From 5d1646d90e1f2cceb9f0828f4b28318cd0ec7744 Mon Sep 17 00:00:00 2001
From: Daniel Baumann <daniel.baumann@progress-linux.org>
Date: Sat, 27 Apr 2024 12:05:51 +0200
Subject: Adding upstream version 5.10.209.

Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
---
 arch/x86/mm/tlb.c | 1229 +++++++++++++++++++++++++++++++++++++++++++++++++++++
 1 file changed, 1229 insertions(+)
 create mode 100644 arch/x86/mm/tlb.c

(limited to 'arch/x86/mm/tlb.c')

diff --git a/arch/x86/mm/tlb.c b/arch/x86/mm/tlb.c
new file mode 100644
index 000000000..569ac1d57
--- /dev/null
+++ b/arch/x86/mm/tlb.c
@@ -0,0 +1,1229 @@
+// SPDX-License-Identifier: GPL-2.0-only
+#include <linux/init.h>
+
+#include <linux/mm.h>
+#include <linux/spinlock.h>
+#include <linux/smp.h>
+#include <linux/interrupt.h>
+#include <linux/export.h>
+#include <linux/cpu.h>
+#include <linux/debugfs.h>
+
+#include <asm/tlbflush.h>
+#include <asm/mmu_context.h>
+#include <asm/nospec-branch.h>
+#include <asm/cache.h>
+#include <asm/apic.h>
+
+#include "mm_internal.h"
+
+#ifdef CONFIG_PARAVIRT
+# define STATIC_NOPV
+#else
+# define STATIC_NOPV			static
+# define __flush_tlb_local		native_flush_tlb_local
+# define __flush_tlb_global		native_flush_tlb_global
+# define __flush_tlb_one_user(addr)	native_flush_tlb_one_user(addr)
+# define __flush_tlb_others(msk, info)	native_flush_tlb_others(msk, info)
+#endif
+
+/*
+ *	TLB flushing, formerly SMP-only
+ *		c/o Linus Torvalds.
+ *
+ *	These mean you can really definitely utterly forget about
+ *	writing to user space from interrupts. (Its not allowed anyway).
+ *
+ *	Optimizations Manfred Spraul <manfred@colorfullife.com>
+ *
+ *	More scalable flush, from Andi Kleen
+ *
+ *	Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
+ */
+
+/*
+ * Use bit 0 to mangle the TIF_SPEC_IB state into the mm pointer which is
+ * stored in cpu_tlb_state.last_user_mm_ibpb.
+ */
+#define LAST_USER_MM_IBPB	0x1UL
+
+/*
+ * The x86 feature is called PCID (Process Context IDentifier). It is similar
+ * to what is traditionally called ASID on the RISC processors.
+ *
+ * We don't use the traditional ASID implementation, where each process/mm gets
+ * its own ASID and flush/restart when we run out of ASID space.
+ *
+ * Instead we have a small per-cpu array of ASIDs and cache the last few mm's
+ * that came by on this CPU, allowing cheaper switch_mm between processes on
+ * this CPU.
+ *
+ * We end up with different spaces for different things. To avoid confusion we
+ * use different names for each of them:
+ *
+ * ASID  - [0, TLB_NR_DYN_ASIDS-1]
+ *         the canonical identifier for an mm
+ *
+ * kPCID - [1, TLB_NR_DYN_ASIDS]
+ *         the value we write into the PCID part of CR3; corresponds to the
+ *         ASID+1, because PCID 0 is special.
+ *
+ * uPCID - [2048 + 1, 2048 + TLB_NR_DYN_ASIDS]
+ *         for KPTI each mm has two address spaces and thus needs two
+ *         PCID values, but we can still do with a single ASID denomination
+ *         for each mm. Corresponds to kPCID + 2048.
+ *
+ */
+
+/* There are 12 bits of space for ASIDS in CR3 */
+#define CR3_HW_ASID_BITS		12
+
+/*
+ * When enabled, PAGE_TABLE_ISOLATION consumes a single bit for
+ * user/kernel switches
+ */
+#ifdef CONFIG_PAGE_TABLE_ISOLATION
+# define PTI_CONSUMED_PCID_BITS	1
+#else
+# define PTI_CONSUMED_PCID_BITS	0
+#endif
+
+#define CR3_AVAIL_PCID_BITS (X86_CR3_PCID_BITS - PTI_CONSUMED_PCID_BITS)
+
+/*
+ * ASIDs are zero-based: 0->MAX_AVAIL_ASID are valid.  -1 below to account
+ * for them being zero-based.  Another -1 is because PCID 0 is reserved for
+ * use by non-PCID-aware users.
+ */
+#define MAX_ASID_AVAILABLE ((1 << CR3_AVAIL_PCID_BITS) - 2)
+
+/*
+ * Given @asid, compute kPCID
+ */
+static inline u16 kern_pcid(u16 asid)
+{
+	VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE);
+
+#ifdef CONFIG_PAGE_TABLE_ISOLATION
+	/*
+	 * Make sure that the dynamic ASID space does not confict with the
+	 * bit we are using to switch between user and kernel ASIDs.
+	 */
+	BUILD_BUG_ON(TLB_NR_DYN_ASIDS >= (1 << X86_CR3_PTI_PCID_USER_BIT));
+
+	/*
+	 * The ASID being passed in here should have respected the
+	 * MAX_ASID_AVAILABLE and thus never have the switch bit set.
+	 */
+	VM_WARN_ON_ONCE(asid & (1 << X86_CR3_PTI_PCID_USER_BIT));
+#endif
+	/*
+	 * The dynamically-assigned ASIDs that get passed in are small
+	 * (<TLB_NR_DYN_ASIDS).  They never have the high switch bit set,
+	 * so do not bother to clear it.
