From 5d1646d90e1f2cceb9f0828f4b28318cd0ec7744 Mon Sep 17 00:00:00 2001
From: Daniel Baumann <daniel.baumann@progress-linux.org>
Date: Sat, 27 Apr 2024 12:05:51 +0200
Subject: Adding upstream version 5.10.209.

Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
---
 drivers/hwmon/adm1031.c | 1082 +++++++++++++++++++++++++++++++++++++++++++++++
 1 file changed, 1082 insertions(+)
 create mode 100644 drivers/hwmon/adm1031.c

(limited to 'drivers/hwmon/adm1031.c')

diff --git a/drivers/hwmon/adm1031.c b/drivers/hwmon/adm1031.c
new file mode 100644
index 000000000..b538ace2d
--- /dev/null
+++ b/drivers/hwmon/adm1031.c
@@ -0,0 +1,1082 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ * adm1031.c - Part of lm_sensors, Linux kernel modules for hardware
+ *	       monitoring
+ * Based on lm75.c and lm85.c
+ * Supports adm1030 / adm1031
+ * Copyright (C) 2004 Alexandre d'Alton <alex@alexdalton.org>
+ * Reworked by Jean Delvare <jdelvare@suse.de>
+ */
+
+#include <linux/module.h>
+#include <linux/init.h>
+#include <linux/slab.h>
+#include <linux/jiffies.h>
+#include <linux/i2c.h>
+#include <linux/hwmon.h>
+#include <linux/hwmon-sysfs.h>
+#include <linux/err.h>
+#include <linux/mutex.h>
+
+/* Following macros takes channel parameter starting from 0 to 2 */
+#define ADM1031_REG_FAN_SPEED(nr)	(0x08 + (nr))
+#define ADM1031_REG_FAN_DIV(nr)		(0x20 + (nr))
+#define ADM1031_REG_PWM			(0x22)
+#define ADM1031_REG_FAN_MIN(nr)		(0x10 + (nr))
+#define ADM1031_REG_FAN_FILTER		(0x23)
+
+#define ADM1031_REG_TEMP_OFFSET(nr)	(0x0d + (nr))
+#define ADM1031_REG_TEMP_MAX(nr)	(0x14 + 4 * (nr))
+#define ADM1031_REG_TEMP_MIN(nr)	(0x15 + 4 * (nr))
+#define ADM1031_REG_TEMP_CRIT(nr)	(0x16 + 4 * (nr))
+
+#define ADM1031_REG_TEMP(nr)		(0x0a + (nr))
+#define ADM1031_REG_AUTO_TEMP(nr)	(0x24 + (nr))
+
+#define ADM1031_REG_STATUS(nr)		(0x2 + (nr))
+
+#define ADM1031_REG_CONF1		0x00
+#define ADM1031_REG_CONF2		0x01
+#define ADM1031_REG_EXT_TEMP		0x06
+
+#define ADM1031_CONF1_MONITOR_ENABLE	0x01	/* Monitoring enable */
+#define ADM1031_CONF1_PWM_INVERT	0x08	/* PWM Invert */
+#define ADM1031_CONF1_AUTO_MODE		0x80	/* Auto FAN */
+
+#define ADM1031_CONF2_PWM1_ENABLE	0x01
+#define ADM1031_CONF2_PWM2_ENABLE	0x02
+#define ADM1031_CONF2_TACH1_ENABLE	0x04
+#define ADM1031_CONF2_TACH2_ENABLE	0x08
+#define ADM1031_CONF2_TEMP_ENABLE(chan)	(0x10 << (chan))
+
+#define ADM1031_UPDATE_RATE_MASK	0x1c
+#define ADM1031_UPDATE_RATE_SHIFT	2
+
+/* Addresses to scan */
+static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END };
+
+enum chips { adm1030, adm1031 };
+
+typedef u8 auto_chan_table_t[8][2];
+
+/* Each client has this additional data */
+struct adm1031_data {
+	struct i2c_client *client;
+	const struct attribute_group *groups[3];
+	struct mutex update_lock;
+	int chip_type;
+	char valid;		/* !=0 if following fields are valid */
+	unsigned long last_updated;	/* In jiffies */
+	unsigned int update_interval;	/* In milliseconds */
+	/*
+	 * The chan_select_table contains the possible configurations for
+	 * auto fan control.
