From 5d1646d90e1f2cceb9f0828f4b28318cd0ec7744 Mon Sep 17 00:00:00 2001 From: Daniel Baumann Date: Sat, 27 Apr 2024 12:05:51 +0200 Subject: Adding upstream version 5.10.209. Signed-off-by: Daniel Baumann --- Documentation/riscv/boot-image-header.rst | 62 ++++++++ Documentation/riscv/index.rst | 17 ++ Documentation/riscv/patch-acceptance.rst | 35 ++++ Documentation/riscv/pmu.rst | 255 ++++++++++++++++++++++++++++++ 4 files changed, 369 insertions(+) create mode 100644 Documentation/riscv/boot-image-header.rst create mode 100644 Documentation/riscv/index.rst create mode 100644 Documentation/riscv/patch-acceptance.rst create mode 100644 Documentation/riscv/pmu.rst (limited to 'Documentation/riscv') diff --git a/Documentation/riscv/boot-image-header.rst b/Documentation/riscv/boot-image-header.rst new file mode 100644 index 000000000..d77525338 --- /dev/null +++ b/Documentation/riscv/boot-image-header.rst @@ -0,0 +1,62 @@ +================================= +Boot image header in RISC-V Linux +================================= + +:Author: Atish Patra +:Date: 20 May 2019 + +This document only describes the boot image header details for RISC-V Linux. + +TODO: + Write a complete booting guide. + +The following 64-byte header is present in decompressed Linux kernel image:: + + u32 code0; /* Executable code */ + u32 code1; /* Executable code */ + u64 text_offset; /* Image load offset, little endian */ + u64 image_size; /* Effective Image size, little endian */ + u64 flags; /* kernel flags, little endian */ + u32 version; /* Version of this header */ + u32 res1 = 0; /* Reserved */ + u64 res2 = 0; /* Reserved */ + u64 magic = 0x5643534952; /* Magic number, little endian, "RISCV" */ + u32 magic2 = 0x05435352; /* Magic number 2, little endian, "RSC\x05" */ + u32 res3; /* Reserved for PE COFF offset */ + +This header format is compliant with PE/COFF header and largely inspired from +ARM64 header. Thus, both ARM64 & RISC-V header can be combined into one common +header in future. + +Notes +===== + +- This header can also be reused to support EFI stub for RISC-V in future. EFI + specification needs PE/COFF image header in the beginning of the kernel image + in order to load it as an EFI application. In order to support EFI stub, + code0 should be replaced with "MZ" magic string and res3(at offset 0x3c) should + point to the rest of the PE/COFF header. + +- version field indicate header version number + + ========== ============= + Bits 0:15 Minor version + Bits 16:31 Major version + ========== ============= + + This preserves compatibility across newer and older version of the header. + The current version is defined as 0.2. + +- The "magic" field is deprecated as of version 0.2. In a future + release, it may be removed. This originally should have matched up + with the ARM64 header "magic" field, but unfortunately does not. + The "magic2" field replaces it, matching up with the ARM64 header. + +- In current header, the flags field has only one field. + + ===== ==================================== + Bit 0 Kernel endianness. 1 if BE, 0 if LE. + ===== ==================================== + +- Image size is mandatory for boot loader to load kernel image. Booting will + fail otherwise. diff --git a/Documentation/riscv/index.rst b/Documentation/riscv/index.rst new file mode 100644 index 000000000..fa33bffd8 --- /dev/null +++ b/Documentation/riscv/index.rst @@ -0,0 +1,17 @@ +=================== +RISC-V architecture +=================== + +.. toctree:: + :maxdepth: 1 + + boot-image-header + pmu + patch-acceptance + +.. only:: subproject and html + + Indices + ======= + + * :ref:`genindex` diff --git a/Documentation/riscv/patch-acceptance.rst b/Documentation/riscv/patch-acceptance.rst new file mode 100644 index 000000000..dfe0ac562 --- /dev/null +++ b/Documentation/riscv/patch-acceptance.rst @@ -0,0 +1,35 @@ +.. SPDX-License-Identifier: GPL-2.0 + +arch/riscv maintenance guidelines for developers +================================================ + +Overview +-------- +The RISC-V instruction set architecture is developed in the open: +in-progress drafts are available for all to review and to experiment +with implementations. New module or extension drafts can change +during the development process - sometimes in ways that are +incompatible with previous drafts. This flexibility can present a +challenge for RISC-V Linux maintenance. Linux maintainers disapprove +of churn, and the Linux development process prefers well-reviewed and +tested code over experimental code. We wish to extend these same +principles to the RISC-V-related code that will be accepted for +inclusion in the kernel. + +Submit Checklist Addendum +------------------------- +We'll only accept patches for new modules or extensions if the +specifications for those modules or extensions are listed as being +"Frozen" or "Ratified" by the RISC-V Foundation. (Developers may, of +course, maintain their own Linux kernel trees that contain code for +any draft extensions that they wish.) + +Additionally, the RISC-V specification allows implementors to create +their own custom extensions. These custom extensions aren't required +to