+	 *
+	 * If PCID is on, ASID-aware code paths put the ASID+1 into the
+	 * PCID bits.  This serves two purposes.  It prevents a nasty
+	 * situation in which PCID-unaware code saves CR3, loads some other
+	 * value (with PCID == 0), and then restores CR3, thus corrupting
+	 * the TLB for ASID 0 if the saved ASID was nonzero.  It also means
+	 * that any bugs involving loading a PCID-enabled CR3 with
+	 * CR4.PCIDE off will trigger deterministically.
+	 */
+	return asid + 1;
+}
+
+/*
+ * Given @asid, compute uPCID
+ */
+static inline u16 user_pcid(u16 asid)
+{
+	u16 ret = kern_pcid(asid);
+#ifdef CONFIG_PAGE_TABLE_ISOLATION
+	ret |= 1 << X86_CR3_PTI_PCID_USER_BIT;
+#endif
+	return ret;
+}
+
+static inline unsigned long build_cr3(pgd_t *pgd, u16 asid)
+{
+	if (static_cpu_has(X86_FEATURE_PCID)) {
+		return __sme_pa(pgd) | kern_pcid(asid);
+	} else {
+		VM_WARN_ON_ONCE(asid != 0);
+		return __sme_pa(pgd);
+	}
+}
+
+static inline unsigned long build_cr3_noflush(pgd_t *pgd, u16 asid)
+{
+	VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE);
+	/*
+	 * Use boot_cpu_has() instead of this_cpu_has() as this function
+	 * might be called during early boot. This should work even after
+	 * boot because all CPU's the have same capabilities:
+	 */
+	VM_WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_PCID));
+	return __sme_pa(pgd) | kern_pcid(asid) | CR3_NOFLUSH;
+}
+
+/*
+ * We get here when we do something requiring a TLB invalidation
+ * but could not go invalidate all of the contexts.  We do the
+ * necessary invalidation by clearing out the 'ctx_id' which
+ * forces a TLB flush when the context is loaded.
+ */
+static void clear_asid_other(void)
+{
+	u16 asid;
+
+	/*
+	 * This is only expected to be set if we have disabled
+	 * kernel _PAGE_GLOBAL pages.
+	 */
+	if (!static_cpu_has(X86_FEATURE_PTI)) {
+		WARN_ON_ONCE(1);
+		return;
+	}
+
+	for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
+		/* Do not need to flush the current asid */
+		if (asid == this_cpu_read(cpu_tlbstate.loaded_mm_asid))
+			continue;
+		/*
+		 * Make sure the next time we go to switch to
+		 * this asid, we do a flush:
+		 */
+		this_cpu_write(cpu_tlbstate.ctxs[asid].ctx_id, 0);
+	}
+	this_cpu_write(cpu_tlbstate.invalidate_other, false);
+}
+
+atomic64_t last_mm_ctx_id = ATOMIC64_INIT(1);
+
+
+static void choose_new_asid(struct mm_struct *next, u64 next_tlb_gen,
+			    u16 *new_asid, bool *need_flush)
+{
+	u16 asid;
+
+	if (!static_cpu_has(X86_FEATURE_PCID)) {
+		*new_asid = 0;
+		*need_flush = true;
+		return;
+	}
+
+	if (this_cpu_read(cpu_tlbstate.invalidate_other))
+		clear_asid_other();
+
+	for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
+		if (this_cpu_read(cpu_tlbstate.ctxs[asid].ctx_id) !=
+		    next->context.ctx_id)
+			continue;
+
+		*new_asid = asid;
+		*need_flush = (this_cpu_read(cpu_tlbstate.ctxs[asid].tlb_gen) <
+			       next_tlb_gen);
+		return;
+	}
+
+	/*
+	 * We don't currently own an ASID slot on this CPU.
+	 * Allocate a slot.
+	 */
+	*new_asid = this_cpu_add_return(cpu_tlbstate.next_asid, 1) - 1;
+	if (*new_asid >= TLB_NR_DYN_ASIDS) {
+		*new_asid = 0;
+		this_cpu_write(cpu_tlbstate.next_asid, 1);
+	}
+	*need_flush = true;
+}
+
+/*
+ * Given an ASID, flush the corresponding user ASID.  We can delay this
+ * until the next time we switch to it.
+ *
+ * See SWITCH_TO_USER_CR3.
+ */
+static inline void invalidate_user_asid(u16 asid)
+{
+	/* There is no user ASID if address space separation is off */
+	if (!IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION))
+		return;
+
+	/*
+	 * We only have a single ASID if PCID is off and the CR3
+	 * write will have flushed it.
+	 */
+	if (!cpu_feature_enabled(X86_FEATURE_PCID))
+		return;
+
+	if (!static_cpu_has(X86_FEATURE_PTI))
+		return;
+
+	__set_bit(kern_pcid(asid),
+		  (unsigned long *)this_cpu_ptr(&cpu_tlbstate.user_pcid_flush_mask));
+}
+
+static void load_new_mm_cr3(pgd_t *pgdir, u16 new_asid, bool need_flush)
+{
+	unsigned long new_mm_cr3;
+
+	if (need_flush) {
+		invalidate_user_asid(new_asid);
+		new_mm_cr3 = build_cr3(pgdir, new_asid);
+	} else {
+		new_mm_cr3 = build_cr3_noflush(pgdir, new_asid);
+	}
+
+	/*
+	 * Caution: many callers of this function expect
+	 * that load_cr3() is serializing and orders TLB
+	 * fills with respect to the mm_cpumask writes.
+	 */
+	write_cr3(new_mm_cr3);
+}
+
+void leave_mm(int cpu)
+{
+	struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
+
+	/*
+	 * It's plausible that we're in lazy TLB mode while our mm is init_mm.
+	 * If so, our callers still expect us to flush the TLB, but there
+	 * aren't any user TLB entries in init_mm to worry about.
