From 5d1646d90e1f2cceb9f0828f4b28318cd0ec7744 Mon Sep 17 00:00:00 2001 From: Daniel Baumann Date: Sat, 27 Apr 2024 12:05:51 +0200 Subject: Adding upstream version 5.10.209. Signed-off-by: Daniel Baumann --- Documentation/vm/numa.rst | 150 ++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 150 insertions(+) create mode 100644 Documentation/vm/numa.rst (limited to 'Documentation/vm/numa.rst') diff --git a/Documentation/vm/numa.rst b/Documentation/vm/numa.rst new file mode 100644 index 000000000..99fdeca91 --- /dev/null +++ b/Documentation/vm/numa.rst @@ -0,0 +1,150 @@ +.. _numa: + +Started Nov 1999 by Kanoj Sarcar + +============= +What is NUMA? +============= + +This question can be answered from a couple of perspectives: the +hardware view and the Linux software view. + +From the hardware perspective, a NUMA system is a computer platform that +comprises multiple components or assemblies each of which may contain 0 +or more CPUs, local memory, and/or IO buses. For brevity and to +disambiguate the hardware view of these physical components/assemblies +from the software abstraction thereof, we'll call the components/assemblies +'cells' in this document. + +Each of the 'cells' may be viewed as an SMP [symmetric multi-processor] subset +of the system--although some components necessary for a stand-alone SMP system +may not be populated on any given cell. The cells of the NUMA system are +connected together with some sort of system interconnect--e.g., a crossbar or +point-to-point link are common types of NUMA system interconnects. Both of +these types of interconnects can be aggregated to create NUMA platforms with +cells at multiple distances from other cells. + +For Linux, the NUMA platforms of interest are primarily what is known as Cache +Coherent NUMA or ccNUMA systems. With ccNUMA systems, all memory is visible +to and accessible from any CPU attached to any cell and cache coherency +is handled in hardware by the processor caches and/or the system interconnect. + +Memory access time and effective memory bandwidth varies depending on how far +away the cell containing the CPU or IO bus making the memory access is from the +cell containing the target memory. For example, access to memory by CPUs +attached to the same cell will experience faster access times and higher +bandwidths than accesses to memory on other, remote cells. NUMA platforms +can have cells at multiple remote distances from any given cell. + +Platform vendors don't build NUMA systems just to make software developers' +lives interesting. Rather, this architecture is a means to provide scalable +memory bandwidth. However, to achieve scalable memory bandwidth, system and +application software must arrange for a large majority of the memory references +[cache misses] to be to "local" memory--memory on the same cell, if any--or +to the closest cell with memory. + +This leads to the Linux software view of a NUMA system: + +Linux divides the system's hardware resources into multiple software +abstractions called "nodes". Linux maps the nodes onto the physical cells +of the hardware platform, abstracting away some of the details for some +architectures. As with physical cells, software nodes may contain 0 or more +CPUs, memory and/or IO buses. And, again, memory accesses to memory on +"closer" nodes--nodes that map to closer cells--will generally experience +faster access times and higher effective bandwidth than accesses to more +remote cells. + +For some architectures, such as x86, Linux will "hide" any node representing a +physical cell that has no memory attached, and reassign any CPUs attached to +that cell to a node representing a cell that does have memory. Thus, on +these architectures, one cannot assume that all CPUs that Linux associates with +a given node will see the same local memory access times and bandwidth. + +In addition, for some architectures, again x86 is an example, Linux supports +the emulation of additional nodes. For NUMA emulation, linux will carve up +the existing nodes--or the system memory for non-NUMA platforms--into multiple +nodes. Each emulated node will manage a fraction of the underlying cells' +physical memory. NUMA emluation is useful for testing NUMA kernel and +application features on non-NUMA platforms, and as a sort of memory resource +management mechanism when used together with cpusets. +[see Documentation/admin-guide/cgroup-v1/cpusets.rst] + +For each node with memory, Linux constructs an independent memory management +subsystem, complete with its own free page lists, in-use page lists, usage +statistics and locks to mediate access. In addition, Linux constructs for +each memory zone [one or more of DMA, DMA32, NORMAL, HIGH_MEMORY, MOVABLE], +an ordered "zonelist". A