED_SWAP_PTE; + break; + } + continue; + } + + if (PageTransCompound(page)) { + result = SCAN_PAGE_COMPOUND; + break; + } + + node = page_to_nid(page); + if (khugepaged_scan_abort(node)) { + result = SCAN_SCAN_ABORT; + break; + } + khugepaged_node_load[node]++; + + if (!PageLRU(page)) { + result = SCAN_PAGE_LRU; + break; + } + + if (page_count(page) != + 1 + page_mapcount(page) + page_has_private(page)) { + result = SCAN_PAGE_COUNT; + break; + } + + /* + * We probably should check if the page is referenced here, but + * nobody would transfer pte_young() to PageReferenced() for us. + * And rmap walk here is just too costly... + */ + + present++; + + if (need_resched()) { + xas_pause(&xas); + cond_resched_rcu(); + } + } + rcu_read_unlock(); + + if (result == SCAN_SUCCEED) { + if (present < HPAGE_PMD_NR - khugepaged_max_ptes_none) { + result = SCAN_EXCEED_NONE_PTE; + } else { + node = khugepaged_find_target_node(); + collapse_file(mm, file, start, hpage, node); + } + } + + /* TODO: tracepoints */ +} +#else +static void khugepaged_scan_file(struct mm_struct *mm, + struct file *file, pgoff_t start, struct page **hpage) +{ + BUILD_BUG(); +} + +static int khugepaged_collapse_pte_mapped_thps(struct mm_slot *mm_slot) +{ + return 0; +} +#endif + +static unsigned int khugepaged_scan_mm_slot(unsigned int pages, + struct page **hpage) + __releases(&khugepaged_mm_lock) + __acquires(&khugepaged_mm_lock) +{ + struct mm_slot *mm_slot; + struct mm_struct *mm; + struct vm_area_struct *vma; + int progress = 0; + + VM_BUG_ON(!pages); + lockdep_assert_held(&khugepaged_mm_lock); + + if (khugepaged_scan.mm_slot) + mm_slot = khugepaged_scan.mm_slot; + else { + mm_slot = list_entry(khugepaged_scan.mm_head.next, + struct mm_slot, mm_node); + khugepaged_scan.address = 0; + khugepaged_scan.mm_slot = mm_slot; + } + spin_unlock(&khugepaged_mm_lock); + khugepaged_collapse_pte_mapped_thps(mm_slot); + + mm = mm_slot->mm; + /* + * Don't wait for semaphore (to avoid long wait times). Just move to + * the next mm on the list. + */ + vma = NULL; + if (unlikely(!mmap_read_trylock(mm))) + goto breakouterloop_mmap_lock; + if (likely(!khugepaged_test_exit(mm))) + vma = find_vma(mm, khugepaged_scan.address); + + progress++; + for (; vma; vma = vma->vm_next) { + unsigned long hstart, hend; + + cond_resched(); + if (unlikely(khugepaged_test_exit(mm))) { + progress++; + break; + } + if (!hugepage_vma_check(vma, vma->vm_flags)) { +skip: + progress++; + continue; + } + hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK; + hend = vma->vm_end & HPAGE_PMD_MASK; + if (hstart >= hend) + goto skip; + if (khugepaged_scan.address > hend) + goto skip; + if (khugepaged_scan.address < hstart) + khugepaged_scan.address = hstart; + VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK); + if (shmem_file(vma->vm_file) && !shmem_huge_enabled(vma)) + goto skip; + + while (khugepaged_scan.address < hend) { + int ret; + cond_resched(); + if (unlikely(khugepaged_test_exit(mm))) + goto breakouterloop; + + VM_BUG_ON(khugepaged_scan.address < hstart || + khugepaged_scan.address + HPAGE_PMD_SIZE > + hend); + if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) { + struct file *file = get_file(vma->vm_file); + pgoff_t pgoff = linear_page_index(vma, + khugepaged_scan.address); + + mmap_read_unlock(mm); + ret = 1; + khugepaged_scan_file(mm, file, pgoff, hpage); + fput(file); + } else { + ret = khugepaged_scan_pmd(mm, vma, + khugepaged_scan.address, + hpage); + } + /* move to next address */ + khugepaged_scan.address += HPAGE_PMD_SIZE; + progress += HPAGE_PMD_NR; + if (ret) + /* we released mmap_lock so break loop */ + goto breakouterloop_mmap_lock; + if (progress >= pages) + goto breakouterloop; + } + } +breakouterloop: + mmap_read_unlock(mm); /* exit_mmap will destroy ptes after this */ +breakouterloop_mmap_lock: + + spin_lock(&khugepaged_mm_lock); + VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot); + /* + * Release the current mm_slot if this mm is about to die, or + * if we scanned all vmas of this mm. + */ + if (khugepaged_test_exit(mm) || !vma) { + /* + * Make sure that if mm_users is reaching zero while + * khugepaged runs here, khugepaged_exit will find + * mm_slot not pointing to the exiting mm. + */ + if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) { + khugepaged_scan.mm_slot = list_entry( + mm_slot->mm_node.next, + struct