+	 *
+	 * This needs to happen before any other sanity checks due to
+	 * intel_idle's shenanigans.
+	 */
+	if (loaded_mm == &init_mm)
+		return;
+
+	/* Warn if we're not lazy. */
+	WARN_ON(!this_cpu_read(cpu_tlbstate.is_lazy));
+
+	switch_mm(NULL, &init_mm, NULL);
+}
+EXPORT_SYMBOL_GPL(leave_mm);
+
+void switch_mm(struct mm_struct *prev, struct mm_struct *next,
+	       struct task_struct *tsk)
+{
+	unsigned long flags;
+
+	local_irq_save(flags);
+	switch_mm_irqs_off(prev, next, tsk);
+	local_irq_restore(flags);
+}
+
+static inline unsigned long mm_mangle_tif_spec_ib(struct task_struct *next)
+{
+	unsigned long next_tif = task_thread_info(next)->flags;
+	unsigned long ibpb = (next_tif >> TIF_SPEC_IB) & LAST_USER_MM_IBPB;
+
+	return (unsigned long)next->mm | ibpb;
+}
+
+static void cond_ibpb(struct task_struct *next)
+{
+	if (!next || !next->mm)
+		return;
+
+	/*
+	 * Both, the conditional and the always IBPB mode use the mm
+	 * pointer to avoid the IBPB when switching between tasks of the
+	 * same process. Using the mm pointer instead of mm->context.ctx_id
+	 * opens a hypothetical hole vs. mm_struct reuse, which is more or
+	 * less impossible to control by an attacker. Aside of that it
+	 * would only affect the first schedule so the theoretically
+	 * exposed data is not really interesting.
+	 */
+	if (static_branch_likely(&switch_mm_cond_ibpb)) {
+		unsigned long prev_mm, next_mm;
+
+		/*
+		 * This is a bit more complex than the always mode because
+		 * it has to handle two cases:
+		 *
+		 * 1) Switch from a user space task (potential attacker)
+		 *    which has TIF_SPEC_IB set to a user space task
+		 *    (potential victim) which has TIF_SPEC_IB not set.
+		 *
+		 * 2) Switch from a user space task (potential attacker)
+		 *    which has TIF_SPEC_IB not set to a user space task
+		 *    (potential victim) which has TIF_SPEC_IB set.
+		 *
+		 * This could be done by unconditionally issuing IBPB when
+		 * a task which has TIF_SPEC_IB set is either scheduled in
+		 * or out. Though that results in two flushes when:
+		 *
+		 * - the same user space task is scheduled out and later
+		 *   scheduled in again and only a kernel thread ran in
+		 *   between.
+		 *
+		 * - a user space task belonging to the same process is
+		 *   scheduled in after a kernel thread ran in between
+		 *
+		 * - a user space task belonging to the same process is
+		 *   scheduled in immediately.
+		 *
+		 * Optimize this with reasonably small overhead for the
+		 * above cases. Mangle the TIF_SPEC_IB bit into the mm
+		 * pointer of the incoming task which is stored in
+		 * cpu_tlbstate.last_user_mm_ibpb for comparison.
+		 */
+		next_mm = mm_mangle_tif_spec_ib(next);
+		prev_mm = this_cpu_read(cpu_tlbstate.last_user_mm_ibpb);
+
+		/*
+		 * Issue IBPB only if the mm's are different and one or
+		 * both have the IBPB bit set.
+		 */
+		if (next_mm != prev_mm &&
+		    (next_mm | prev_mm) & LAST_USER_MM_IBPB)
+			indirect_branch_prediction_barrier();
+
+		this_cpu_write(cpu_tlbstate.last_user_mm_ibpb, next_mm);
+	}
+
+	if (static_branch_unlikely(&switch_mm_always_ibpb)) {
+		/*
+		 * Only flush when switching to a user space task with a
+		 * different context than the user space task which ran
+		 * last on this CPU.
+		 */
+		if (this_cpu_read(cpu_tlbstate.last_user_mm) != next->mm) {
+			indirect_branch_prediction_barrier();
+			this_cpu_write(cpu_tlbstate.last_user_mm, next->mm);
+		}
+	}
+}
+
+#ifdef CONFIG_PERF_EVENTS
+static inline void cr4_update_pce_mm(struct mm_struct *mm)
+{
+	if (static_branch_unlikely(&rdpmc_always_available_key) ||
+	    (!static_branch_unlikely(&rdpmc_never_available_key) &&
+	     atomic_read(&mm->context.perf_rdpmc_allowed)))
+		cr4_set_bits_irqsoff(X86_CR4_PCE);
+	else
+		cr4_clear_bits_irqsoff(X86_CR4_PCE);
+}
+
+void cr4_update_pce(void *ignored)
+{
+	cr4_update_pce_mm(this_cpu_read(cpu_tlbstate.loaded_mm));
+}
+
+#else
+static inline void cr4_update_pce_mm(struct mm_struct *mm) { }
+#endif
+
+void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
+			struct task_struct *tsk)
+{
+	struct mm_struct *real_prev = this_cpu_read(cpu_tlbstate.loaded_mm);
+	u16 prev_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
+	bool was_lazy = this_cpu_read(cpu_tlbstate.is_lazy);
+	unsigned cpu = smp_processor_id();
+	u64 next_tlb_gen;
+	bool need_flush;
+	u16 new_asid;
+
+	/*
+	 * NB: The scheduler will call us with prev == next when switching
+	 * from lazy TLB mode to normal mode if active_mm isn't changing.
+	 * When this happens, we don't assume that CR3 (and hence
+	 * cpu_tlbstate.loaded_mm) matches next.
+	 *
+	 * NB: leave_mm() calls us with prev == NULL and tsk == NULL.
