diff options
Diffstat (limited to 'mm/swap_slots.c')
-rw-r--r-- | mm/swap_slots.c | 354 |
1 files changed, 354 insertions, 0 deletions
diff --git a/mm/swap_slots.c b/mm/swap_slots.c new file mode 100644 index 000000000..0357fbe70 --- /dev/null +++ b/mm/swap_slots.c @@ -0,0 +1,354 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Manage cache of swap slots to be used for and returned from + * swap. + * + * Copyright(c) 2016 Intel Corporation. + * + * Author: Tim Chen <tim.c.chen@linux.intel.com> + * + * We allocate the swap slots from the global pool and put + * it into local per cpu caches. This has the advantage + * of no needing to acquire the swap_info lock every time + * we need a new slot. + * + * There is also opportunity to simply return the slot + * to local caches without needing to acquire swap_info + * lock. We do not reuse the returned slots directly but + * move them back to the global pool in a batch. This + * allows the slots to coaellesce and reduce fragmentation. + * + * The swap entry allocated is marked with SWAP_HAS_CACHE + * flag in map_count that prevents it from being allocated + * again from the global pool. + * + * The swap slots cache is protected by a mutex instead of + * a spin lock as when we search for slots with scan_swap_map, + * we can possibly sleep. + */ + +#include <linux/swap_slots.h> +#include <linux/cpu.h> +#include <linux/cpumask.h> +#include <linux/vmalloc.h> +#include <linux/mutex.h> +#include <linux/mm.h> + +static DEFINE_PER_CPU(struct swap_slots_cache, swp_slots); +static bool swap_slot_cache_active; +bool swap_slot_cache_enabled; +static bool swap_slot_cache_initialized; +static DEFINE_MUTEX(swap_slots_cache_mutex); +/* Serialize swap slots cache enable/disable operations */ +static DEFINE_MUTEX(swap_slots_cache_enable_mutex); + +static void __drain_swap_slots_cache(unsigned int type); +static void deactivate_swap_slots_cache(void); +static void reactivate_swap_slots_cache(void); + +#define use_swap_slot_cache (swap_slot_cache_active && swap_slot_cache_enabled) +#define SLOTS_CACHE 0x1 +#define SLOTS_CACHE_RET 0x2 + +static void deactivate_swap_slots_cache(void) +{ + mutex_lock(&swap_slots_cache_mutex); + swap_slot_cache_active = false; + __drain_swap_slots_cache(SLOTS_CACHE|SLOTS_CACHE_RET); + mutex_unlock(&swap_slots_cache_mutex); +} + +static void reactivate_swap_slots_cache(void) +{ + mutex_lock(&swap_slots_cache_mutex); + swap_slot_cache_active = true; + mutex_unlock(&swap_slots_cache_mutex); +} + +/* Must not be called with cpu hot plug lock */ +void disable_swap_slots_cache_lock(void) +{ + mutex_lock(&swap_slots_cache_enable_mutex); + swap_slot_cache_enabled = false; + if (swap_slot_cache_initialized) { + /* serialize with cpu hotplug operations */ + get_online_cpus(); + __drain_swap_slots_cache(SLOTS_CACHE|SLOTS_CACHE_RET); + put_online_cpus(); + } +} + +static void __reenable_swap_slots_cache(void) +{ + swap_slot_cache_enabled = has_usable_swap(); +} + +void reenable_swap_slots_cache_unlock(void) +{ + __reenable_swap_slots_cache(); + mutex_unlock(&swap_slots_cache_enable_mutex); +} + +static bool check_cache_active(void) +{ + long pages; + + if (!swap_slot_cache_enabled) + return false; + + pages = get_nr_swap_pages(); + if (!swap_slot_cache_active) { + if (pages > num_online_cpus() * + THRESHOLD_ACTIVATE_SWAP_SLOTS_CACHE) + reactivate_swap_slots_cache(); + goto out; + } + + /* if global pool of slot caches too low, deactivate cache */ + if (pages < num_online_cpus() * THRESHOLD_DEACTIVATE_SWAP_SLOTS_CACHE) + deactivate_swap_slots_cache(); +out: + return swap_slot_cache_active; +} + +static int alloc_swap_slot_cache(unsigned int cpu) +{ + struct swap_slots_cache *cache; + swp_entry_t *slots, *slots_ret; + + /* + * Do allocation outside swap_slots_cache_mutex + * as kvzalloc could trigger reclaim and get_swap_page, + * which can lock swap_slots_cache_mutex. + */ + slots = kvcalloc(SWAP_SLOTS_CACHE_SIZE, sizeof(swp_entry_t), + GFP_KERNEL); + if (!slots) + return -ENOMEM; + + slots_ret = kvcalloc(SWAP_SLOTS_CACHE_SIZE, sizeof(swp_entry_t), + GFP_KERNEL); + if (!slots_ret) { + kvfree(slots); + return -ENOMEM; + } + + mutex_lock(&swap_slots_cache_mutex); + cache = &per_cpu(swp_slots, cpu); + if (cache->slots || cache->slots_ret) { + /* cache already allocated */ + mutex_unlock(&swap_slots_cache_mutex); + + kvfree(slots); + kvfree(slots_ret); + + return 0; + } + + if (!cache->lock_initialized) { + mutex_init(&cache->alloc_lock); + spin_lock_init(&cache->free_lock); + cache->lock_initialized = true; + } + cache->nr = 0; + cache->cur = 0; + cache->n_ret = 0; + /* + * We initialized alloc_lock and free_lock earlier. We use + * !cache->slots or !cache->slots_ret to know if it is safe to acquire + * the corresponding lock and use the cache. Memory barrier below + * ensures the assumption. + */ + mb(); + cache->slots = slots; + cache->slots_ret = slots_ret; + mutex_unlock(&swap_slots_cache_mutex); + return 0; +} + +static void drain_slots_cache_cpu(unsigned int cpu, unsigned int type, + bool free_slots) +{ + struct swap_slots_cache *cache; + swp_entry_t *slots = NULL; + + cache = &per_cpu(swp_slots, cpu); + if ((type & SLOTS_CACHE) && cache->slots) { + mutex_lock(&cache->alloc_lock); + swapcache_free_entries(cache->slots + cache->cur, cache->nr); + cache->cur = 0; + cache->nr = 0; + if (free_slots && cache->slots) { + kvfree(cache->slots); + cache->slots = NULL; + } + mutex_unlock(&cache->alloc_lock); + } + if ((type & SLOTS_CACHE_RET) && cache->slots_ret) { + spin_lock_irq(&cache->free_lock); + swapcache_free_entries(cache->slots_ret, cache->n_ret); + cache->n_ret = 0; + if (free_slots && cache->slots_ret) { + slots = cache->slots_ret; + cache->slots_ret = NULL; + } + spin_unlock_irq(&cache->free_lock); + if (slots) + kvfree(slots); + } +} + +static void __drain_swap_slots_cache(unsigned int type) +{ + unsigned int cpu; + + /* + * This function is called during + * 1) swapoff, when we have to make sure no + * left over slots are in cache when we remove + * a swap device; + * 2) disabling of swap slot cache, when we run low + * on swap slots when allocating memory and need + * to return swap slots to global pool. + * + * We cannot acquire cpu hot plug lock here as + * this function can be invoked in the cpu + * hot plug path: + * cpu_up -> lock cpu_hotplug -> cpu hotplug state callback + * -> memory allocation -> direct reclaim -> get_swap_page + * -> drain_swap_slots_cache + * + * Hence the loop over current online cpu below could miss cpu that + * is being brought online but not yet marked as online. + * That is okay as we do not schedule and run