From 5d1646d90e1f2cceb9f0828f4b28318cd0ec7744 Mon Sep 17 00:00:00 2001 From: Daniel Baumann Date: Sat, 27 Apr 2024 12:05:51 +0200 Subject: Adding upstream version 5.10.209. Signed-off-by: Daniel Baumann --- arch/sparc/mm/srmmu.c | 1833 +++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 1833 insertions(+) create mode 100644 arch/sparc/mm/srmmu.c (limited to 'arch/sparc/mm/srmmu.c') diff --git a/arch/sparc/mm/srmmu.c b/arch/sparc/mm/srmmu.c new file mode 100644 index 000000000..0070f8b9a --- /dev/null +++ b/arch/sparc/mm/srmmu.c @@ -0,0 +1,1833 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * srmmu.c: SRMMU specific routines for memory management. + * + * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu) + * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com) + * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be) + * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz) + * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org) + */ + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +/* Now the cpu specific definitions. */ +#include +#include +#include +#include +#include +#include +#include + +#include "mm_32.h" + +enum mbus_module srmmu_modtype; +static unsigned int hwbug_bitmask; +int vac_cache_size; +EXPORT_SYMBOL(vac_cache_size); +int vac_line_size; + +extern struct resource sparc_iomap; + +extern unsigned long last_valid_pfn; + +static pgd_t *srmmu_swapper_pg_dir; + +const struct sparc32_cachetlb_ops *sparc32_cachetlb_ops; +EXPORT_SYMBOL(sparc32_cachetlb_ops); + +#ifdef CONFIG_SMP +const struct sparc32_cachetlb_ops *local_ops; + +#define FLUSH_BEGIN(mm) +#define FLUSH_END +#else +#define FLUSH_BEGIN(mm) if ((mm)->context != NO_CONTEXT) { +#define FLUSH_END } +#endif + +int flush_page_for_dma_global = 1; + +char *srmmu_name; + +ctxd_t *srmmu_ctx_table_phys; +static ctxd_t *srmmu_context_table; + +int viking_mxcc_present; +static DEFINE_SPINLOCK(srmmu_context_spinlock); + +static int is_hypersparc; + +static int srmmu_cache_pagetables; + +/* these will be initialized in srmmu_nocache_calcsize() */ +static unsigned long srmmu_nocache_size; +static unsigned long srmmu_nocache_end; + +/* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */ +#define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4) + +/* The context table is a nocache user with the biggest alignment needs. */ +#define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS) + +void *srmmu_nocache_pool; +static struct bit_map srmmu_nocache_map; + +static inline int srmmu_pmd_none(pmd_t pmd) +{ return !(pmd_val(pmd) & 0xFFFFFFF); } + +/* XXX should we hyper_flush_whole_icache here - Anton */ +static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp) +{ + pte_t pte; + + pte = __pte((SRMMU_ET_PTD | (__nocache_pa(pgdp) >> 4))); + set_pte((pte_t *)ctxp, pte); +} + +/* + * Locations of MSI Registers. + */ +#define MSI_MBUS_ARBEN 0xe0001008 /* MBus Arbiter Enable register */ + +/* + * Useful bits in the MSI Registers. + */ +#define MSI_ASYNC_MODE 0x80000000 /* Operate the MSI asynchronously */ + +static void msi_set_sync(void) +{ + __asm__ __volatile__ ("lda [%0] %1, %%g3\n\t" + "andn %%g3, %2, %%g3\n\t" + "sta %%g3, [%0] %1\n\t" : : + "r" (MSI_MBUS_ARBEN), + "i" (ASI_M_CTL), "r" (MSI_ASYNC_MODE) : "g3"); +} + +void pmd_set(pmd_t *pmdp, pte_t *ptep) +{ + unsigned long ptp = __nocache_pa(ptep) >> 4; + set_pte((pte_t *)&pmd_val(*pmdp), __pte(SRMMU_ET_PTD | ptp)); +} + +/* + * size: bytes to allocate in the nocache area. + * align: bytes, number to align at. + * Returns the virtual address of the allocated area. + */ +static void *__srmmu_get_nocache(int size, int align) +{ + int offset, minsz = 1 << SRMMU_NOCACHE_BITMAP_SHIFT; + unsigned long addr; + + if (size < minsz) { + printk(KERN_ERR "Size 0x%x too small for nocache request\n", + size); + size = minsz; + } + if (size & (minsz - 1)) { + printk(KERN_ERR "Size 0x%x unaligned in nocache request\n", + size); + size += minsz - 1; + } + BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX); + + offset = bit_map_string_get(&srmmu_nocache_map, + size >> SRMMU_NOCACHE_BITMAP_SHIFT, + align >> SRMMU_NOCACHE_BITMAP_SHIFT); + if (offset == -1) { + printk(KERN_ERR "srmmu: out of nocache %d: %d/%d\n", + size, (int) srmmu_nocache_size, + srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT); + return NULL; + } + + addr = SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT); + return (void *)addr; +} + +void *srmmu_get_nocache(int size, int align) +{ + void *tmp; + + tmp = __srmmu_get_nocache(size, align); + + if (tmp) + memset(tmp, 0, size); + + return tmp; +} + +void srmmu_free_nocache(void *addr, int size) +{ + unsigned long vaddr; + int offset; + + vaddr = (unsigned long)addr; + if (vaddr < SRMMU_NOCACHE_VADDR) { + printk("Vaddr %lx is smaller than nocache base 0x%lx\n", + vaddr, (unsigned long)SRMMU_NOCACHE_VADDR); + BUG(); + } + if (vaddr + size > srmmu_nocache_end) { + printk("Vaddr %lx is bigger than nocache end 0x%lx\n", + vaddr, srmmu_nocache_end); + BUG(); + } + if (!is_power_of_2(size)) { + printk("Size 0x%x is not a power of 2\n", size); + BUG(); + } + if (size < SRMMU_NOCACHE_BITMAP_SHIFT) { + printk("Size 0x%x is too small\n", size); + BUG(); + } + if (vaddr & (size - 1)) { + printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size); + BUG(); + } + + offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT; + size = size >> SRMMU_NOCACHE_BITMAP_SHIFT; + + bit_map_clear(&srmmu_nocache_map, offset, size); +} + +static void srmmu_early_allocate_ptable_skeleton(unsigned long start, + unsigned long end); + +/* Return how much physical memory we have. */ +static unsigned long __init probe_memory(void) +{ + unsigned long total = 0; + int i; + + for (i = 0; sp_banks[i].num_bytes; i++) + total += sp_banks[i].num_bytes; + + return total; +} + +/* + * Reserve nocache dynamically proportionally to the amount of + * system RAM. -- Tomas Szepe , June 2002 + */ +static void __init srmmu_nocache_calcsize(void) +{ + unsigned long sysmemavail = probe_memory() / 1024; + int srmmu_nocache_npages; + + srmmu_nocache_npages = + sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256; + + /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */ + // if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256; + if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES) + srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES; + + /* anything above 1280 blows up */ + if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES) + srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES; + + srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE; + srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size; +} + +static void __init srmmu_nocache_init(void) +{ + void *srmmu_nocache_bitmap; + unsigned int bitmap_bits; + pgd_t *pgd; + p4d_t *p4d; + pud_t *pud; + pmd_t *pmd; + pte_t *pte; + unsigned long paddr, vaddr; + unsigned long pteval; + + bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT; + + srmmu_nocache_pool = memblock_alloc(srmmu_nocache_size, + SRMMU_NOCACHE_ALIGN_MAX); + if (!srmmu_nocache_pool) + panic("%s: Failed to allocate %lu bytes align=0x%x\n", + __func__, srmmu_nocache_size, SRMMU_NOCACHE_ALIGN_MAX); + memset(srmmu_nocache_pool, 0, srmmu_nocache_size); + + srmmu_nocache_bitmap = + memblock_alloc(BITS_TO_LONGS(bitmap_bits) * sizeof(long), + SMP_CACHE_BYTES); + if (!srmmu_nocache_bitmap) + panic("%s: Failed to allocate %zu bytes\n", __func__, + BITS_TO_LONGS(bitmap_bits) * sizeof(long)); + bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits); + + srmmu_swapper_pg_dir = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE); + memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE); + init_mm.pgd = srmmu_swapper_pg_dir; + + srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end); + + paddr = __pa((unsigned long)srmmu_nocache_pool); + vaddr = SRMMU_NOCACHE_VADDR; + + while (vaddr < srmmu_nocache_end) { + pgd = pgd_offset_k(vaddr); + p4d = p4d_offset(pgd, vaddr); + pud = pud_offset(p4d, vaddr); + pmd = pmd_offset(__nocache_fix(pud), vaddr); + pte = pte_offset_kernel(__nocache_fix(pmd), vaddr); + + pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV); + + if (srmmu_cache_pagetables) + pteval |= SRMMU_CACHE; + + set_pte(__nocache_fix(pte), __pte(pteval)); + + vaddr += PAGE_SIZE; + paddr += PAGE_SIZE; + } + + flush_cache_all(); + flush_tlb_all(); +} + +pgd_t *get_pgd_fast(void) +{ + pgd_t *pgd = NULL; + + pgd = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE); + if (pgd) { + pgd_t *init = pgd_offset_k(0); + memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t)); + memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD, + (PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t)); + } + + return pgd; +} + +/* + * Hardware needs alignment to 256 only, but we align to whole page size + * to reduce fragmentation problems due to the buddy principle. + * XXX Provide actual fragmentation statistics in /proc. + * + * Alignments up to the page size are the same for physical and virtual + * addresses of the nocache area. + */ +pgtable_t pte_alloc_one(struct mm_struct *mm) +{ + pte_t *ptep; + struct page *page; + + if ((ptep = pte_alloc_one_kernel(mm)) == 0) + return NULL; + page = pfn_to_page(__nocache_pa((unsigned long)ptep) >> PAGE_SHIFT); + spin_lock(&mm->page_table_lock); + if (page_ref_inc_return(page) == 2 && !pgtable_pte_page_ctor(page)) { + page_ref_dec(page); + ptep = NULL; + } + spin_unlock(&mm->page_table_lock); + + return ptep; +} + +void pte_free(struct mm_struct *mm, pgtable_t ptep) +{ + struct page *page; + + page = pfn_to_page(__nocache_pa((unsigned long)ptep) >> PAGE_SHIFT); + spin_lock(&mm->page_table_lock); + if (page_ref_dec_return(page) == 1) + pgtable_pte_page_dtor(page); + spin_unlock(&mm->page_table_lock); + + srmmu_free_nocache(ptep, SRMMU_PTE_TABLE_SIZE); +} + +/* context handling - a dynamically sized pool is used */ +#define NO_CONTEXT -1 + +struct ctx_list { + struct ctx_list *next; + struct ctx_list *prev; + unsigned int ctx_number; + struct mm_struct *ctx_mm; +}; + +static struct ctx_list *ctx_list_pool; +static struct ctx_list ctx_free; +static struct ctx_list ctx_used; + +/* At boot time we determine the number of contexts */ +static int num_contexts; + +static inline void remove_from_ctx_list(struct ctx_list *entry) +{ + entry->next->prev = entry->prev; + entry->prev->next = entry->next; +} + +static inline void add_to_ctx_list(struct ctx_list *head, struct ctx_list *entry) +{ + entry->next = head; + (entry->prev = head->prev)->next = entry; + head->prev = entry; +} +#define add_to_free_ctxlist(entry) add_to_ctx_list(&ctx_free, entry) +#define add_to_used_ctxlist(entry) add_to_ctx_list(&ctx_used, entry) + + +static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm) +{ + struct ctx_list *ctxp; + + ctxp = ctx_free.next; + if (ctxp != &ctx_free) { + remove_from_ctx_list(ctxp); + add_to_used_ctxlist(ctxp); + mm->context = ctxp->ctx_number; + ctxp->ctx_mm = mm; + return; + } + ctxp = ctx_used.next; + if (ctxp->ctx_mm == old_mm) + ctxp = ctxp->next; + if (ctxp == &ctx_used) + panic("out of mmu contexts"); + flush_cache_mm(ctxp->ctx_mm); + flush_tlb_mm(ctxp->ctx_mm); + remove_from_ctx_list(ctxp); + add_to_used_ctxlist(ctxp); + ctxp->ctx_mm->context = NO_CONTEXT; + ctxp->ctx_mm = mm; + mm->context = ctxp->ctx_number; +} + +static inline void free_context(int context) +{ + struct ctx_list *ctx_old; + + ctx_old = ctx_list_pool + context; + remove_from_ctx_list(ctx_old); + add_to_free_ctxlist(ctx_old); +} + +static void __init sparc_context_init(int numctx) +{ + int ctx; + unsigned long size; + + size = numctx * sizeof(struct ctx_list); + ctx_list_pool = memblock_alloc(size, SMP_CACHE_BYTES); + if (!ctx_list_pool) + panic("%s: Failed to allocate %lu bytes\n", __func__, size); + + for (ctx = 0; ctx < numctx; ctx++) { + struct ctx_list *clist; + + clist = (ctx_list_pool + ctx); + clist->ctx_number = ctx; + clist->ctx_mm = NULL; + } + ctx_free.next = ctx_free.prev = &ctx_free; + ctx_used.next = ctx_used.prev = &ctx_used; + for (ctx = 0; ctx < numctx; ctx++) + add_to_free_ctxlist(ctx_list_pool + ctx); +} + +void switch_mm(struct mm_struct *old_mm, struct mm_struct *mm, + struct task_struct *tsk) +{ + unsigned long flags; + + if (mm->context == NO_CONTEXT) { + spin_lock_irqsave(&srmmu_context_spinlock, flags); + alloc_context(old_mm, mm); + spin_unlock_irqrestore(&srmmu_context_spinlock, flags); + srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd); + } + + if (sparc_cpu_model == sparc_leon) + leon_switch_mm(); + + if (is_hypersparc) + hyper_flush_whole_icache(); + + srmmu_set_context(mm->context); +} + +/* Low level IO area allocation on the SRMMU. */ +static inline void srmmu_mapioaddr(unsigned long physaddr, + unsigned long virt_addr, int bus_type) +{ + pgd_t *pgdp; + p4d_t *p4dp; + pud_t *pudp; + pmd_t *pmdp; + pte_t *ptep; + unsigned long tmp; + + physaddr &= PAGE_MASK; + pgdp = pgd_offset_k(virt_addr); + p4dp = p4d_offset(pgdp, virt_addr); + pudp = pud_offset(p4dp, virt_addr); + pmdp = pmd_offset(pudp, virt_addr); + ptep = pte_offset_kernel(pmdp, virt_addr); + tmp = (physaddr >> 4) | SRMMU_ET_PTE; + + /* I need to test whether this is consistent over all + * sun4m's. The bus_type represents the upper 4 bits of + * 36-bit physical address on the I/O space lines... + */ + tmp |= (bus_type << 28); + tmp |= SRMMU_PRIV; + __flush_page_to_ram(virt_addr); + set_pte(ptep, __pte(tmp)); +} + +void srmmu_mapiorange(unsigned int bus, unsigned long xpa, + unsigned long xva, unsigned int len) +{ + while (len != 0) { + len -= PAGE_SIZE; + srmmu_mapioaddr(xpa, xva, bus); + xva += PAGE_SIZE; + xpa += PAGE_SIZE; + } + flush_tlb_all(); +} + +static inline void srmmu_unmapioaddr(unsigned long virt_addr) +{ + pgd_t *pgdp; + p4d_t *p4dp; + pud_t *pudp; + pmd_t *pmdp; + pte_t *ptep; + + + pgdp = pgd_offset_k(virt_addr); + p4dp = p4d_offset(pgdp, virt_addr); + pudp = pud_offset(p4dp, virt_addr); + pmdp = pmd_offset(pudp, virt_addr); + ptep = pte_offset_kernel(pmdp, virt_addr); + + /* No need to flush uncacheable page. */ + __pte_clear(ptep); +} + +void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len) +{ + while (len != 0) { + len -= PAGE_SIZE; + srmmu_unmapioaddr(virt_addr); + virt_addr += PAGE_SIZE; + } + flush_tlb_all(); +} + +/* tsunami.S */ +extern void tsunami_flush_cache_all(void); +extern void tsunami_flush_cache_mm(struct mm_struct *mm); +extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end); +extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page); +extern void tsunami_flush_page_to_ram(unsigned long page); +extern void tsunami_flush_page_for_dma(unsigned long page); +extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr); +extern void tsunami_flush_tlb_all(void); +extern void tsunami_flush_tlb_mm(struct mm_struct *mm); +extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end); +extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page); +extern void tsunami_setup_blockops(void); + +/* swift.S */ +extern void swift_flush_cache_all(void); +extern void swift_flush_cache_mm(struct mm_struct *mm); +extern void swift_flush_cache_range(struct vm_area_struct *vma, + unsigned long start, unsigned long end); +extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page); +extern void swift_flush_page_to_ram(unsigned long page); +extern void swift_flush_page_for_dma(unsigned long page); +extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr); +extern void swift_flush_tlb_all(void); +extern void swift_flush_tlb_mm(struct mm_struct *mm); +extern void swift_flush_tlb_range(struct vm_area_struct *vma, + unsigned long start, unsigned long end); +extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page); + +#if 0 /* P3: deadwood to debug precise flushes on Swift. */ +void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page) +{ + int cctx, ctx1; + + page &= PAGE_MASK; + if ((ctx1 = vma->vm_mm->context) != -1) { + cctx = srmmu_get_context(); +/* Is context # ever different from current context? P3 */ + if (cctx != ctx1) { + printk("flush ctx %02x curr %02x\n", ctx1, cctx); + srmmu_set_context(ctx1); + swift_flush_page(page); + __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : : + "r" (page), "i" (ASI_M_FLUSH_PROBE)); + srmmu_set_context(cctx); + } else { + /* Rm. prot. bits from virt. c. */ + /* swift_flush_cache_all(); */ + /* swift_flush_cache_page(vma, page); */ + swift_flush_page(page); + + __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : : + "r" (page), "i" (ASI_M_FLUSH_PROBE)); + /* same as above: srmmu_flush_tlb_page() */ + } + } +} +#endif + +/* + * The following are all MBUS based SRMMU modules, and therefore could + * be found in a multiprocessor configuration. On the whole, these + * chips seems to be much more touchy about DVMA and page tables + * with respect to cache coherency. + */ + +/* viking.S */ +extern void viking_flush_cache_all(void); +extern void viking_flush_cache_mm(struct mm_struct *mm); +extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start, + unsigned long end); +extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page); +extern void viking_flush_page_to_ram(unsigned long page); +extern void viking_flush_page_for_dma(unsigned long page); +extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr); +extern void viking_flush_page(unsigned long page); +extern void viking_mxcc_flush_page(unsigned long page); +extern void viking_flush_tlb_all(void); +extern void viking_flush_tlb_mm(struct mm_struct *mm); +extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, + unsigned long end); +extern void viking_flush_tlb_page(struct vm_area_struct *vma, + unsigned long page); +extern void sun4dsmp_flush_tlb_all(void); +extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm); +extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, + unsigned long end); +extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma, + unsigned long page); + +/* hypersparc.S */ +extern void hypersparc_flush_cache_all(void); +extern void hypersparc_flush_cache_mm(struct mm_struct *mm); +extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end); +extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page); +extern void hypersparc_flush_page_to_ram(unsigned long page); +extern void hypersparc_flush_page_for_dma(unsigned long page); +extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr); +extern void hypersparc_flush_tlb_all(void); +extern void hypersparc_flush_tlb_mm(struct mm_struct *mm); +extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end); +extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page); +extern void hypersparc_setup_blockops(void); + +/* + * NOTE: All of this startup code assumes the low 16mb (approx.) of + * kernel mappings are done with one single contiguous chunk of + * ram. On small ram machines (classics mainly) we only get + * around 8mb mapped for us. + */ + +static void __init early_pgtable_allocfail(char *type) +{ + prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type); + prom_halt(); +} + +static void __init srmmu_early_allocate_ptable_skeleton(unsigned long start, + unsigned long end) +{ + pgd_t *pgdp; + p4d_t *p4dp; + pud_t *pudp; + pmd_t *pmdp; + pte_t *ptep; + + while (start < end) { + pgdp = pgd_offset_k(start); + p4dp = p4d_offset(pgdp, start); + pudp = pud_offset(p4dp, start); + if (pud_none(*(pud_t *)__nocache_fix(pudp))) { + pmdp = __srmmu_get_nocache( + SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE); + if (pmdp == NULL) + early_pgtable_allocfail("pmd"); + memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE); + pud_set(__nocache_fix(pudp), pmdp); + } + pmdp = pmd_offset(__nocache_fix(pudp), start); + if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) { + ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE); + if (ptep == NULL) + early_pgtable_allocfail("pte"); + memset(__nocache_fix(ptep), 0, PTE_SIZE); + pmd_set(__nocache_fix(pmdp), ptep); + } + if (start > (0xffffffffUL - PMD_SIZE)) + break; + start = (start + PMD_SIZE) & PMD_MASK; + } +} + +static void __init srmmu_allocate_ptable_skeleton(unsigned long start, + unsigned long end) +{ + pgd_t *pgdp; + p4d_t *p4dp; + pud_t *pudp; + pmd_t *pmdp; + pte_t *ptep; + + while (start < end) { + pgdp = pgd_offset_k(start); + p4dp = p4d_offset(pgdp, start); + pudp = pud_offset(p4dp, start); + if (pud_none(*pudp)) { + pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE); + if (pmdp == NULL) + early_pgtable_allocfail("pmd"); + memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE); + pud_set((pud_t *)pgdp, pmdp); + } + pmdp = pmd_offset(pudp, start); + if (srmmu_pmd_none(*pmdp)) { + ptep = __srmmu_get_nocache(PTE_SIZE, + PTE_SIZE); + if (ptep == NULL) + early_pgtable_allocfail("pte"); + memset(ptep, 0, PTE_SIZE); + pmd_set(pmdp, ptep); + } + if (start > (0xffffffffUL - PMD_SIZE)) + break; + start = (start + PMD_SIZE) & PMD_MASK; + } +} + +/* These flush types are not available on all chips... */ +static inline unsigned long srmmu_probe(unsigned long vaddr) +{ + unsigned long retval; + + if (sparc_cpu_model != sparc_leon) { + + vaddr &= PAGE_MASK; + __asm__ __volatile__("lda [%1] %2, %0\n\t" : + "=r" (retval) : + "r" (vaddr | 0x400), "i" (ASI_M_FLUSH_PROBE)); + } else { + retval = leon_swprobe(vaddr, NULL); + } + return retval; +} + +/* + * This is much cleaner than poking around physical address space + * looking at the prom's page table directly which is what most + * other OS's do. Yuck... this is much better. + */ +static void __init srmmu_inherit_prom_mappings(unsigned long start, + unsigned long end) +{ + unsigned long probed; + unsigned long addr; + pgd_t *pgdp; + p4d_t *p4dp; + pud_t *pudp; + pmd_t *pmdp; + pte_t *ptep; + int what; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */ + + while (start <= end) { + if (start == 0) + break; /* probably wrap around */ + if (start == 0xfef00000) + start = KADB_DEBUGGER_BEGVM; + probed = srmmu_probe(start); + if (!probed) { + /* continue probing until we find an entry */ + start += PAGE_SIZE; + continue; + } + + /* A red snapper, see what it really is. */ + what = 0; + addr = start - PAGE_SIZE; + + if (!(start & ~(PMD_MASK))) { + if (srmmu_probe(addr + PMD_SIZE) == probed) + what = 1; + } + + if (!(start & ~(PGDIR_MASK))) { + if (srmmu_probe(addr + PGDIR_SIZE) == probed) + what = 2; + } + + pgdp = pgd_offset_k(start); + p4dp = p4d_offset(pgdp, start); + pudp = pud_offset(p4dp, start); + if (what == 2) { + *(pgd_t *)__nocache_fix(pgdp) = __pgd(probed); + start += PGDIR_SIZE; + continue; + } + if (pud_none(*(pud_t *)__nocache_fix(pudp))) { + pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, + SRMMU_PMD_TABLE_SIZE); + if (pmdp == NULL) + early_pgtable_allocfail("pmd"); + memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE); + pud_set(__nocache_fix(pudp), pmdp); + } + pmdp = pmd_offset(__nocache_fix(pgdp), start); + if (what == 1) { + *(pmd_t *)__nocache_fix(pmdp) = __pmd(probed); + start += PMD_SIZE; + continue; + } + if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) { + ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE); + if (ptep == NULL) + early_pgtable_allocfail("pte"); + memset(__nocache_fix(ptep), 0, PTE_SIZE); + pmd_set(__nocache_fix(pmdp), ptep); + } + ptep = pte_offset_kernel(__nocache_fix(pmdp), start); + *(pte_t *)__nocache_fix(ptep) = __pte(probed); + start += PAGE_SIZE; + } +} + +#define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID) + +/* Create a third-level SRMMU 16MB page mapping. */ +static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base) +{ + pgd_t *pgdp = pgd_offset_k(vaddr); + unsigned long big_pte; + + big_pte = KERNEL_PTE(phys_base >> 4); + *(pgd_t *)__nocache_fix(pgdp) = __pgd(big_pte); +} + +/* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */ +static unsigned long __init map_spbank(unsigned long vbase, int sp_entry) +{ + unsigned long pstart = (sp_banks[sp_entry].base_addr & PGDIR_MASK); + unsigned long vstart = (vbase & PGDIR_MASK); + unsigned long vend = PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes); + /* Map "low" memory only */ + const unsigned long min_vaddr = PAGE_OFFSET; + const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM; + + if (vstart < min_vaddr || vstart >= max_vaddr) + return vstart; + + if (vend > max_vaddr || vend < min_vaddr) + vend = max_vaddr; + + while (vstart < vend) { + do_large_mapping(vstart, pstart); + vstart += PGDIR_SIZE; pstart += PGDIR_SIZE; + } + return vstart; +} + +static void __init map_kernel(void) +{ + int i; + + if (phys_base > 0) { + do_large_mapping(PAGE_OFFSET, phys_base); + } + + for (i = 0; sp_banks[i].num_bytes != 0; i++) { + map_spbank((unsigned long)__va(sp_banks[i].base_addr), i); + } +} + +void (*poke_srmmu)(void) = NULL; + +void __init srmmu_paging_init(void) +{ + int i; + phandle cpunode; + char node_str[128]; + pgd_t *pgd; + p4d_t *p4d; + pud_t *pud; + pmd_t *pmd; + pte_t *pte; + unsigned long pages_avail; + + init_mm.context = (unsigned long) NO_CONTEXT; + sparc_iomap.start = SUN4M_IOBASE_VADDR; /* 16MB of IOSPACE on all sun4m's. */ + + if (sparc_cpu_model == sun4d) + num_contexts = 65536; /* We know it is Viking */ + else { + /* Find the number of contexts on the srmmu. */ + cpunode = prom_getchild(prom_root_node); + num_contexts = 0; + while (cpunode != 0) { + prom_getstring(cpunode, "device_type", node_str, sizeof(node_str)); + if (!strcmp(node_str, "cpu")) { + num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8); + break; + } + cpunode = prom_getsibling(cpunode); + } + } + + if (!num_contexts) { + prom_printf("Something wrong, can't find cpu node in paging_init.