+	 */
+
+	/* We don't want flush_tlb_func_* to run concurrently with us. */
+	if (IS_ENABLED(CONFIG_PROVE_LOCKING))
+		WARN_ON_ONCE(!irqs_disabled());
+
+	/*
+	 * Verify that CR3 is what we think it is.  This will catch
+	 * hypothetical buggy code that directly switches to swapper_pg_dir
+	 * without going through leave_mm() / switch_mm_irqs_off() or that
+	 * does something like write_cr3(read_cr3_pa()).
+	 *
+	 * Only do this check if CONFIG_DEBUG_VM=y because __read_cr3()
+	 * isn't free.
+	 */
+#ifdef CONFIG_DEBUG_VM
+	if (WARN_ON_ONCE(__read_cr3() != build_cr3(real_prev->pgd, prev_asid))) {
+		/*
+		 * If we were to BUG here, we'd be very likely to kill
+		 * the system so hard that we don't see the call trace.
+		 * Try to recover instead by ignoring the error and doing
+		 * a global flush to minimize the chance of corruption.
+		 *
+		 * (This is far from being a fully correct recovery.
+		 *  Architecturally, the CPU could prefetch something
+		 *  back into an incorrect ASID slot and leave it there
+		 *  to cause trouble down the road.  It's better than
+		 *  nothing, though.)
+		 */
+		__flush_tlb_all();
+	}
+#endif
+	this_cpu_write(cpu_tlbstate.is_lazy, false);
+
+	/*
+	 * The membarrier system call requires a full memory barrier and
+	 * core serialization before returning to user-space, after
+	 * storing to rq->curr, when changing mm.  This is because
+	 * membarrier() sends IPIs to all CPUs that are in the target mm
+	 * to make them issue memory barriers.  However, if another CPU
+	 * switches to/from the target mm concurrently with
+	 * membarrier(), it can cause that CPU not to receive an IPI
+	 * when it really should issue a memory barrier.  Writing to CR3
+	 * provides that full memory barrier and core serializing
+	 * instruction.
+	 */
+	if (real_prev == next) {
+		VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) !=
+			   next->context.ctx_id);
+
+		/*
+		 * Even in lazy TLB mode, the CPU should stay set in the
+		 * mm_cpumask. The TLB shootdown code can figure out from
+		 * from cpu_tlbstate.is_lazy whether or not to send an IPI.
+		 */
+		if (WARN_ON_ONCE(real_prev != &init_mm &&
+				 !cpumask_test_cpu(cpu, mm_cpumask(next))))
+			cpumask_set_cpu(cpu, mm_cpumask(next));
+
+		/*
+		 * If the CPU is not in lazy TLB mode, we are just switching
+		 * from one thread in a process to another thread in the same
+		 * process. No TLB flush required.
+		 */
+		if (!was_lazy)
+			return;
+
+		/*
+		 * Read the tlb_gen to check whether a flush is needed.
+		 * If the TLB is up to date, just use it.
+		 * The barrier synchronizes with the tlb_gen increment in
+		 * the TLB shootdown code.
+		 */
+		smp_mb();
+		next_tlb_gen = atomic64_read(&next->context.tlb_gen);
+		if (this_cpu_read(cpu_tlbstate.ctxs[prev_asid].tlb_gen) ==
+				next_tlb_gen)
+			return;
+
+		/*
+		 * TLB contents went out of date while we were in lazy
+		 * mode. Fall through to the TLB switching code below.
+		 */
+		new_asid = prev_asid;
+		need_flush = true;
+	} else {
+		/*
+		 * Avoid user/user BTB poisoning by flushing the branch
+		 * predictor when switching between processes. This stops
+		 * one process from doing Spectre-v2 attacks on another.
+		 */
+		cond_ibpb(tsk);
+
+		/*
+		 * Stop remote flushes for the previous mm.
+		 * Skip kernel threads; we never send init_mm TLB flushing IPIs,
+		 * but the bitmap manipulation can cause cache line contention.
+		 */
+		if (real_prev != &init_mm) {
+			VM_WARN_ON_ONCE(!cpumask_test_cpu(cpu,
+						mm_cpumask(real_prev)));
+			cpumask_clear_cpu(cpu, mm_cpumask(real_prev));
+		}
+
+		/*
+		 * Start remote flushes and then read tlb_gen.
+		 */
+		if (next != &init_mm)
+			cpumask_set_cpu(cpu, mm_cpumask(next));
+		next_tlb_gen = atomic64_read(&next->context.tlb_gen);
+
+		choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush);
+
+		/* Let nmi_uaccess_okay() know that we're changing CR3. */
+		this_cpu_write(cpu_tlbstate.loaded_mm, LOADED_MM_SWITCHING);
+		barrier();
+	}
+
+	if (need_flush) {
+		this_cpu_write(cpu_tlbstate.ctxs[new_asid].ctx_id, next->context.ctx_id);
+		this_cpu_write(cpu_tlbstate.ctxs[new_asid].tlb_gen, next_tlb_gen);
+		load_new_mm_cr3(next->pgd, new_asid, true);
+
+		trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
+	} else {
+		/* The new ASID is already up to date. */
+		load_new_mm_cr3(next->pgd, new_asid, false);
+
+		trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, 0);
+	}
+
+	/* Make sure we write CR3 before loaded_mm. */
+	barrier();
+
+	this_cpu_write(cpu_tlbstate.loaded_mm, next);
+	this_cpu_write(cpu_tlbstate.loaded_mm_asid, new_asid);
+
+	if (next != real_prev) {
+		cr4_update_pce_mm(next);
+		switch_ldt(real_prev, next);
+	}
+}
+
+/*
+ * Please ignore the name of this function.  It should be called
+ * switch_to_kernel_thread().
+ *
+ * enter_lazy_tlb() is a hint from the scheduler that we are entering a
+ * kernel thread or other context without an mm.  Acceptable implementations
+ * include doing nothing whatsoever, switching to init_mm, or various clever
+ * lazy tricks to try to minimize TLB flushes.
