From 5d1646d90e1f2cceb9f0828f4b28318cd0ec7744 Mon Sep 17 00:00:00 2001 From: Daniel Baumann Date: Sat, 27 Apr 2024 12:05:51 +0200 Subject: Adding upstream version 5.10.209. Signed-off-by: Daniel Baumann --- .../admin-guide/hw-vuln/gather_data_sampling.rst | 109 +++++++++++++++++++++ 1 file changed, 109 insertions(+) create mode 100644 Documentation/admin-guide/hw-vuln/gather_data_sampling.rst (limited to 'Documentation/admin-guide/hw-vuln/gather_data_sampling.rst') diff --git a/Documentation/admin-guide/hw-vuln/gather_data_sampling.rst b/Documentation/admin-guide/hw-vuln/gather_data_sampling.rst new file mode 100644 index 000000000..264bfa937 --- /dev/null +++ b/Documentation/admin-guide/hw-vuln/gather_data_sampling.rst @@ -0,0 +1,109 @@ +.. SPDX-License-Identifier: GPL-2.0 + +GDS - Gather Data Sampling +========================== + +Gather Data Sampling is a hardware vulnerability which allows unprivileged +speculative access to data which was previously stored in vector registers. + +Problem +------- +When a gather instruction performs loads from memory, different data elements +are merged into the destination vector register. However, when a gather +instruction that is transiently executed encounters a fault, stale data from +architectural or internal vector registers may get transiently forwarded to the +destination vector register instead. This will allow a malicious attacker to +infer stale data using typical side channel techniques like cache timing +attacks. GDS is a purely sampling-based attack. + +The attacker uses gather instructions to infer the stale vector register data. +The victim does not need to do anything special other than use the vector +registers. The victim does not need to use gather instructions to be +vulnerable. + +Because the buffers are shared between Hyper-Threads cross Hyper-Thread attacks +are possible. + +Attack scenarios +---------------- +Without mitigation, GDS can infer stale data across virtually all +permission boundaries: + + Non-enclaves can infer SGX enclave data + Userspace can infer kernel data + Guests can infer data from hosts + Guest can infer guest from other guests + Users can infer data from other users + +Because of this, it is important to ensure that the mitigation stays enabled in +lower-privilege contexts like guests and when running outside SGX enclaves. + +The hardware enforces the mitigation for SGX. Likewise, VMMs should ensure +that guests are not allowed to disable the GDS mitigation. If a host erred and +allowed this, a guest could theoretically disable GDS mitigation, mount an +attack, and re-enable it. + +Mitigation mechanism +-------------------- +This issue is mitigated in microcode. The microcode defines the following new +bits: + + ================================ === ============================ + IA32_ARCH_CAPABILITIES[GDS_CTRL] R/O Enumerates GDS vulnerability + and mitigation support. + IA32_ARCH_CAPABILITIES[GDS_NO] R/O Processor is not vulnerable. + IA32_MCU_OPT_CTRL[GDS_MITG_DIS] R/W Disables the mitigation + 0 by default. + IA32_MCU_OPT_CTRL[GDS_MITG_LOCK] R/W Locks GDS_MITG_DIS=0. Writes + to GDS_MITG_DIS are ignored + Can't be cleared once set. + ================================ === ============================ + +GDS can also be mitigated on systems that don't have updated microcode by +disabling AVX. This can be done by setting gather_data_sampling="force" or +"clearcpuid=avx" on the kernel command-line. + +If used, these options will disable AVX use by turning off XSAVE YMM support. +However, the processor will still enumerate AVX support. Userspace that +does not follow proper AVX enumeration to check both AVX *and* XSAVE YMM +support will break. + +Mitigation control on the kernel command line +--------------------------------------------- +The mitigation can be disabled by setting "gather_data_sampling=off" or +"mitigations=off" on the kernel command line. Not specifying either will default +to the mitigation being enabled. Specifying "gather_data_sampling=force" will +use the microcode mitigation when available or disable AVX on affected systems +where the microcode hasn't been updated to include the mitigation. + +GDS System Information +------------------------ +The kernel provides vulnerability status information through sysfs. For +GDS this can be accessed by the following sysfs file: + +/sys/devices/system/cpu/vulnerabilities/gather_data_sampling + +The possible values contained in this file are: + + ============================== ============================================= + Not affected Processor not vulnerable. + Vulnerable Processor vulnerable and mitigation disabled. + Vulnerable: No microcode Processor vulnerable and microcode is missing + mitigation. + Mitigation: AVX disabled, + no microcode Processor is vulnerable and microcode is missing + mitigation. AVX disabled as mitigation. + Mitigation: Microcode Processor is vulnerable and mitigation is in + effect. + Mitigation: Microcode (locked) Processor is vulnerable and mitigation is in + effect and cannot be disabled. + Unknown: Dependent on + hypervisor status Running on a virtual guest processor that is + affected but with no way to know if host + processor is mitigated or vulnerable. + ============================== ============================================= + +GDS Default mitigation +---------------------- +The updated microcode will enable the mitigation by default. The kernel's +default action is to leave the mitigation enabled. -- cgit v1.2.3