\n"); + prom_halt(); + } + + pages_avail = 0; + last_valid_pfn = bootmem_init(&pages_avail); + + srmmu_nocache_calcsize(); + srmmu_nocache_init(); + srmmu_inherit_prom_mappings(0xfe400000, (LINUX_OPPROM_ENDVM - PAGE_SIZE)); + map_kernel(); + + /* ctx table has to be physically aligned to its size */ + srmmu_context_table = __srmmu_get_nocache(num_contexts * sizeof(ctxd_t), num_contexts * sizeof(ctxd_t)); + srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa(srmmu_context_table); + + for (i = 0; i < num_contexts; i++) + srmmu_ctxd_set((ctxd_t *)__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir); + + flush_cache_all(); + srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys); +#ifdef CONFIG_SMP + /* Stop from hanging here... */ + local_ops->tlb_all(); +#else + flush_tlb_all(); +#endif + poke_srmmu(); + + srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END); + srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END); + + srmmu_allocate_ptable_skeleton( + __fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP); + srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END); + + pgd = pgd_offset_k(PKMAP_BASE); + p4d = p4d_offset(pgd, PKMAP_BASE); + pud = pud_offset(p4d, PKMAP_BASE); + pmd = pmd_offset(pud, PKMAP_BASE); + pte = pte_offset_kernel(pmd, PKMAP_BASE); + pkmap_page_table = pte; + + flush_cache_all(); + flush_tlb_all(); + + sparc_context_init(num_contexts); + + kmap_init(); + + { + unsigned long max_zone_pfn[MAX_NR_ZONES] = { 0 }; + + max_zone_pfn[ZONE_DMA] = max_low_pfn; + max_zone_pfn[ZONE_NORMAL] = max_low_pfn; + max_zone_pfn[ZONE_HIGHMEM] = highend_pfn; + + free_area_init(max_zone_pfn); + } +} + +void mmu_info(struct seq_file *m) +{ + seq_printf(m, + "MMU type\t: %s\n" + "contexts\t: %d\n" + "nocache total\t: %ld\n" + "nocache used\t: %d\n", + srmmu_name, + num_contexts, + srmmu_nocache_size, + srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT); +} + +int init_new_context(struct task_struct *tsk, struct mm_struct *mm) +{ + mm->context = NO_CONTEXT; + return 0; +} + +void destroy_context(struct mm_struct *mm) +{ + unsigned long flags; + + if (mm->context != NO_CONTEXT) { + flush_cache_mm(mm); + srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir); + flush_tlb_mm(mm); + spin_lock_irqsave(&srmmu_context_spinlock, flags); + free_context(mm->context); + spin_unlock_irqrestore(&srmmu_context_spinlock, flags); + mm->context = NO_CONTEXT; + } +} + +/* Init various srmmu chip types. */ +static void __init srmmu_is_bad(void) +{ + prom_printf("Could not determine SRMMU chip type.\n"); + prom_halt(); +} + +static void __init init_vac_layout(void) +{ + phandle nd; + int cache_lines; + char node_str[128]; +#ifdef CONFIG_SMP + int cpu = 0; + unsigned long max_size = 0; + unsigned long min_line_size = 0x10000000; +#endif + + nd = prom_getchild(prom_root_node); + while ((nd = prom_getsibling(nd)) != 0) { + prom_getstring(nd, "device_type", node_str, sizeof(node_str)); + if (!strcmp(node_str, "cpu")) { + vac_line_size = prom_getint(nd, "cache-line-size"); + if (vac_line_size == -1) { + prom_printf("can't determine cache-line-size, halting.\n"); + prom_halt(); + } + cache_lines = prom_getint(nd, "cache-nlines"); + if (cache_lines == -1) { + prom_printf("can't determine cache-nlines, halting.\n"); + prom_halt(); + } + + vac_cache_size = cache_lines * vac_line_size; +#ifdef CONFIG_SMP + if (vac_cache_size > max_size) + max_size = vac_cache_size; + if (vac_line_size < min_line_size) + min_line_size = vac_line_size; + //FIXME: cpus not contiguous!! + cpu++; + if (cpu >= nr_cpu_ids || !cpu_online(cpu)) + break; +#else + break; +#endif + } + } + if (nd == 0) { + prom_printf("No CPU nodes found, halting.\n"); + prom_halt(); + } +#ifdef CONFIG_SMP + vac_cache_size = max_size; + vac_line_size = min_line_size; +#endif + printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n", + (int)vac_cache_size, (int)vac_line_size); +} + +static void poke_hypersparc(void) +{ + volatile unsigned long clear; + unsigned long mreg = srmmu_get_mmureg(); + + hyper_flush_unconditional_combined(); + + mreg &= ~(HYPERSPARC_CWENABLE); + mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE); + mreg |= (HYPERSPARC_CMODE); + + srmmu_set_mmureg(mreg); + +#if 0 /* XXX I think this is bad news... -DaveM */ + hyper_clear_all_tags(); +#endif + + put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE); + hyper_flush_whole_icache(); + clear = srmmu_get_faddr(); + clear = srmmu_get_fstatus(); +} + +static const struct sparc32_cachetlb_ops hypersparc_ops = { + .cache_all = hypersparc_flush_cache_all, + .cache_mm = hypersparc_flush_cache_mm, + .cache_page = hypersparc_flush_cache_page, + .cache_range = hypersparc_flush_cache_range, + .tlb_all = hypersparc_flush_tlb_all, + .tlb_mm = hypersparc_flush_tlb_mm, + .tlb_page = hypersparc_flush_tlb_page, + .tlb_range = hypersparc_flush_tlb_range, + .page_to_ram = hypersparc_flush_page_to_ram, + .sig_insns = hypersparc_flush_sig_insns, + .page_for_dma = hypersparc_flush_page_for_dma, +}; + +static void __init init_hypersparc(void) +{ + srmmu_name = "ROSS HyperSparc"; + srmmu_modtype = HyperSparc; + + init_vac_layout(); + + is_hypersparc = 1; + sparc32_cachetlb_ops = &hypersparc_ops; + + poke_srmmu = poke_hypersparc; + + hypersparc_setup_blockops(); +} + +static void poke_swift(void) +{ + unsigned long mreg; + + /* Clear any crap from the cache or else... */ + swift_flush_cache_all(); + + /* Enable I & D caches */ + mreg = srmmu_get_mmureg(); + mreg |= (SWIFT_IE | SWIFT_DE); + /* + * The Swift branch folding logic is completely broken. At + * trap time, if things are just right, if can mistakenly + * think that a trap is coming from kernel mode when in fact + * it is coming from user mode (it mis-executes the branch in + * the trap