+ *
+ * The scheduler reserves the right to call enter_lazy_tlb() several times
+ * in a row.  It will notify us that we're going back to a real mm by
+ * calling switch_mm_irqs_off().
+ */
+void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
+{
+	if (this_cpu_read(cpu_tlbstate.loaded_mm) == &init_mm)
+		return;
+
+	this_cpu_write(cpu_tlbstate.is_lazy, true);
+}
+
+/*
+ * Call this when reinitializing a CPU.  It fixes the following potential
+ * problems:
+ *
+ * - The ASID changed from what cpu_tlbstate thinks it is (most likely
+ *   because the CPU was taken down and came back up with CR3's PCID
+ *   bits clear.  CPU hotplug can do this.
+ *
+ * - The TLB contains junk in slots corresponding to inactive ASIDs.
+ *
+ * - The CPU went so far out to lunch that it may have missed a TLB
+ *   flush.
+ */
+void initialize_tlbstate_and_flush(void)
+{
+	int i;
+	struct mm_struct *mm = this_cpu_read(cpu_tlbstate.loaded_mm);
+	u64 tlb_gen = atomic64_read(&init_mm.context.tlb_gen);
+	unsigned long cr3 = __read_cr3();
+
+	/* Assert that CR3 already references the right mm. */
+	WARN_ON((cr3 & CR3_ADDR_MASK) != __pa(mm->pgd));
+
+	/*
+	 * Assert that CR4.PCIDE is set if needed.  (CR4.PCIDE initialization
+	 * doesn't work like other CR4 bits because it can only be set from
+	 * long mode.)
+	 */
+	WARN_ON(boot_cpu_has(X86_FEATURE_PCID) &&
+		!(cr4_read_shadow() & X86_CR4_PCIDE));
+
+	/* Force ASID 0 and force a TLB flush. */
+	write_cr3(build_cr3(mm->pgd, 0));
+
+	/* Reinitialize tlbstate. */
+	this_cpu_write(cpu_tlbstate.last_user_mm_ibpb, LAST_USER_MM_IBPB);
+	this_cpu_write(cpu_tlbstate.loaded_mm_asid, 0);
+	this_cpu_write(cpu_tlbstate.next_asid, 1);
+	this_cpu_write(cpu_tlbstate.ctxs[0].ctx_id, mm->context.ctx_id);
+	this_cpu_write(cpu_tlbstate.ctxs[0].tlb_gen, tlb_gen);
+
+	for (i = 1; i < TLB_NR_DYN_ASIDS; i++)
+		this_cpu_write(cpu_tlbstate.ctxs[i].ctx_id, 0);
+}
+
+/*
+ * flush_tlb_func_common()'s memory ordering requirement is that any
+ * TLB fills that happen after we flush the TLB are ordered after we
+ * read active_mm's tlb_gen.  We don't need any explicit barriers
+ * because all x86 flush operations are serializing and the
+ * atomic64_read operation won't be reordered by the compiler.
+ */
+static void flush_tlb_func_common(const struct flush_tlb_info *f,
+				  bool local, enum tlb_flush_reason reason)
+{
+	/*
+	 * We have three different tlb_gen values in here.  They are:
+	 *
+	 * - mm_tlb_gen:     the latest generation.
+	 * - local_tlb_gen:  the generation that this CPU has already caught
+	 *                   up to.
+	 * - f->new_tlb_gen: the generation that the requester of the flush
+	 *                   wants us to catch up to.
+	 */
+	struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
+	u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
+	u64 mm_tlb_gen = atomic64_read(&loaded_mm->context.tlb_gen);
+	u64 local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen);
+
+	/* This code cannot presently handle being reentered. */
+	VM_WARN_ON(!irqs_disabled());
+
+	if (unlikely(loaded_mm == &init_mm))
+		return;
+
+	VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].ctx_id) !=
+		   loaded_mm->context.ctx_id);
+
+	if (this_cpu_read(cpu_tlbstate.is_lazy)) {
+		/*
+		 * We're in lazy mode.  We need to at least flush our
+		 * paging-structure cache to avoid speculatively reading
+		 * garbage into our TLB.  Since switching to init_mm is barely
+		 * slower than a minimal flush, just switch to init_mm.
+		 *
+		 * This should be rare, with native_flush_tlb_others skipping
+		 * IPIs to lazy TLB mode CPUs.
+		 */
+		switch_mm_irqs_off(NULL, &init_mm, NULL);
+		return;
+	}
+
+	if (unlikely(local_tlb_gen == mm_tlb_gen)) {
+		/*
+		 * There's nothing to do: we're already up to date.  This can
+		 * happen if two concurrent flushes happen -- the first flush to
+		 * be handled can catch us all the way up, leaving no work for
+		 * the second flush.
+		 */
+		trace_tlb_flush(reason, 0);
+		return;
+	}
+
+	WARN_ON_ONCE(local_tlb_gen > mm_tlb_gen);
+	WARN_ON_ONCE(f->new_tlb_gen > mm_tlb_gen);
+
+	/*
+	 * If we get to this point, we know that our TLB is out of date.
+	 * This does not strictly imply that we need to flush (it's
+	 * possible that f->new_tlb_gen <= local_tlb_gen), but we're
+	 * going to need to flush in the very near future, so we might
+	 * as well get it over with.
+	 *
+	 * The only question is whether to do a full or partial flush.
+	 *
+	 * We do a partial flush if requested and two extra conditions
+	 * are met:
+	 *
+	 * 1. f->new_tlb_gen == local_tlb_gen + 1.  We have an invariant that
+	 *    we've always done all needed flushes to catch up to
+	 *    local_tlb_gen.  If, for example, local_tlb_gen == 2 and
+	 *    f->new_tlb_gen == 3, then we know that the flush needed to bring
+	 *    us up to date for tlb_gen 3 is the partial flush we're
+	 *    processing.
