From 5d1646d90e1f2cceb9f0828f4b28318cd0ec7744 Mon Sep 17 00:00:00 2001 From: Daniel Baumann Date: Sat, 27 Apr 2024 12:05:51 +0200 Subject: Adding upstream version 5.10.209. Signed-off-by: Daniel Baumann --- Documentation/block/blk-mq.rst | 153 +++++++++++++++++++++++++++++++++++++++++ 1 file changed, 153 insertions(+) create mode 100644 Documentation/block/blk-mq.rst (limited to 'Documentation/block/blk-mq.rst') diff --git a/Documentation/block/blk-mq.rst b/Documentation/block/blk-mq.rst new file mode 100644 index 000000000..a980d23af --- /dev/null +++ b/Documentation/block/blk-mq.rst @@ -0,0 +1,153 @@ +.. SPDX-License-Identifier: GPL-2.0 + +================================================ +Multi-Queue Block IO Queueing Mechanism (blk-mq) +================================================ + +The Multi-Queue Block IO Queueing Mechanism is an API to enable fast storage +devices to achieve a huge number of input/output operations per second (IOPS) +through queueing and submitting IO requests to block devices simultaneously, +benefiting from the parallelism offered by modern storage devices. + +Introduction +============ + +Background +---------- + +Magnetic hard disks have been the de facto standard from the beginning of the +development of the kernel. The Block IO subsystem aimed to achieve the best +performance possible for those devices with a high penalty when doing random +access, and the bottleneck was the mechanical moving parts, a lot slower than +any layer on the storage stack. One example of such optimization technique +involves ordering read/write requests according to the current position of the +hard disk head. + +However, with the development of Solid State Drives and Non-Volatile Memories +without mechanical parts nor random access penalty and capable of performing +high parallel access, the bottleneck of the stack had moved from the storage +device to the operating system. In order to take advantage of the parallelism +in those devices' design, the multi-queue mechanism was introduced. + +The former design had a single queue to store block IO requests with a single +lock. That did not scale well in SMP systems due to dirty data in cache and the +bottleneck of having a single lock for multiple processors. This setup also +suffered with congestion when different processes (or the same process, moving +to different CPUs) wanted to perform block IO. Instead of this, the blk-mq API +spawns multiple queues with individual entry points local to the CPU, removing +the need for a lock. A deeper explanation on how this works is covered in the +following section (`Operation`_). + +Operation +--------- + +When the userspace performs IO to a block device (reading or writing a file, +for instance), blk-mq takes action: it will store and manage IO requests to +the block device, acting as middleware between the userspace (and a file +system, if present) and the block device driver. + +blk-mq has two group of queues: software staging queues and hardware dispatch +queues. When the request arrives at the block layer, it will try the shortest +path possible: send it directly to the hardware queue. However, there are two +cases that it might not do that: if there's an IO scheduler attached at the +layer or if we want to try to merge requests. In both cases, requests will be +sent to the software queue. + +Then, after the requests are processed by software queues, they will be placed +at the hardware queue, a second stage queue were the hardware has direct access +to process those requests. However, if the hardware does not have enough +resources to accept more requests, blk-mq will places requests on a temporary +queue, to be sent in the future, when the hardware is able. + +Software staging queues +~~~~~~~~~~~~~~~~~~~~~~~ + +The block IO subsystem adds requests in the software staging queues +(represented by struct blk_mq_ctx) in case that they weren't sent +directly to the driver. A request is one or more BIOs. They arrived at the +block layer through the data structure struct bio. The block layer +will then build a new structure from it, the struct request that will +be used to communicate with the device driver. Each queue has its own lock and +the number of queues is defined by a per-CPU or per-node basis. + +The staging queue can be used to merge requests for adjacent sectors. For +instance, requests for sector 3-6, 6-7, 7-9 can become one request for 3-9. +Even if random access to SSDs and NVMs have the same time of response compared +to sequential access, grouped requests for sequential access decreases the +number of individual requests. This technique of merging requests is called +plugging. + +Along with that, the requests can be reordered to ensure fairness of system +resources (e.g. to ensure that no application suffers from starvation) and/or to +improve IO performance, by an IO scheduler. + +IO Schedulers +^^^^^^^^^^^^^ + +There are several schedulers implemented by the block layer, each one following +a heuristic to improve the IO performance. They are "pluggable" (as in plug +and play), in the sense of they can be selected at run time using sysfs. You +can read more about Linux's IO schedulers `here +`_. The scheduling +happens only between requests in the same queue, so it is not possible to merge +requests from different queues, otherwise there would be cache trashing and a +need to have a lock for each queue. After the scheduling, the requests are +eligible to be sent to the hardware. One of the possible schedulers to be +selected is the NONE scheduler, the most straightforward one. It will just +place requests on whatever software queue the process is running on, without +any reordering. When the device starts processing requests in the hardware +queue (a.k.a. run the hardware queue), the software queues mapped to that +hardware queue will be drained in sequence according to their mapping. + +Hardware dispatch queues +~~~~~~~~~~~~~~~~~~~~~~~~ + +The hardware queue (represented by struct blk_mq_hw_ctx) is a struct +used by device drivers to map the device submission queues (or device DMA ring +buffer), and are the last step of the block layer submission code before the +low level device driver taking ownership of the request. To run this queue, the +block layer removes requests from the associated software queues and tries to +dispatch to the hardware. + +If it's not possible to send the requests directly to hardware, they will be +added to a linked list (``hctx->dispatch``) of requests. Then, +next time the block layer runs a queue, it will send the requests laying at the +``dispatch`` list first, to ensure a fairness dispatch with those +requests that were ready to be sent first. The number of hardware queues +depends on the number of hardware contexts supported by the hardware and its +device driver, but it will not be more than the number of cores of the system. +There is no reordering at this stage, and each software queue has a set of +hardware queues to send requests for. + +.. note:: + + Neither the block layer nor the device protocols guarantee + the order of completion of requests. This must be handled by + higher layers, like the filesystem. + +Tag-based completion +~~~~~~~~~~~~~~~~~~~~ + +In order to indicate which request has been completed, every request is +identified by an integer, ranging from 0 to the dispatch queue size. This tag +is generated by the block layer and later reused by the device driver, removing +the need to create a redundant identifier. When a request is completed in the +drive, the tag is sent back to the block layer to notify it of the finalization. +This removes the need to do a linear search to find out which IO has been +completed. + +Further reading +--------------- + +- `Linux Block IO: Introducing Multi-queue SSD Access on Multi-core Systems `_ + +- `NOOP scheduler `_ + +- `Null block device driver `_ + +Source code documentation +========================= + +.. kernel-doc:: include/linux/blk-mq.h + +.. kernel-doc:: block/blk-mq.c -- cgit v1.2.3