anything on a + * cpu before it has been marked online. Hence, we will not + * fill any swap slots in slots cache of such cpu. + * There are no slots on such cpu that need to be drained. + */ + for_each_online_cpu(cpu) + drain_slots_cache_cpu(cpu, type, false); +} + +static int free_slot_cache(unsigned int cpu) +{ + mutex_lock(&swap_slots_cache_mutex); + drain_slots_cache_cpu(cpu, SLOTS_CACHE | SLOTS_CACHE_RET, true); + mutex_unlock(&swap_slots_cache_mutex); + return 0; +} + +void enable_swap_slots_cache(void) +{ + mutex_lock(&swap_slots_cache_enable_mutex); + if (!swap_slot_cache_initialized) { + int ret; + + ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "swap_slots_cache", + alloc_swap_slot_cache, free_slot_cache); + if (WARN_ONCE(ret < 0, "Cache allocation failed (%s), operating " + "without swap slots cache.\n", __func__)) + goto out_unlock; + + swap_slot_cache_initialized = true; + } + + __reenable_swap_slots_cache(); +out_unlock: + mutex_unlock(&swap_slots_cache_enable_mutex); +} + +/* called with swap slot cache's alloc lock held */ +static int refill_swap_slots_cache(struct swap_slots_cache *cache) +{ + if (!use_swap_slot_cache || cache->nr) + return 0; + + cache->cur = 0; + if (swap_slot_cache_active) + cache->nr = get_swap_pages(SWAP_SLOTS_CACHE_SIZE, + cache->slots, 1); + + return cache->nr; +} + +int free_swap_slot(swp_entry_t entry) +{ + struct swap_slots_cache *cache; + + cache = raw_cpu_ptr(&swp_slots); + if (likely(use_swap_slot_cache && cache->slots_ret)) { + spin_lock_irq(&cache->free_lock); + /* Swap slots cache may be deactivated before acquiring lock */ + if (!use_swap_slot_cache || !cache->slots_ret) { + spin_unlock_irq(&cache->free_lock); + goto direct_free; + } + if (cache->n_ret >= SWAP_SLOTS_CACHE_SIZE) { + /* + * Return slots to global pool. + * The current swap_map value is SWAP_HAS_CACHE. + * Set it to 0 to indicate it is available for + * allocation in global pool + */ + swapcache_free_entries(cache->slots_ret, cache->n_ret); + cache->n_ret = 0; + } + cache->slots_ret[cache->n_ret++] = entry; + spin_unlock_irq(&cache->free_lock); + } else { +direct_free: + swapcache_free_entries(&entry, 1); + } + + return 0; +} + +swp_entry_t get_swap_page(struct page *page) +{ + swp_entry_t entry; + struct swap_slots_cache *cache; + + entry.val = 0; + + if (PageTransHuge(page)) { + if (IS_ENABLED(CONFIG_THP_SWAP)) + get_swap_pages(1, &entry, HPAGE_PMD_NR); + goto out; + } + + /* + * Preemption is allowed here, because we may sleep + * in refill_swap_slots_cache(). But it is safe, because + * accesses to the per-CPU data structure are protected by the + * mutex cache->alloc_lock. + * + * The alloc path here does not touch cache->slots_ret + * so cache->free_lock is not taken. + */ + cache = raw_cpu_ptr(&swp_slots); + + if (likely(check_cache_active() && cache->slots)) { + mutex_lock(&cache->alloc_lock); + if (cache->slots) { +repeat: + if (cache->nr) { + entry = cache->slots[cache->cur]; + cache->slots[cache->cur++].val = 0; + cache->nr--; + } else if (refill_swap_slots_cache(cache)) { + goto repeat; + } + } + mutex_unlock(&cache->alloc_lock); + if (entry.val) + goto out; + } + + get_swap_pages(1, &entry, 1); +out: + if (mem_cgroup_try_charge_swap(page, entry)) { + put_swap_page(page, entry); + entry.val = 0; + } + return entry; +} |