code). So you see things like crashme completely + * hosing your machine which is completely unacceptable. Turn + * this shit off... nice job Fujitsu. + */ + mreg &= ~(SWIFT_BF); + srmmu_set_mmureg(mreg); +} + +static const struct sparc32_cachetlb_ops swift_ops = { + .cache_all = swift_flush_cache_all, + .cache_mm = swift_flush_cache_mm, + .cache_page = swift_flush_cache_page, + .cache_range = swift_flush_cache_range, + .tlb_all = swift_flush_tlb_all, + .tlb_mm = swift_flush_tlb_mm, + .tlb_page = swift_flush_tlb_page, + .tlb_range = swift_flush_tlb_range, + .page_to_ram = swift_flush_page_to_ram, + .sig_insns = swift_flush_sig_insns, + .page_for_dma = swift_flush_page_for_dma, +}; + +#define SWIFT_MASKID_ADDR 0x10003018 +static void __init init_swift(void) +{ + unsigned long swift_rev; + + __asm__ __volatile__("lda [%1] %2, %0\n\t" + "srl %0, 0x18, %0\n\t" : + "=r" (swift_rev) : + "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS)); + srmmu_name = "Fujitsu Swift"; + switch (swift_rev) { + case 0x11: + case 0x20: + case 0x23: + case 0x30: + srmmu_modtype = Swift_lots_o_bugs; + hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN); + /* + * Gee george, I wonder why Sun is so hush hush about + * this hardware bug... really braindamage stuff going + * on here. However I think we can find a way to avoid + * all of the workaround overhead under Linux. Basically, + * any page fault can cause kernel pages to become user + * accessible (the mmu gets confused and clears some of + * the ACC bits in kernel ptes). Aha, sounds pretty + * horrible eh? But wait, after extensive testing it appears + * that if you use pgd_t level large kernel pte's (like the + * 4MB pages on the Pentium) the bug does not get tripped + * at all. This avoids almost all of the major overhead. + * Welcome to a world where your vendor tells you to, + * "apply this kernel patch" instead of "sorry for the + * broken hardware, send it back and we'll give you + * properly functioning parts" + */ + break; + case 0x25: + case 0x31: + srmmu_modtype = Swift_bad_c; + hwbug_bitmask |= HWBUG_KERN_CBITBROKEN; + /* + * You see Sun allude to this hardware bug but never + * admit things directly, they'll say things like, + * "the Swift chip cache problems" or similar. + */ + break; + default: + srmmu_modtype = Swift_ok; + break; + } + + sparc32_cachetlb_ops = &swift_ops; + flush_page_for_dma_global = 0; + + /* + * Are you now convinced that the Swift is one of the + * biggest VLSI abortions of all time? Bravo Fujitsu! + * Fujitsu, the !#?!%$'d up processor people. I bet if + * you examined the microcode of the Swift you'd find + * XXX's all over the place. + */ + poke_srmmu = poke_swift; +} + +static void turbosparc_flush_cache_all(void) +{ + flush_user_windows(); + turbosparc_idflash_clear(); +} + +static void turbosparc_flush_cache_mm(struct mm_struct *mm) +{ + FLUSH_BEGIN(mm) + flush_user_windows(); + turbosparc_idflash_clear(); + FLUSH_END +} + +static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) +{ + FLUSH_BEGIN(vma->vm_mm) + flush_user_windows(); + turbosparc_idflash_clear(); + FLUSH_END +} + +static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page) +{ + FLUSH_BEGIN(vma->vm_mm) + flush_user_windows(); + if (vma->vm_flags & VM_EXEC) + turbosparc_flush_icache(); + turbosparc_flush_dcache(); + FLUSH_END +} + +/* TurboSparc is copy-back, if we turn it on, but this does not work. */ +static void turbosparc_flush_page_to_ram(unsigned long page) +{ +#ifdef TURBOSPARC_WRITEBACK + volatile unsigned long clear; + + if (srmmu_probe(page)) + turbosparc_flush_page_cache(page); + clear = srmmu_get_fstatus(); +#endif +} + +static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr) +{ +} + +static void turbosparc_flush_page_for_dma(unsigned long page) +{ + turbosparc_flush_dcache(); +} + +static void turbosparc_flush_tlb_all(void) +{ + srmmu_flush_whole_tlb(); +} + +static void turbosparc_flush_tlb_mm(struct mm_struct *mm) +{ + FLUSH_BEGIN(mm) + srmmu_flush_whole_tlb(); + FLUSH_END +} + +static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) +{ + FLUSH_BEGIN(vma->vm_mm) + srmmu_flush_whole_tlb(); + FLUSH_END +} + +static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page) +{ + FLUSH_BEGIN(vma->vm_mm) + srmmu_flush_whole_tlb(); + FLUSH_END +} + + +static void poke_turbosparc(void) +{ + unsigned long mreg = srmmu_get_mmureg(); + unsigned long ccreg; + + /* Clear any crap from the cache or else... */ + turbosparc_flush_cache_all(); + /* Temporarily disable I & D caches */ + mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); + mreg &= ~(TURBOSPARC_PCENABLE); /* Don't check parity */ + srmmu_set_mmureg(mreg); + + ccreg = turbosparc_get_ccreg(); + +#ifdef TURBOSPARC_WRITEBACK + ccreg |= (TURBOSPARC_SNENABLE); /* Do DVMA snooping in Dcache */ + ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE); + /* Write-back D-cache, emulate VLSI + * abortion number three, not number one */ +#else + /* For now let's play safe, optimize later */ + ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE); + /* Do DVMA snooping in Dcache, Write-thru D-cache */ + ccreg &= ~(TURBOSPARC_uS2); + /* Emulate VLSI abortion number three, not number one */ +#endif + + switch (ccreg & 7) { + case 0: /* No SE cache */ + case 7: /* Test mode */ + break; + default: + ccreg |= (TURBOSPARC_SCENABLE); + } + turbosparc_set_ccreg(ccreg); + + mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */ + mreg |= (TURBOSPARC_ICSNOOP); /* Icache snooping on */ + srmmu_set_mmureg(mreg); +} + +static const struct sparc32_cachetlb_ops turbosparc_ops = { + .cache_all = turbosparc_flush_cache_all, + .cache_mm = turbosparc_flush_cache_mm, + .cache_page = turbosparc_flush_cache_page, + .cache_range = turbosparc_flush_cache_range, + .tlb_all = turbosparc_flush_tlb_all, + .tlb_mm = turbosparc_flush_tlb_mm, + .tlb_page = turbosparc_flush_tlb_page, + .tlb_range = turbosparc_flush_tlb_range, + .page_to_ram = turbosparc_flush_page_to_ram, + .sig_insns = turbosparc_flush_sig_insns, + .page_for_dma = turbosparc_flush_page_for_dma, +}; + +static void __init init_turbosparc(void) +{ + srmmu_name = "Fujitsu TurboSparc"; + srmmu_modtype = TurboSparc; + sparc32_cachetlb_ops = &turbosparc_ops; + poke_srmmu = poke_turbosparc; +} + +static void