summaryrefslogtreecommitdiffstats
path: root/security/Kconfig.hardening
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--security/Kconfig.hardening243
1 files changed, 243 insertions, 0 deletions
diff --git a/security/Kconfig.hardening b/security/Kconfig.hardening
new file mode 100644
index 000000000..b54eb7177
--- /dev/null
+++ b/security/Kconfig.hardening
@@ -0,0 +1,243 @@
+# SPDX-License-Identifier: GPL-2.0-only
+menu "Kernel hardening options"
+
+config GCC_PLUGIN_STRUCTLEAK
+ bool
+ help
+ While the kernel is built with warnings enabled for any missed
+ stack variable initializations, this warning is silenced for
+ anything passed by reference to another function, under the
+ occasionally misguided assumption that the function will do
+ the initialization. As this regularly leads to exploitable
+ flaws, this plugin is available to identify and zero-initialize
+ such variables, depending on the chosen level of coverage.
+
+ This plugin was originally ported from grsecurity/PaX. More
+ information at:
+ * https://grsecurity.net/
+ * https://pax.grsecurity.net/
+
+menu "Memory initialization"
+
+config CC_HAS_AUTO_VAR_INIT_PATTERN
+ def_bool $(cc-option,-ftrivial-auto-var-init=pattern)
+
+config CC_HAS_AUTO_VAR_INIT_ZERO_BARE
+ def_bool $(cc-option,-ftrivial-auto-var-init=zero)
+
+config CC_HAS_AUTO_VAR_INIT_ZERO_ENABLER
+ # Clang 16 and later warn about using the -enable flag, but it
+ # is required before then.
+ def_bool $(cc-option,-ftrivial-auto-var-init=zero -enable-trivial-auto-var-init-zero-knowing-it-will-be-removed-from-clang)
+ depends on !CC_HAS_AUTO_VAR_INIT_ZERO_BARE
+
+config CC_HAS_AUTO_VAR_INIT_ZERO
+ def_bool CC_HAS_AUTO_VAR_INIT_ZERO_BARE || CC_HAS_AUTO_VAR_INIT_ZERO_ENABLER
+
+choice
+ prompt "Initialize kernel stack variables at function entry"
+ default GCC_PLUGIN_STRUCTLEAK_BYREF_ALL if COMPILE_TEST && GCC_PLUGINS
+ default INIT_STACK_ALL_PATTERN if COMPILE_TEST && CC_HAS_AUTO_VAR_INIT_PATTERN
+ default INIT_STACK_ALL_ZERO if CC_HAS_AUTO_VAR_INIT_ZERO
+ default INIT_STACK_NONE
+ help
+ This option enables initialization of stack variables at
+ function entry time. This has the possibility to have the
+ greatest coverage (since all functions can have their
+ variables initialized), but the performance impact depends
+ on the function calling complexity of a given workload's
+ syscalls.
+
+ This chooses the level of coverage over classes of potentially
+ uninitialized variables. The selected class of variable will be
+ initialized before use in a function.
+
+ config INIT_STACK_NONE
+ bool "no automatic stack variable initialization (weakest)"
+ help
+ Disable automatic stack variable initialization.
+ This leaves the kernel vulnerable to the standard
+ classes of uninitialized stack variable exploits
+ and information exposures.
+
+ config GCC_PLUGIN_STRUCTLEAK_USER
+ bool "zero-init structs marked for userspace (weak)"
+ depends on GCC_PLUGINS
+ select GCC_PLUGIN_STRUCTLEAK
+ help
+ Zero-initialize any structures on the stack containing
+ a __user attribute. This can prevent some classes of
+ uninitialized stack variable exploits and information
+ exposures, like CVE-2013-2141:
+ https://git.kernel.org/linus/b9e146d8eb3b9eca
+
+ config GCC_PLUGIN_STRUCTLEAK_BYREF
+ bool "zero-init structs passed by reference (strong)"
+ depends on GCC_PLUGINS
+ depends on !(KASAN && KASAN_STACK=1)
+ select GCC_PLUGIN_STRUCTLEAK
+ help
+ Zero-initialize any structures on the stack that may
+ be passed by reference and had not already been
+ explicitly initialized. This can prevent most classes
+ of uninitialized stack variable exploits and information
+ exposures, like CVE-2017-1000410:
+ https://git.kernel.org/linus/06e7e776ca4d3654
+
+ As a side-effect, this keeps a lot of variables on the
+ stack that can otherwise be optimized out, so combining
+ this with CONFIG_KASAN_STACK can lead to a stack overflow
+ and is disallowed.
+
+ config GCC_PLUGIN_STRUCTLEAK_BYREF_ALL
+ bool "zero-init everything passed by reference (very strong)"
+ depends on GCC_PLUGINS
+ depends on !(KASAN && KASAN_STACK=1)
+ select GCC_PLUGIN_STRUCTLEAK
+ help
+ Zero-initialize any stack variables that may be passed
+ by reference and had not already been explicitly
+ initialized. This is intended to eliminate all classes
+ of uninitialized stack variable exploits and information
+ exposures.
+
+ As a side-effect, this keeps a lot of variables on the
+ stack that can otherwise be optimized out, so combining
+ this with CONFIG_KASAN_STACK can lead to a stack overflow
+ and is disallowed.
+
+ config INIT_STACK_ALL_PATTERN
+ bool "pattern-init everything (strongest)"
+ depends on CC_HAS_AUTO_VAR_INIT_PATTERN
+ help
+ Initializes everything on the stack (including padding)
+ with a specific debug value. This is intended to eliminate
+ all classes of uninitialized stack variable exploits and
+ information exposures, even variables that were warned about
+ having been left uninitialized.