go through any review or ratification process by the RISC-V +Foundation. To avoid the maintenance complexity and potential +performance impact of adding kernel code for implementor-specific +RISC-V extensions, we'll only to accept patches for extensions that +have been officially frozen or ratified by the RISC-V Foundation. +(Implementors, may, of course, maintain their own Linux kernel trees +containing code for any custom extensions that they wish.) diff --git a/Documentation/riscv/pmu.rst b/Documentation/riscv/pmu.rst new file mode 100644 index 000000000..acb216b99 --- /dev/null +++ b/Documentation/riscv/pmu.rst @@ -0,0 +1,255 @@ +=================================== +Supporting PMUs on RISC-V platforms +=================================== + +Alan Kao , Mar 2018 + +Introduction +------------ + +As of this writing, perf_event-related features mentioned in The RISC-V ISA +Privileged Version 1.10 are as follows: +(please check the manual for more details) + +* [m|s]counteren +* mcycle[h], cycle[h] +* minstret[h], instret[h] +* mhpeventx, mhpcounterx[h] + +With such function set only, porting perf would require a lot of work, due to +the lack of the following general architectural performance monitoring features: + +* Enabling/Disabling counters + Counters are just free-running all the time in our case. +* Interrupt caused by counter overflow + No such feature in the spec. +* Interrupt indicator + It is not possible to have many interrupt ports for all counters, so an + interrupt indicator is required for software to tell which counter has + just overflowed. +* Writing to counters + There will be an SBI to support this since the kernel cannot modify the + counters [1]. Alternatively, some vendor considers to implement + hardware-extension for M-S-U model machines to write counters directly. + +This document aims to provide developers a quick guide on supporting their +PMUs in the kernel. The following sections briefly explain perf' mechanism +and todos. + +You may check previous discussions here [1][2]. Also, it might be helpful +to check the appendix for related kernel structures. + + +1. Initialization +----------------- + +*riscv_pmu* is a global pointer of type *struct riscv_pmu*, which contains +various methods according to perf's internal convention and PMU-specific +parameters. One should declare such instance to represent the PMU. By default, +*riscv_pmu* points to a constant structure *riscv_base_pmu*, which has very +basic support to a baseline QEMU model. + +Then he/she can either assign the instance's pointer to *riscv_pmu* so that +the minimal and already-implemented logic can be leveraged, or invent his/her +own *riscv_init_platform_pmu* implementation. + +In other words, existing sources of *riscv_base_pmu* merely provide a +reference implementation. Developers can flexibly decide how many parts they +can leverage, and in the most extreme case, they can customize every function +according to their needs. + + +2. Event Initialization +----------------------- + +When a user launches a perf command to monitor some events, it is first +interpreted by the userspace perf tool into multiple *perf_event_open* +system calls, and then each of them calls to the body of *event_init* +member function that was assigned in the previous step. In *riscv_base_pmu*'s +case, it is *riscv_event_init*. + +The main purpose of this function is to translate the event provided by user +into bitmap, so that HW-related control registers or counters can directly be +manipulated. The translation is based on the mappings and methods provided in +*riscv_pmu*. + +Note that some features can be done in this stage as well: + +(1) interrupt setting, which is stated in the next section; +(2) privilege level setting (user space only, kernel space only, both); +(3) destructor setting. Normally it is sufficient to apply *riscv_destroy_event*; +(4) tweaks for non-sampling events, which will be utilized by functions such as + *perf_adjust_period*, usually something like the follows:: + + if (!is_sampling_event(event)) { + hwc->sample_period = x86_pmu.max_period; + hwc->last_period = hwc->sample_period; + local64_set(&hwc->period_left, hwc->sample_period); + } + +In the case of *riscv_base_pmu*, only (3) is provided for now. + + +3. Interrupt +------------ + +3.1. Interrupt Initialization + +This often occurs at the beginning of the *event_init* method. In common +practice, this should be a code segment like:: + + int x86_reserve_hardware(void) + { + int err = 0; + + if (!atomic_inc_not_zero(&pmc_refcount)) { + mutex_lock(&pmc_reserve_mutex); + if (atomic_read(&pmc_refcount) == 0) { + if (!reserve_pmc_hardware()) + err = -EBUSY; + else + reserve_ds_buffers(); + } + if (!err) + atomic_inc(&pmc_refcount); + mutex_unlock(&pmc_reserve_mutex); + } + + return err; + } + +And the magic is in *reserve_pmc_hardware*, which usually does atomic +operations to make implemented IRQ accessible from some global function pointer. +*release_pmc_hardware* serves the opposite purpose, and it is used in event +destructors mentioned in previous section. + +(Note: From the implementations in all the