mm_slot, mm_node); + khugepaged_scan.address = 0; + } else { + khugepaged_scan.mm_slot = NULL; + khugepaged_full_scans++; + } + + collect_mm_slot(mm_slot); + } + + return progress; +} + +static int khugepaged_has_work(void) +{ + return !list_empty(&khugepaged_scan.mm_head) && + khugepaged_enabled(); +} + +static int khugepaged_wait_event(void) +{ + return !list_empty(&khugepaged_scan.mm_head) || + kthread_should_stop(); +} + +static void khugepaged_do_scan(void) +{ + struct page *hpage = NULL; + unsigned int progress = 0, pass_through_head = 0; + unsigned int pages = khugepaged_pages_to_scan; + bool wait = true; + + barrier(); /* write khugepaged_pages_to_scan to local stack */ + + lru_add_drain_all(); + + while (progress < pages) { + if (!khugepaged_prealloc_page(&hpage, &wait)) + break; + + cond_resched(); + + if (unlikely(kthread_should_stop() || try_to_freeze())) + break; + + spin_lock(&khugepaged_mm_lock); + if (!khugepaged_scan.mm_slot) + pass_through_head++; + if (khugepaged_has_work() && + pass_through_head < 2) + progress += khugepaged_scan_mm_slot(pages - progress, + &hpage); + else + progress = pages; + spin_unlock(&khugepaged_mm_lock); + } + + if (!IS_ERR_OR_NULL(hpage)) + put_page(hpage); +} + +static bool khugepaged_should_wakeup(void) +{ + return kthread_should_stop() || + time_after_eq(jiffies, khugepaged_sleep_expire); +} + +static void khugepaged_wait_work(void) +{ + if (khugepaged_has_work()) { + const unsigned long scan_sleep_jiffies = + msecs_to_jiffies(khugepaged_scan_sleep_millisecs); + + if (!scan_sleep_jiffies) + return; + + khugepaged_sleep_expire = jiffies + scan_sleep_jiffies; + wait_event_freezable_timeout(khugepaged_wait, + khugepaged_should_wakeup(), + scan_sleep_jiffies); + return; + } + + if (khugepaged_enabled()) + wait_event_freezable(khugepaged_wait, khugepaged_wait_event()); +} + +static int khugepaged(void *none) +{ + struct mm_slot *mm_slot; + + set_freezable(); + set_user_nice(current, MAX_NICE); + + while (!kthread_should_stop()) { + khugepaged_do_scan(); + khugepaged_wait_work(); + } + + spin_lock(&khugepaged_mm_lock); + mm_slot = khugepaged_scan.mm_slot; + khugepaged_scan.mm_slot = NULL; + if (mm_slot) + collect_mm_slot(mm_slot); + spin_unlock(&khugepaged_mm_lock); + return 0; +} + +static void set_recommended_min_free_kbytes(void) +{ + struct zone *zone; + int nr_zones = 0; + unsigned long recommended_min; + + for_each_populated_zone(zone) { + /* + * We don't need to worry about fragmentation of + * ZONE_MOVABLE since it only has movable pages. + */ + if (zone_idx(zone) > gfp_zone(GFP_USER)) + continue; + + nr_zones++; + } + + /* Ensure 2 pageblocks are free to assist fragmentation avoidance */ + recommended_min = pageblock_nr_pages * nr_zones * 2; + + /* + * Make sure that on average at least two pageblocks are almost free + * of another type, one for a migratetype to fall back to and a + * second to avoid subsequent fallbacks of other types There are 3 + * MIGRATE_TYPES we care about. + */ + recommended_min += pageblock_nr_pages * nr_zones * + MIGRATE_PCPTYPES * MIGRATE_PCPTYPES; + + /* don't ever allow to reserve more than 5% of the lowmem */ + recommended_min = min(recommended_min, + (unsigned long) nr_free_buffer_pages() / 20); + recommended_min <<= (PAGE_SHIFT-10); + + if (recommended_min > min_free_kbytes) { + if (user_min_free_kbytes >= 0) + pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n", + min_free_kbytes, recommended_min); + + min_free_kbytes = recommended_min; + } + setup_per_zone_wmarks(); +} + +int start_stop_khugepaged(void) +{ + int err = 0; + + mutex_lock(&khugepaged_mutex); + if (khugepaged_enabled()) { + if (!khugepaged_thread) + khugepaged_thread = kthread_run(khugepaged, NULL, + "khugepaged"); + if (IS_ERR(khugepaged_thread)) { + pr_err("khugepaged: kthread_run(khugepaged) failed\n"); + err = PTR_ERR(khugepaged_thread); + khugepaged_thread = NULL; + goto fail; + } + + if (!list_empty(&khugepaged_scan.mm_head)) + wake_up_interruptible(&khugepaged_wait); + + set_recommended_min_free_kbytes(); + } else if (khugepaged_thread) { + kthread_stop(khugepaged_thread); + khugepaged_thread = NULL; + } +fail: + mutex_unlock(&khugepaged_mutex); + return err; +} + +void khugepaged_min_free_kbytes_update(void) +{ + mutex_lock(&khugepaged_mutex); + if (khugepaged_enabled() && khugepaged_thread) + set_recommended_min_free_kbytes(); + mutex_unlock(&khugepaged_mutex); +} |