poke_tsunami(void) +{ + unsigned long mreg = srmmu_get_mmureg(); + + tsunami_flush_icache(); + tsunami_flush_dcache(); + mreg &= ~TSUNAMI_ITD; + mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB); + srmmu_set_mmureg(mreg); +} + +static const struct sparc32_cachetlb_ops tsunami_ops = { + .cache_all = tsunami_flush_cache_all, + .cache_mm = tsunami_flush_cache_mm, + .cache_page = tsunami_flush_cache_page, + .cache_range = tsunami_flush_cache_range, + .tlb_all = tsunami_flush_tlb_all, + .tlb_mm = tsunami_flush_tlb_mm, + .tlb_page = tsunami_flush_tlb_page, + .tlb_range = tsunami_flush_tlb_range, + .page_to_ram = tsunami_flush_page_to_ram, + .sig_insns = tsunami_flush_sig_insns, + .page_for_dma = tsunami_flush_page_for_dma, +}; + +static void __init init_tsunami(void) +{ + /* + * Tsunami's pretty sane, Sun and TI actually got it + * somewhat right this time. Fujitsu should have + * taken some lessons from them. + */ + + srmmu_name = "TI Tsunami"; + srmmu_modtype = Tsunami; + sparc32_cachetlb_ops = &tsunami_ops; + poke_srmmu = poke_tsunami; + + tsunami_setup_blockops(); +} + +static void poke_viking(void) +{ + unsigned long mreg = srmmu_get_mmureg(); + static int smp_catch; + + if (viking_mxcc_present) { + unsigned long mxcc_control = mxcc_get_creg(); + + mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE); + mxcc_control &= ~(MXCC_CTL_RRC); + mxcc_set_creg(mxcc_control); + + /* + * We don't need memory parity checks. + * XXX This is a mess, have to dig out later. ecd. + viking_mxcc_turn_off_parity(&mreg, &mxcc_control); + */ + + /* We do cache ptables on MXCC. */ + mreg |= VIKING_TCENABLE; + } else { + unsigned long bpreg; + + mreg &= ~(VIKING_TCENABLE); + if (smp_catch++) { + /* Must disable mixed-cmd mode here for other cpu's. */ + bpreg = viking_get_bpreg(); + bpreg &= ~(VIKING_ACTION_MIX); + viking_set_bpreg(bpreg); + + /* Just in case PROM does something funny. */ + msi_set_sync(); + } + } + + mreg |= VIKING_SPENABLE; + mreg |= (VIKING_ICENABLE | VIKING_DCENABLE); + mreg |= VIKING_SBENABLE; + mreg &= ~(VIKING_ACENABLE); + srmmu_set_mmureg(mreg); +} + +static struct sparc32_cachetlb_ops viking_ops __ro_after_init = { + .cache_all = viking_flush_cache_all, + .cache_mm = viking_flush_cache_mm, + .cache_page = viking_flush_cache_page, + .cache_range = viking_flush_cache_range, + .tlb_all = viking_flush_tlb_all, + .tlb_mm = viking_flush_tlb_mm, + .tlb_page = viking_flush_tlb_page, + .tlb_range = viking_flush_tlb_range, + .page_to_ram = viking_flush_page_to_ram, + .sig_insns = viking_flush_sig_insns, + .page_for_dma = viking_flush_page_for_dma, +}; + +#ifdef CONFIG_SMP +/* On sun4d the cpu broadcasts local TLB flushes, so we can just + * perform the local TLB flush and all the other cpus will see it. + * But, unfortunately, there is a bug in the sun4d XBUS backplane + * that requires that we add some synchronization to these flushes. + * + * The bug is that the fifo which keeps track of all the pending TLB + * broadcasts in the system is an entry or two too small, so if we + * have too many going at once we'll overflow that fifo and lose a TLB + * flush resulting in corruption. + * + * Our workaround is to take a global spinlock around the TLB flushes, + * which guarentees we won't ever have too many pending. It's a big + * hammer, but a semaphore like system to make sure we only have N TLB + * flushes going at once will require SMP locking anyways so there's + * no real value in trying any harder than this. + */ +static struct sparc32_cachetlb_ops viking_sun4d_smp_ops __ro_after_init = { + .cache_all = viking_flush_cache_all, + .cache_mm = viking_flush_cache_mm, + .cache_page = viking_flush_cache_page, + .cache_range = viking_flush_cache_range, + .tlb_all = sun4dsmp_flush_tlb_all, + .tlb_mm = sun4dsmp_flush_tlb_mm, + .tlb_page = sun4dsmp_flush_tlb_page, + .tlb_range = sun4dsmp_flush_tlb_range, + .page_to_ram = viking_flush_page_to_ram, + .sig_insns = viking_flush_sig_insns, + .page_for_dma = viking_flush_page_for_dma, +}; +#endif + +static void __init init_viking(void) +{ + unsigned long mreg = srmmu_get_mmureg(); + + /* Ahhh, the viking. SRMMU VLSI abortion number two... */ + if (mreg & VIKING_MMODE) { + srmmu_name = "TI Viking"; + viking_mxcc_present = 0; + msi_set_sync(); + + /* + * We need this to make sure old viking takes no hits + * on it's cache for dma snoops to workaround the + * "load from non-cacheable memory" interrupt bug. + * This is only necessary because of the new way in + * which we use the IOMMU. + */ + viking_ops.page_for_dma = viking_flush_page; +#ifdef CONFIG_SMP + viking_sun4d_smp_ops.page_for_dma = viking_flush_page; +#endif + flush_page_for_dma_global = 0; + } else { + srmmu_name = "TI Viking/MXCC"; + viking_mxcc_present = 1; + srmmu_cache_pagetables = 1; + } + + sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *) + &viking_ops; +#ifdef CONFIG_SMP + if (sparc_cpu_model == sun4d) + sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *) + &viking_sun4d_smp_ops; +#endif + + poke_srmmu = poke_viking; +} + +/* Probe for the srmmu chip version. */ +static void __init get_srmmu_type(void) +{ + unsigned long mreg, psr; + unsigned long mod_typ, mod_rev, psr_typ, psr_vers; + + srmmu_modtype = SRMMU_INVAL_MOD; + hwbug_bitmask = 0; + + mreg = srmmu_get_mmureg(); psr = get_psr(); + mod_typ = (mreg & 0xf0000000) >> 28; + mod_rev = (mreg & 0x0f000000) >> 24; + psr_typ = (psr >> 28) & 0xf; + psr_vers = (psr >> 24) & 0xf; + + /* First, check for sparc-leon. */ + if (sparc_cpu_model == sparc_leon) { + init_leon(); + return; + } + + /* Second, check for HyperSparc or Cypress. */ + if (mod_typ == 1) { + switch (mod_rev) { + case 7: + /* UP or MP Hypersparc */ + init_hypersparc(); + break; + case 0: + case 2: + case 10: + case 11: + case 12: + case 13: + case 14: + case 15: + default: + prom_printf("Sparc-Linux Cypress support does not longer exit.