architectures, the *reserve/release* +pair are always IRQ settings, so the *pmc_hardware* seems somehow misleading. +It does NOT deal with the binding between an event and a physical counter, +which will be introduced in the next section.) + +3.2. IRQ Structure + +Basically, a IRQ runs the following pseudo code:: + + for each hardware counter that triggered this overflow + + get the event of this counter + + // following two steps are defined as *read()*, + // check the section Reading/Writing Counters for details. + count the delta value since previous interrupt + update the event->count (# event occurs) by adding delta, and + event->hw.period_left by subtracting delta + + if the event overflows + sample data + set the counter appropriately for the next overflow + + if the event overflows again + too frequently, throttle this event + fi + fi + + end for + +However as of this writing, none of the RISC-V implementations have designed an +interrupt for perf, so the details are to be completed in the future. + +4. Reading/Writing Counters +--------------------------- + +They seem symmetric but perf treats them quite differently. For reading, there +is a *read* interface in *struct pmu*, but it serves more than just reading. +According to the context, the *read* function not only reads the content of the +counter (event->count), but also updates the left period to the next interrupt +(event->hw.period_left). + +But the core of perf does not need direct write to counters. Writing counters +is hidden behind the abstraction of 1) *pmu->start*, literally start counting so one +has to set the counter to a good value for the next interrupt; 2) inside the IRQ +it should set the counter to the same resonable value. + +Reading is not a problem in RISC-V but writing would need some effort, since +counters are not allowed to be written by S-mode. + + +5. add()/del()/start()/stop() +----------------------------- + +Basic idea: add()/del() adds/deletes events to/from a PMU, and start()/stop() +starts/stop the counter of some event in the PMU. All of them take the same +arguments: *struct perf_event *event* and *int flag*. + +Consider perf as a state machine, then you will find that these functions serve +as the state transition process between those states. +Three states (event->hw.state) are defined: + +* PERF_HES_STOPPED: the counter is stopped +* PERF_HES_UPTODATE: the event->count is up-to-date +* PERF_HES_ARCH: arch-dependent usage ... we don't need this for now + +A normal flow of these state transitions are as follows: + +* A user launches a perf event, resulting in calling to *event_init*. +* When being context-switched in, *add* is called by the perf core, with a flag + PERF_EF_START, which means that the event should be started after it is added. + At this stage, a general event is bound to a physical counter, if any. + The state changes to PERF_HES_STOPPED and PERF_HES_UPTODATE, because it is now + stopped, and the (software) event count does not need updating. + + - *start* is then called, and the counter is enabled. + With flag PERF_EF_RELOAD, it writes an appropriate value to the counter (check + previous section for detail). + Nothing is written if the flag does not contain PERF_EF_RELOAD. + The state now is reset to none, because it is neither stopped nor updated + (the counting already started) + +* When being context-switched out, *del* is called. It then checks out all the + events in the PMU and calls *stop* to update their counts. + + - *stop* is called by *del* + and the perf core with flag PERF_EF_UPDATE, and it often shares the same + subroutine as *read* with the same logic. + The state changes to PERF_HES_STOPPED and PERF_HES_UPTODATE, again. + + - Life cycle of these two pairs: *add* and *del* are called repeatedly as + tasks switch in-and-out; *start* and *stop* is also called when the perf core + needs a quick stop-and-start, for instance, when the interrupt period is being + adjusted. + +Current implementation is sufficient for now and can be easily extended to +features in the future. + +A. Related Structures +--------------------- + +* struct pmu: include/linux/perf_event.h +* struct riscv_pmu: arch/riscv/include/asm/perf_event.h + + Both structures are designed to be read-only. + + *struct pmu* defines some function pointer interfaces, and most of them take + *struct perf_event* as a main argument, dealing with perf events according to + perf's internal state machine (check kernel/events/core.c for details). + + *struct riscv_pmu* defines PMU-specific parameters. The naming follows the + convention of all other architectures. + +* struct perf_event: include/linux/perf_event.h +* struct hw_perf_event + + The generic structure that represents perf events, and the hardware-related + details. + +* struct riscv_hw_events: arch/riscv/include/asm/perf_event.h + + The structure that holds the status of events, has two fixed members: + the number of events and the array of the events. + +References +---------- + +[1] https://github.com/riscv/riscv-linux/pull/124 + +[2] https://groups.google.com/a/groups.riscv.org/forum/#!topic/sw-dev/f19TmCNP6yA -- cgit v1.2.3