+	 */
+	const auto_chan_table_t *chan_select_table;
+	u16 alarm;
+	u8 conf1;
+	u8 conf2;
+	u8 fan[2];
+	u8 fan_div[2];
+	u8 fan_min[2];
+	u8 pwm[2];
+	u8 old_pwm[2];
+	s8 temp[3];
+	u8 ext_temp[3];
+	u8 auto_temp[3];
+	u8 auto_temp_min[3];
+	u8 auto_temp_off[3];
+	u8 auto_temp_max[3];
+	s8 temp_offset[3];
+	s8 temp_min[3];
+	s8 temp_max[3];
+	s8 temp_crit[3];
+};
+
+static inline u8 adm1031_read_value(struct i2c_client *client, u8 reg)
+{
+	return i2c_smbus_read_byte_data(client, reg);
+}
+
+static inline int
+adm1031_write_value(struct i2c_client *client, u8 reg, unsigned int value)
+{
+	return i2c_smbus_write_byte_data(client, reg, value);
+}
+
+static struct adm1031_data *adm1031_update_device(struct device *dev)
+{
+	struct adm1031_data *data = dev_get_drvdata(dev);
+	struct i2c_client *client = data->client;
+	unsigned long next_update;
+	int chan;
+
+	mutex_lock(&data->update_lock);
+
+	next_update = data->last_updated
+	  + msecs_to_jiffies(data->update_interval);
+	if (time_after(jiffies, next_update) || !data->valid) {
+
+		dev_dbg(&client->dev, "Starting adm1031 update\n");
+		for (chan = 0;
+		     chan < ((data->chip_type == adm1031) ? 3 : 2); chan++) {
+			u8 oldh, newh;
+
+			oldh =
+			    adm1031_read_value(client, ADM1031_REG_TEMP(chan));
+			data->ext_temp[chan] =
+			    adm1031_read_value(client, ADM1031_REG_EXT_TEMP);
+			newh =
+			    adm1031_read_value(client, ADM1031_REG_TEMP(chan));
+			if (newh != oldh) {
+				data->ext_temp[chan] =
+				    adm1031_read_value(client,
+						       ADM1031_REG_EXT_TEMP);
+#ifdef DEBUG
+				oldh =
+				    adm1031_read_value(client,
+						       ADM1031_REG_TEMP(chan));
+
+				/* oldh is actually newer */
+				if (newh != oldh)
+					dev_warn(&client->dev,
+					  "Remote temperature may be wrong.\n");
+#endif
+			}
+			data->temp[chan] = newh;
+
+			data->temp_offset[chan] =
+			    adm1031_read_value(client,
+					       ADM1031_REG_TEMP_OFFSET(chan));
+			data->temp_min[chan] =
+			    adm1031_read_value(client,
+					       ADM1031_REG_TEMP_MIN(chan));
+			data->temp_max[chan] =
+			    adm1031_read_value(client,
+					       ADM1031_REG_TEMP_MAX(chan));
+			data->temp_crit[chan] =
+			    adm1031_read_value(client,
+					       ADM1031_REG_TEMP_CRIT(chan));
+			data->auto_temp[chan] =
+			    adm1031_read_value(client,
+					       ADM1031_REG_AUTO_TEMP(chan));
+
+		}
+
+		data->conf1 = adm1031_read_value(client, ADM1031_REG_CONF1);
+		data->conf2 = adm1031_read_value(client, ADM1031_REG_CONF2);
+
+		data->alarm = adm1031_read_value(client, ADM1031_REG_STATUS(0))
+		    | (adm1031_read_value(client, ADM1031_REG_STATUS(1)) << 8);
+		if (data->chip_type == adm1030)
+			data->alarm &= 0xc0ff;
+
+		for (chan = 0; chan < (data->chip_type == adm1030 ? 1 : 2);
+		     chan++) {
+			data->fan_div[chan] =
+			    adm1031_read_value(client,
+					       ADM1031_REG_FAN_DIV(chan));
+			data->fan_min[chan] =
+			    adm1031_read_value(client,
+					       ADM1031_REG_FAN_MIN(chan));
+			data->fan[chan] =
+			    adm1031_read_value(client,
+					       ADM1031_REG_FAN_SPEED(chan));
+			data->pwm[chan] =
+			  (adm1031_read_value(client,
+					ADM1031_REG_PWM) >> (4 * chan)) & 0x0f;
+		}
+		data->last_updated = jiffies;
+		data->valid = 1;
+	}
+
+	mutex_unlock(&data->update_lock);
+
+	return data;
+}
+
+#define TEMP_TO_REG(val)		(((val) < 0 ? ((val - 500) / 1000) : \
+					((val + 500) / 1000)))
+
+#define TEMP_FROM_REG(val)		((val) * 1000)
+
+#define TEMP_FROM_REG_EXT(val, ext)	(TEMP_FROM_REG(val) + (ext) * 125)
+
+#define TEMP_OFFSET_TO_REG(val)		(TEMP_TO_REG(val) & 0x8f)
+#define TEMP_OFFSET_FROM_REG(val)	TEMP_FROM_REG((val) < 0 ? \
+						      (val) | 0x70 : (val))
+
+#define FAN_FROM_REG(reg, div)		((reg) ? \
+					 (11250 * 60) / ((reg) * (div)) : 0)
+
+static int FAN_TO_REG(int reg, int div)
+{
+	int tmp;
+	tmp = FAN_FROM_REG(clamp_val(reg, 0, 65535), div);