+
+ Pattern initialization is known to provoke many existing bugs
+ related to uninitialized locals, e.g. pointers receive
+ non-NULL values, buffer sizes and indices are very big. The
+ pattern is situation-specific; Clang on 64-bit uses 0xAA
+ repeating for all types and padding except float and double
+ which use 0xFF repeating (-NaN). Clang on 32-bit uses 0xFF
+ repeating for all types and padding.
+
+ config INIT_STACK_ALL_ZERO
+ bool "zero-init everything (strongest and safest)"
+ depends on CC_HAS_AUTO_VAR_INIT_ZERO
+ help
+ Initializes everything on the stack (including padding)
+ with a zero value. This is intended to eliminate all
+ classes of uninitialized stack variable exploits and
+ information exposures, even variables that were warned
+ about having been left uninitialized.
+
+ Zero initialization provides safe defaults for strings
+ (immediately NUL-terminated), pointers (NULL), indices
+ (index 0), and sizes (0 length), so it is therefore more
+ suitable as a production security mitigation than pattern
+ initialization.
+
+endchoice
+
+config GCC_PLUGIN_STRUCTLEAK_VERBOSE
+ bool "Report forcefully initialized variables"
+ depends on GCC_PLUGIN_STRUCTLEAK
+ depends on !COMPILE_TEST # too noisy
+ help
+ This option will cause a warning to be printed each time the
+ structleak plugin finds a variable it thinks needs to be
+ initialized. Since not all existing initializers are detected
+ by the plugin, this can produce false positive warnings.
+
+config GCC_PLUGIN_STACKLEAK
+ bool "Poison kernel stack before returning from syscalls"
+ depends on GCC_PLUGINS
+ depends on HAVE_ARCH_STACKLEAK
+ help
+ This option makes the kernel erase the kernel stack before
+ returning from system calls. This has the effect of leaving
+ the stack initialized to the poison value, which both reduces
+ the lifetime of any sensitive stack contents and reduces
+ potential for uninitialized stack variable exploits or information
+ exposures (it does not cover functions reaching the same stack
+ depth as prior functions during the same syscall). This blocks
+ most uninitialized stack variable attacks, with the performance
+ impact being driven by the depth of the stack usage, rather than
+ the function calling complexity.
+
+ The performance impact on a single CPU system kernel compilation
+ sees a 1% slowdown, other systems and workloads may vary and you
+ are advised to test this feature on your expected workload before
+ deploying it.
+
+ This plugin was ported from grsecurity/PaX. More information at:
+ * https://grsecurity.net/
+ * https://pax.grsecurity.net/
+
+config STACKLEAK_TRACK_MIN_SIZE
+ int "Minimum stack frame size of functions tracked by STACKLEAK"
+ default 100
+ range 0 4096
+ depends on GCC_PLUGIN_STACKLEAK
+ help
+ The STACKLEAK gcc plugin instruments the kernel code for tracking
+ the lowest border of the kernel stack (and for some other purposes).
+ It inserts the stackleak_track_stack() call for the functions with
+ a stack frame size greater than or equal to this parameter.
+ If unsure, leave the default value 100.
+
+config STACKLEAK_METRICS
+ bool "Show STACKLEAK metrics in the /proc file system"
+ depends on GCC_PLUGIN_STACKLEAK
+ depends on PROC_FS
+ help
+ If this is set, STACKLEAK metrics for every task are available in
+ the /proc file system. In particular, /proc/<pid>/stack_depth
+ shows the maximum kernel stack consumption for the current and
+ previous syscalls. Although this information is not precise, it
+ can be useful for estimating the STACKLEAK performance impact for
+ your workloads.
+
+config STACKLEAK_RUNTIME_DISABLE
+ bool "Allow runtime disabling of kernel stack erasing"
+ depends on GCC_PLUGIN_STACKLEAK
+ help
+ This option provides 'stack_erasing' sysctl, which can be used in
+ runtime to control kernel stack erasing for kernels built with
+ CONFIG_GCC_PLUGIN_STACKLEAK.
+
+config INIT_ON_ALLOC_DEFAULT_ON
+ bool "Enable heap memory zeroing on allocation by default"
+ help
+ This has the effect of setting "init_on_alloc=1" on the kernel
+ command line. This can be disabled with "init_on_alloc=0".
+ When "init_on_alloc" is enabled, all page allocator and slab
+ allocator memory will be zeroed when allocated, eliminating
+ many kinds of "uninitialized heap memory" flaws, especially
+ heap content exposures. The performance impact varies by
+ workload, but most cases see <1% impact. Some synthetic
+ workloads have measured as high as 7%.
+
+config INIT_ON_FREE_DEFAULT_ON
+ bool "Enable heap memory zeroing on free by default"
+ help
+ This has the effect of setting "init_on_free=1" on the kernel
+ command line. This can be disabled with "init_on_free=0".
+ Similar to "init_on_alloc", when "init_on_free" is enabled,
+ all page allocator and slab allocator memory will be zeroed
+ when freed, eliminating many kinds of "uninitialized heap memory"
+ flaws, especially heap content exposures. The primary difference
+ with "init_on_free" is that data lifetime in memory is reduced,
+ as anything freed is wiped immediately, making live forensics or
+ cold boot memory attacks unable to recover freed memory contents.
+ The performance impact varies by workload, but is more expensive
+ than "init_on_alloc" due to the negative cache effects of
+ touching "cold" memory areas. Most cases see 3-5% impact. Some
+ synthetic workloads have measured as high as 8%.
+
+endmenu
+
+endmenu