+	 *
+	 *    As an example of why this check is needed, suppose that there
+	 *    are two concurrent flushes.  The first is a full flush that
+	 *    changes context.tlb_gen from 1 to 2.  The second is a partial
+	 *    flush that changes context.tlb_gen from 2 to 3.  If they get
+	 *    processed on this CPU in reverse order, we'll see
+	 *     local_tlb_gen == 1, mm_tlb_gen == 3, and end != TLB_FLUSH_ALL.
+	 *    If we were to use __flush_tlb_one_user() and set local_tlb_gen to
+	 *    3, we'd be break the invariant: we'd update local_tlb_gen above
+	 *    1 without the full flush that's needed for tlb_gen 2.
+	 *
+	 * 2. f->new_tlb_gen == mm_tlb_gen.  This is purely an optimiation.
+	 *    Partial TLB flushes are not all that much cheaper than full TLB
+	 *    flushes, so it seems unlikely that it would be a performance win
+	 *    to do a partial flush if that won't bring our TLB fully up to
+	 *    date.  By doing a full flush instead, we can increase
+	 *    local_tlb_gen all the way to mm_tlb_gen and we can probably
+	 *    avoid another flush in the very near future.
+	 */
+	if (f->end != TLB_FLUSH_ALL &&
+	    f->new_tlb_gen == local_tlb_gen + 1 &&
+	    f->new_tlb_gen == mm_tlb_gen) {
+		/* Partial flush */
+		unsigned long nr_invalidate = (f->end - f->start) >> f->stride_shift;
+		unsigned long addr = f->start;
+
+		while (addr < f->end) {
+			flush_tlb_one_user(addr);
+			addr += 1UL << f->stride_shift;
+		}
+		if (local)
+			count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_invalidate);
+		trace_tlb_flush(reason, nr_invalidate);
+	} else {
+		/* Full flush. */
+		flush_tlb_local();
+		if (local)
+			count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
+		trace_tlb_flush(reason, TLB_FLUSH_ALL);
+	}
+
+	/* Both paths above update our state to mm_tlb_gen. */
+	this_cpu_write(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen, mm_tlb_gen);
+}
+
+static void flush_tlb_func_local(const void *info, enum tlb_flush_reason reason)
+{
+	const struct flush_tlb_info *f = info;
+
+	flush_tlb_func_common(f, true, reason);
+}
+
+static void flush_tlb_func_remote(void *info)
+{
+	const struct flush_tlb_info *f = info;
+
+	inc_irq_stat(irq_tlb_count);
+
+	if (f->mm && f->mm != this_cpu_read(cpu_tlbstate.loaded_mm))
+		return;
+
+	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
+	flush_tlb_func_common(f, false, TLB_REMOTE_SHOOTDOWN);
+}
+
+static bool tlb_is_not_lazy(int cpu, void *data)
+{
+	return !per_cpu(cpu_tlbstate.is_lazy, cpu);
+}
+
+STATIC_NOPV void native_flush_tlb_others(const struct cpumask *cpumask,
+					 const struct flush_tlb_info *info)
+{
+	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
+	if (info->end == TLB_FLUSH_ALL)
+		trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL);
+	else
+		trace_tlb_flush(TLB_REMOTE_SEND_IPI,
+				(info->end - info->start) >> PAGE_SHIFT);
+
+	/*
+	 * If no page tables were freed, we can skip sending IPIs to
+	 * CPUs in lazy TLB mode. They will flush the CPU themselves
+	 * at the next context switch.
+	 *
+	 * However, if page tables are getting freed, we need to send the
+	 * IPI everywhere, to prevent CPUs in lazy TLB mode from tripping
+	 * up on the new contents of what used to be page tables, while
+	 * doing a speculative memory access.
+	 */
+	if (info->freed_tables)
+		smp_call_function_many(cpumask, flush_tlb_func_remote,
+			       (void *)info, 1);
+	else
+		on_each_cpu_cond_mask(tlb_is_not_lazy, flush_tlb_func_remote,
+				(void *)info, 1, cpumask);
+}
+
+void flush_tlb_others(const struct cpumask *cpumask,
+		      const struct flush_tlb_info *info)
+{
+	__flush_tlb_others(cpumask, info);
+}
+
+/*
+ * See Documentation/x86/tlb.rst for details.  We choose 33
+ * because it is large enough to cover the vast majority (at
+ * least 95%) of allocations, and is small enough that we are
+ * confident it will not cause too much overhead.  Each single
+ * flush is about 100 ns, so this caps the maximum overhead at
+ * _about_ 3,000 ns.
+ *
+ * This is in units of pages.
+ */
+unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
+
+static DEFINE_PER_CPU_SHARED_ALIGNED(struct flush_tlb_info, flush_tlb_info);
+
+#ifdef CONFIG_DEBUG_VM
+static DEFINE_PER_CPU(unsigned int, flush_tlb_info_idx);
+#endif
+
+static inline struct flush_tlb_info *get_flush_tlb_info(struct mm_struct *mm,
+			unsigned long start, unsigned long end,
+			unsigned int stride_shift, bool freed_tables,
+			u64 new_tlb_gen)
+{
+	struct flush_tlb_info *info = this_cpu_ptr(&flush_tlb_info);
+
+#ifdef CONFIG_DEBUG_VM
+	/*
+	 * Ensure that the following code is non-reentrant and flush_tlb_info
+	 * is not overwritten. This means no TLB flushing is initiated by
+	 * interrupt handlers and machine-check exception handlers.