zonelist specifies the zones/nodes to visit when a +selected zone/node cannot satisfy the allocation request. This situation, +when a zone has no available memory to satisfy a request, is called +"overflow" or "fallback". + +Because some nodes contain multiple zones containing different types of +memory, Linux must decide whether to order the zonelists such that allocations +fall back to the same zone type on a different node, or to a different zone +type on the same node. This is an important consideration because some zones, +such as DMA or DMA32, represent relatively scarce resources. Linux chooses +a default Node ordered zonelist. This means it tries to fallback to other zones +from the same node before using remote nodes which are ordered by NUMA distance. + +By default, Linux will attempt to satisfy memory allocation requests from the +node to which the CPU that executes the request is assigned. Specifically, +Linux will attempt to allocate from the first node in the appropriate zonelist +for the node where the request originates. This is called "local allocation." +If the "local" node cannot satisfy the request, the kernel will examine other +nodes' zones in the selected zonelist looking for the first zone in the list +that can satisfy the request. + +Local allocation will tend to keep subsequent access to the allocated memory +"local" to the underlying physical resources and off the system interconnect-- +as long as the task on whose behalf the kernel allocated some memory does not +later migrate away from that memory. The Linux scheduler is aware of the +NUMA topology of the platform--embodied in the "scheduling domains" data +structures [see Documentation/scheduler/sched-domains.rst]--and the scheduler +attempts to minimize task migration to distant scheduling domains. However, +the scheduler does not take a task's NUMA footprint into account directly. +Thus, under sufficient imbalance, tasks can migrate between nodes, remote +from their initial node and kernel data structures. + +System administrators and application designers can restrict a task's migration +to improve NUMA locality using various CPU affinity command line interfaces, +such as taskset(1) and numactl(1), and program interfaces such as +sched_setaffinity(2). Further, one can modify the kernel's default local +allocation behavior using Linux NUMA memory policy. [see +:ref:`Documentation/admin-guide/mm/numa_memory_policy.rst `]. + +System administrators can restrict the CPUs and nodes' memories that a non- +privileged user can specify in the scheduling or NUMA commands and functions +using control groups and CPUsets. [see Documentation/admin-guide/cgroup-v1/cpusets.rst] + +On architectures that do not hide memoryless nodes, Linux will include only +zones [nodes] with memory in the zonelists. This means that for a memoryless +node the "local memory node"--the node of the first zone in CPU's node's +zonelist--will not be the node itself. Rather, it will be the node that the +kernel selected as the nearest node with memory when it built the zonelists. +So, default, local allocations will succeed with the kernel supplying the +closest available memory. This is a consequence of the same mechanism that +allows such allocations to fallback to other nearby nodes when a node that +does contain memory overflows. + +Some kernel allocations do not want or cannot tolerate this allocation fallback +behavior. Rather they want to be sure they get memory from the specified node +or get notified that the node has no free memory. This is usually the case when +a subsystem allocates per CPU memory resources, for example. + +A typical model for making such an allocation is to obtain the node id of the +node to which the "current CPU" is attached using one of the kernel's +numa_node_id() or CPU_to_node() functions and then request memory from only +the node id returned. When such an allocation fails, the requesting subsystem +may revert to its own fallback path. The slab kernel memory allocator is an +example of this. Or, the subsystem may choose to disable or not to enable +itself on allocation failure. The kernel profiling subsystem is an example of +this. + +If the architecture supports--does not hide--memoryless nodes, then CPUs +attached to memoryless nodes would always incur the fallback path overhead +or some subsystems would fail to initialize if they attempted to allocated +memory exclusively from a node without memory. To support such +architectures transparently, kernel subsystems can use the numa_mem_id() +or cpu_to_mem() function to locate the "local memory node" for the calling or +specified CPU. Again, this is the same node from which default, local page +allocations will be attempted. -- cgit v1.2.3