\n"); + prom_halt(); + break; + } + return; + } + + /* Now Fujitsu TurboSparc. It might happen that it is + * in Swift emulation mode, so we will check later... + */ + if (psr_typ == 0 && psr_vers == 5) { + init_turbosparc(); + return; + } + + /* Next check for Fujitsu Swift. */ + if (psr_typ == 0 && psr_vers == 4) { + phandle cpunode; + char node_str[128]; + + /* Look if it is not a TurboSparc emulating Swift... */ + cpunode = prom_getchild(prom_root_node); + while ((cpunode = prom_getsibling(cpunode)) != 0) { + prom_getstring(cpunode, "device_type", node_str, sizeof(node_str)); + if (!strcmp(node_str, "cpu")) { + if (!prom_getintdefault(cpunode, "psr-implementation", 1) && + prom_getintdefault(cpunode, "psr-version", 1) == 5) { + init_turbosparc(); + return; + } + break; + } + } + + init_swift(); + return; + } + + /* Now the Viking family of srmmu. */ + if (psr_typ == 4 && + ((psr_vers == 0) || + ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) { + init_viking(); + return; + } + + /* Finally the Tsunami. */ + if (psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) { + init_tsunami(); + return; + } + + /* Oh well */ + srmmu_is_bad(); +} + +#ifdef CONFIG_SMP +/* Local cross-calls. */ +static void smp_flush_page_for_dma(unsigned long page) +{ + xc1((smpfunc_t) local_ops->page_for_dma, page); + local_ops->page_for_dma(page); +} + +static void smp_flush_cache_all(void) +{ + xc0((smpfunc_t) local_ops->cache_all); + local_ops->cache_all(); +} + +static void smp_flush_tlb_all(void) +{ + xc0((smpfunc_t) local_ops->tlb_all); + local_ops->tlb_all(); +} + +static void smp_flush_cache_mm(struct mm_struct *mm) +{ + if (mm->context != NO_CONTEXT) { + cpumask_t cpu_mask; + cpumask_copy(&cpu_mask, mm_cpumask(mm)); + cpumask_clear_cpu(smp_processor_id(), &cpu_mask); + if (!cpumask_empty(&cpu_mask)) + xc1((smpfunc_t) local_ops->cache_mm, (unsigned long) mm); + local_ops->cache_mm(mm); + } +} + +static void smp_flush_tlb_mm(struct mm_struct *mm) +{ + if (mm->context != NO_CONTEXT) { + cpumask_t cpu_mask; + cpumask_copy(&cpu_mask, mm_cpumask(mm)); + cpumask_clear_cpu(smp_processor_id(), &cpu_mask); + if (!cpumask_empty(&cpu_mask)) { + xc1((smpfunc_t) local_ops->tlb_mm, (unsigned long) mm); + if (atomic_read(&mm->mm_users) == 1 && current->active_mm == mm) + cpumask_copy(mm_cpumask(mm), + cpumask_of(smp_processor_id())); + } + local_ops->tlb_mm(mm); + } +} + +static void smp_flush_cache_range(struct vm_area_struct *vma, + unsigned long start, + unsigned long end) +{ + struct mm_struct *mm = vma->vm_mm; + + if (mm->context != NO_CONTEXT) { + cpumask_t cpu_mask; + cpumask_copy(&cpu_mask, mm_cpumask(mm)); + cpumask_clear_cpu(smp_processor_id(), &cpu_mask); + if (!cpumask_empty(&cpu_mask)) + xc3((smpfunc_t) local_ops->cache_range, + (unsigned long) vma, start, end); + local_ops->cache_range(vma, start, end); + } +} + +static void smp_flush_tlb_range(struct vm_area_struct *vma, + unsigned long start, + unsigned long end) +{ + struct mm_struct *mm = vma->vm_mm; + + if (mm->context != NO_CONTEXT) { + cpumask_t cpu_mask; + cpumask_copy(&cpu_mask, mm_cpumask(mm)); + cpumask_clear_cpu(smp_processor_id(), &cpu_mask); + if (!cpumask_empty(&cpu_mask)) + xc3((smpfunc_t) local_ops->tlb_range, + (unsigned long) vma, start, end); + local_ops->tlb_range(vma, start, end); + } +} + +static void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page) +{ + struct mm_struct *mm = vma->vm_mm; + + if (mm->context != NO_CONTEXT) { + cpumask_t cpu_mask; + cpumask_copy(&cpu_mask, mm_cpumask(mm)); + cpumask_clear_cpu(smp_processor_id(), &cpu_mask); + if (!cpumask_empty(&cpu_mask)) + xc2((smpfunc_t) local_ops->cache_page, + (unsigned long) vma, page); + local_ops->cache_page(vma, page); + } +} + +static void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page) +{ + struct mm_struct *mm = vma->vm_mm; + + if (mm->context != NO_CONTEXT) { + cpumask_t cpu_mask; + cpumask_copy(&cpu_mask, mm_cpumask(mm)); + cpumask_clear_cpu(smp_processor_id(), &cpu_mask); + if (!cpumask_empty(&cpu_mask)) + xc2((smpfunc_t) local_ops->tlb_page, + (unsigned long) vma, page); + local_ops->tlb_page(vma, page); + } +} + +static void smp_flush_page_to_ram(unsigned long page) +{ + /* Current theory is that those who call this are the one's + * who have just dirtied their cache with the pages contents + * in kernel space, therefore we only run this on local cpu. + * + * XXX This experiment failed, research further... -DaveM + */ +#if 1 + xc1((smpfunc_t) local_ops->page_to_ram, page); +#endif + local_ops->page_to_ram(page); +} + +static void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr) +{ + cpumask_t cpu_mask; + cpumask_copy(&cpu_mask, mm_cpumask(mm)); + cpumask_clear_cpu(smp_processor_id(), &cpu_mask); + if (!cpumask_empty(&cpu_mask)) + xc2((smpfunc_t) local_ops->sig_insns, + (unsigned long) mm, insn_addr); + local_ops->sig_insns(mm, insn_addr); +} + +static struct sparc32_cachetlb_ops smp_cachetlb_ops __ro_after_init = { + .cache_all = smp_flush_cache_all, + .cache_mm = smp_flush_cache_mm, + .cache_page = smp_flush_cache_page, + .cache_range = smp_flush_cache_range, + .tlb_all = smp_flush_tlb_all, + .tlb_mm = smp_flush_tlb_mm, + .tlb_page = smp_flush_tlb_page, + .tlb_range = smp_flush_tlb_range, + .page_to_ram = smp_flush_page_to_ram, + .sig_insns = smp_flush_sig_insns, + .page_for_dma = smp_flush_page_for_dma, +}; +#endif + +/* Load up routines and constants for sun4m and sun4d mmu */ +void __init load_mmu(void) +{ + /* Functions */ + get_srmmu_type(); + +#ifdef CONFIG_SMP + /* El switcheroo... */ + local_ops = sparc32_cachetlb_ops; + + if (sparc_cpu_model == sun4d || sparc_cpu_model == sparc_leon) { + smp_cachetlb_ops.tlb_all = local_ops->tlb_all; + smp_cachetlb_ops.tlb_mm = local_ops->tlb_mm; + smp_cachetlb_ops.tlb_range = local_ops->tlb_range; + smp_cachetlb_ops.tlb_page = local_ops->tlb_page; + } + + if (poke_srmmu == poke_viking) { + /* Avoid unnecessary cross calls. */ + smp_cachetlb_ops.cache_all = local_ops->cache_all; + smp_cachetlb_ops.cache_mm = local_ops->cache_mm; + smp_cachetlb_ops.cache_range = local_ops->cache_range; + smp_cachetlb_ops.cache_page = local_ops->cache_page; + + smp_cachetlb_ops.page_to_ram = local_ops->page_to_ram; + smp_cachetlb_ops.sig_insns = local_ops->sig_insns; + smp_cachetlb_ops.page_for_dma = local_ops->page_for_dma; + } + + /* It really is const after this point. */ + sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *) + &smp_cachetlb_ops; +#endif + + if (sparc_cpu_model != sun4d) + ld_mmu_iommu(); +#ifdef CONFIG_SMP + if (sparc_cpu_model == sun4d) + sun4d_init_smp(); + else if (sparc_cpu_model == sparc_leon) + leon_init_smp(); + else + sun4m_init_smp(); +#endif +} -- cgit v1.2.3