+	 */
+	BUG_ON(this_cpu_inc_return(flush_tlb_info_idx) != 1);
+#endif
+
+	info->start		= start;
+	info->end		= end;
+	info->mm		= mm;
+	info->stride_shift	= stride_shift;
+	info->freed_tables	= freed_tables;
+	info->new_tlb_gen	= new_tlb_gen;
+
+	return info;
+}
+
+static inline void put_flush_tlb_info(void)
+{
+#ifdef CONFIG_DEBUG_VM
+	/* Complete reentrency prevention checks */
+	barrier();
+	this_cpu_dec(flush_tlb_info_idx);
+#endif
+}
+
+void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
+				unsigned long end, unsigned int stride_shift,
+				bool freed_tables)
+{
+	struct flush_tlb_info *info;
+	u64 new_tlb_gen;
+	int cpu;
+
+	cpu = get_cpu();
+
+	/* Should we flush just the requested range? */
+	if ((end == TLB_FLUSH_ALL) ||
+	    ((end - start) >> stride_shift) > tlb_single_page_flush_ceiling) {
+		start = 0;
+		end = TLB_FLUSH_ALL;
+	}
+
+	/* This is also a barrier that synchronizes with switch_mm(). */
+	new_tlb_gen = inc_mm_tlb_gen(mm);
+
+	info = get_flush_tlb_info(mm, start, end, stride_shift, freed_tables,
+				  new_tlb_gen);
+
+	if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) {
+		lockdep_assert_irqs_enabled();
+		local_irq_disable();
+		flush_tlb_func_local(info, TLB_LOCAL_MM_SHOOTDOWN);
+		local_irq_enable();
+	}
+
+	if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids)
+		flush_tlb_others(mm_cpumask(mm), info);
+
+	put_flush_tlb_info();
+	put_cpu();
+}
+
+
+static void do_flush_tlb_all(void *info)
+{
+	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
+	__flush_tlb_all();
+}
+
+void flush_tlb_all(void)
+{
+	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
+	on_each_cpu(do_flush_tlb_all, NULL, 1);
+}
+
+static void do_kernel_range_flush(void *info)
+{
+	struct flush_tlb_info *f = info;
+	unsigned long addr;
+
+	/* flush range by one by one 'invlpg' */
+	for (addr = f->start; addr < f->end; addr += PAGE_SIZE)
+		flush_tlb_one_kernel(addr);
+}
+
+void flush_tlb_kernel_range(unsigned long start, unsigned long end)
+{
+	/* Balance as user space task's flush, a bit conservative */
+	if (end == TLB_FLUSH_ALL ||
+	    (end - start) > tlb_single_page_flush_ceiling << PAGE_SHIFT) {
+		on_each_cpu(do_flush_tlb_all, NULL, 1);
+	} else {
+		struct flush_tlb_info *info;
+
+		preempt_disable();
+		info = get_flush_tlb_info(NULL, start, end, 0, false, 0);
+
+		on_each_cpu(do_kernel_range_flush, info, 1);
+
+		put_flush_tlb_info();
+		preempt_enable();
+	}
+}
+
+/*
+ * This can be used from process context to figure out what the value of
+ * CR3 is without needing to do a (slow) __read_cr3().
+ *
+ * It's intended to be used for code like KVM that sneakily changes CR3
+ * and needs to restore it.  It needs to be used very carefully.
+ */
+unsigned long __get_current_cr3_fast(void)
+{
+	unsigned long cr3 = build_cr3(this_cpu_read(cpu_tlbstate.loaded_mm)->pgd,
+		this_cpu_read(cpu_tlbstate.loaded_mm_asid));
+
+	/* For now, be very restrictive about when this can be called. */
+	VM_WARN_ON(in_nmi() || preemptible());
+
+	VM_BUG_ON(cr3 != __read_cr3());
+	return cr3;
+}
+EXPORT_SYMBOL_GPL(__get_current_cr3_fast);
+
+/*
+ * Flush one page in the kernel mapping
+ */
+void flush_tlb_one_kernel(unsigned long addr)
+{
+	count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE);
+
+	/*
+	 * If PTI is off, then __flush_tlb_one_user() is just INVLPG or its
+	 * paravirt equivalent.  Even with PCID, this is sufficient: we only
+	 * use PCID if we also use global PTEs for the kernel mapping, and
+	 * INVLPG flushes global translations across all address spaces.
+	 *
+	 * If PTI is on, then the kernel is mapped with non-global PTEs, and
+	 * __flush_tlb_one_user() will flush the given address for the current
+	 * kernel address space and for its usermode counterpart, but it does
+	 * not flush it for other address spaces.
+	 */
+	flush_tlb_one_user(addr);
+
+	if (!static_cpu_has(X86_FEATURE_PTI))
+		return;
+
+	/*
+	 * See above.  We need to propagate the flush to all other address
+	 * spaces.  In principle, we only need to propagate it to kernelmode
+	 * address spaces, but the extra bookkeeping we would need is not
+	 * worth it.
+	 */
+	this_cpu_write(cpu_tlbstate.invalidate_other, true);
+}
+
+/*
+ * Flush one page in the user mapping
+ */
+STATIC_NOPV void native_flush_tlb_one_user(unsigned long addr)
+{
+	u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
+
+	asm volatile("invlpg (%0)" ::"r" (addr) : "memory");
+
+	if (!static_cpu_has(X86_FEATURE_PTI))
+		return;
+
+	/*
+	 * Some platforms #GP if we call invpcid(type=1/2) before CR4.PCIDE=1.
+	 * Just use invalidate_user_asid() in case we are called early.
+	 */
+	if (!this_cpu_has(X86_FEATURE_INVPCID_SINGLE))
+		invalidate_user_asid(loaded_mm_asid);
+	else
+		invpcid_flush_one(user_pcid(loaded_mm_asid), addr);
+}
+
+void flush_tlb_one_user(unsigned long addr)
+{
+	__flush_tlb_one_user(addr);
+}
+
+/*
+ * Flush everything
+ */
+STATIC_NOPV void native_flush_tlb_global(void)
+{
+	unsigned long cr4, flags;
+
+	if (static_cpu_has(X86_FEATURE_INVPCID)) {
+		/*
+		 * Using INVPCID is considerably faster than a pair of writes
+		 * to CR4 sandwiched inside an IRQ flag save/restore.
+		 *
+		 * Note, this works with CR4.PCIDE=0 or 1.
+		 */
+		invpcid_flush_all();
+		return;
+	}
+
+	/*
+	 * Read-modify-write to CR4 - protect it from preemption and
+	 * from interrupts. (Use the raw variant because this code can
+	 * be called from deep inside debugging code.)
+	 */
+	raw_local_irq_save(flags);
+
+	cr4 = this_cpu_read(cpu_tlbstate.cr4);
+	/* toggle PGE */
+	native_write_cr4(cr4 ^ X86_CR4_PGE);
+	/* write old PGE again and flush TLBs */
+	native_write_cr4(cr4);
+
+	raw_local_irq_restore(flags);
+}
+
+/*
+ * Flush the entire current user mapping
+ */
+STATIC_NOPV void native_flush_tlb_local(void)
+{
+	/*
+	 * Preemption or interrupts must be disabled to protect the access
+	 * to the per CPU variable and to prevent being preempted between
+	 * read_cr3() and write_cr3().
+	 */
+	WARN_ON_ONCE(preemptible());
+
+	invalidate_user_asid(this_cpu_read(cpu_tlbstate.loaded_mm_asid));
+
+	/* If current->mm == NULL then the read_cr3() "borrows" an mm */
+	native_write_cr3(__native_read_cr3());
+}
+
+void flush_tlb_local(void)
+{
+	__flush_tlb_local();
+}
+
+/*
+ * Flush everything
+ */
+void __flush_tlb_all(void)
+{
+	/*
+	 * This is to catch users with enabled preemption and the PGE feature
+	 * and don't trigger the warning in __native_flush_tlb().
+	 */
+	VM_WARN_ON_ONCE(preemptible());
+
+	if (boot_cpu_has(X86_FEATURE_PGE)) {
+		__flush_tlb_global();
+	} else {
+		/*
+		 * !PGE -> !PCID (setup_pcid()), thus every flush is total.
+		 */
+		flush_tlb_local();
+	}
+}
+EXPORT_SYMBOL_GPL(__flush_tlb_all);
+
+/*
+ * arch_tlbbatch_flush() performs a full TLB flush regardless of the active mm.
+ * This means that the 'struct flush_tlb_info' that describes which mappings to
+ * flush is actually fixed. We therefore set a single fixed struct and use it in
+ * arch_tlbbatch_flush().
+ */
+static const struct flush_tlb_info full_flush_tlb_info = {
+	.mm = NULL,
+	.start = 0,
+	.end = TLB_FLUSH_ALL,
+};
+
+void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch)
+{
+	int cpu = get_cpu();
+
+	if (cpumask_test_cpu(cpu, &batch->cpumask)) {
+		lockdep_assert_irqs_enabled();
+		local_irq_disable();
+		flush_tlb_func_local(&full_flush_tlb_info, TLB_LOCAL_SHOOTDOWN);
+		local_irq_enable();
+	}
+
+	if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids)
+		flush_tlb_others(&batch->cpumask, &full_flush_tlb_info);
+
+	cpumask_clear(&batch->cpumask);
+
+	put_cpu();
+}
+
+/*
+ * Blindly accessing user memory from NMI context can be dangerous
+ * if we're in the middle of switching the current user task or
+ * switching the loaded mm.  It can also be dangerous if we
+ * interrupted some kernel code that was temporarily using a
+ * different mm.
+ */
+bool nmi_uaccess_okay(void)
+{
+	struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
+	struct mm_struct *current_mm = current->mm;
+
+	VM_WARN_ON_ONCE(!loaded_mm);
+
+	/*
+	 * The condition we want to check is
+	 * current_mm->pgd == __va(read_cr3_pa()).  This may be slow, though,
+	 * if we're running in a VM with shadow paging, and nmi_uaccess_okay()
+	 * is supposed to be reasonably fast.
+	 *
+	 * Instead, we check the almost equivalent but somewhat conservative
+	 * condition below, and we rely on the fact that switch_mm_irqs_off()
+	 * sets loaded_mm to LOADED_MM_SWITCHING before writing to CR3.
+	 */
+	if (loaded_mm != current_mm)
+		return false;
+
+	VM_WARN_ON_ONCE(current_mm->pgd != __va(read_cr3_pa()));
+
+	return true;
+}
+
+static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
+			     size_t count, loff_t *ppos)
+{
+	char buf[32];
+	unsigned int len;
+
+	len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
+	return simple_read_from_buffer(user_buf, count, ppos, buf, len);
+}
+
+static ssize_t tlbflush_write_file(struct file *file,
+		 const char __user *user_buf, size_t count, loff_t *ppos)
+{
+	char buf[32];
+	ssize_t len;
+	int ceiling;
+
+	len = min(count, sizeof(buf) - 1);
+	if (copy_from_user(buf, user_buf, len))
+		return -EFAULT;
+
+	buf[len] = '\0';
+	if (kstrtoint(buf, 0, &ceiling))
+		return -EINVAL;
+
+	if (ceiling < 0)
+		return -EINVAL;
+
+	tlb_single_page_flush_ceiling = ceiling;
+	return count;
+}
+
+static const struct file_operations fops_tlbflush = {
+	.read = tlbflush_read_file,
+	.write = tlbflush_write_file,
+	.llseek = default_llseek,
+};
+
+static int __init create_tlb_single_page_flush_ceiling(void)
+{
+	debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
+			    arch_debugfs_dir, NULL, &fops_tlbflush);
+	return 0;
+}
+late_initcall(create_tlb_single_page_flush_ceiling);
-- 
cgit v1.2.3