+	return tmp > 255 ? 255 : tmp;
+}
+
+#define FAN_DIV_FROM_REG(reg)		(1<<(((reg)&0xc0)>>6))
+
+#define PWM_TO_REG(val)			(clamp_val((val), 0, 255) >> 4)
+#define PWM_FROM_REG(val)		((val) << 4)
+
+#define FAN_CHAN_FROM_REG(reg)		(((reg) >> 5) & 7)
+#define FAN_CHAN_TO_REG(val, reg)	\
+	(((reg) & 0x1F) | (((val) << 5) & 0xe0))
+
+#define AUTO_TEMP_MIN_TO_REG(val, reg)	\
+	((((val) / 500) & 0xf8) | ((reg) & 0x7))
+#define AUTO_TEMP_RANGE_FROM_REG(reg)	(5000 * (1 << ((reg) & 0x7)))
+#define AUTO_TEMP_MIN_FROM_REG(reg)	(1000 * ((((reg) >> 3) & 0x1f) << 2))
+
+#define AUTO_TEMP_MIN_FROM_REG_DEG(reg)	((((reg) >> 3) & 0x1f) << 2)
+
+#define AUTO_TEMP_OFF_FROM_REG(reg)		\
+	(AUTO_TEMP_MIN_FROM_REG(reg) - 5000)
+
+#define AUTO_TEMP_MAX_FROM_REG(reg)		\
+	(AUTO_TEMP_RANGE_FROM_REG(reg) +	\
+	AUTO_TEMP_MIN_FROM_REG(reg))
+
+static int AUTO_TEMP_MAX_TO_REG(int val, int reg, int pwm)
+{
+	int ret;
+	int range = val - AUTO_TEMP_MIN_FROM_REG(reg);
+
+	range = ((val - AUTO_TEMP_MIN_FROM_REG(reg))*10)/(16 - pwm);
+	ret = ((reg & 0xf8) |
+	       (range < 10000 ? 0 :
+		range < 20000 ? 1 :
+		range < 40000 ? 2 : range < 80000 ? 3 : 4));
+	return ret;
+}
+
+/* FAN auto control */
+#define GET_FAN_AUTO_BITFIELD(data, idx)	\
+	(*(data)->chan_select_table)[FAN_CHAN_FROM_REG((data)->conf1)][idx % 2]
+
+/*
+ * The tables below contains the possible values for the auto fan
+ * control bitfields. the index in the table is the register value.
+ * MSb is the auto fan control enable bit, so the four first entries
+ * in the table disables auto fan control when both bitfields are zero.
+ */
+static const auto_chan_table_t auto_channel_select_table_adm1031 = {
+	{ 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 },
+	{ 2 /* 0b010 */ , 4 /* 0b100 */ },
+	{ 2 /* 0b010 */ , 2 /* 0b010 */ },
+	{ 4 /* 0b100 */ , 4 /* 0b100 */ },
+	{ 7 /* 0b111 */ , 7 /* 0b111 */ },
+};
+
+static const auto_chan_table_t auto_channel_select_table_adm1030 = {
+	{ 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 },
+	{ 2 /* 0b10 */		, 0 },
+	{ 0xff /* invalid */	, 0 },
+	{ 0xff /* invalid */	, 0 },
+	{ 3 /* 0b11 */		, 0 },
+};
+
+/*
+ * That function checks if a bitfield is valid and returns the other bitfield
+ * nearest match if no exact match where found.
+ */
+static int
+get_fan_auto_nearest(struct adm1031_data *data, int chan, u8 val, u8 reg)
+{
+	int i;
+	int first_match = -1, exact_match = -1;
+	u8 other_reg_val =
+	    (*data->chan_select_table)[FAN_CHAN_FROM_REG(reg)][chan ? 0 : 1];
+
+	if (val == 0)
+		return 0;
+
+	for (i = 0; i < 8; i++) {
+		if ((val == (*data->chan_select_table)[i][chan]) &&
+		    ((*data->chan_select_table)[i][chan ? 0 : 1] ==
+		     other_reg_val)) {
+			/* We found an exact match */
+			exact_match = i;
+			break;
+		} else if (val == (*data->chan_select_table)[i][chan] &&
+			   first_match == -1) {
+			/*
+			 * Save the first match in case of an exact match has
+			 * not been found
+			 */
+			first_match = i;
+		}
+	}
+
+	if (exact_match >= 0)
+		return exact_match;
+	else if (first_match >= 0)
+		return first_match;
+
+	return -EINVAL;
+}
+
+static ssize_t fan_auto_channel_show(struct device *dev,
+				     struct device_attribute *attr, char *buf)
+{
+	int nr = to_sensor_dev_attr(attr)->index;
+	struct adm1031_data *data = adm1031_update_device(dev);
+	return sprintf(buf, "%d\n", GET_FAN_AUTO_BITFIELD(data, nr));
+}
+
+static ssize_t
+fan_auto_channel_store(struct device *dev, struct device_attribute *attr,
+		       const char *buf, size_t count)
+{
+	struct adm1031_data *data = dev_get_drvdata(dev);
+	struct i2c_client *client = data->client;
+	int nr = to_sensor_dev_attr(attr)->index;
+	long val;
+	u8 reg;
+	int ret;
+	u8 old_fan_mode;
+
+	ret = kstrtol(buf, 10, &val);
+	if (ret)
+		return ret;
+
+	old_fan_mode = data->conf1;
+
+	mutex_lock(&data->update_lock);
+
+	ret = get_fan_auto_nearest(data, nr, val, data->conf1);
+	if (ret < 0) {
+		mutex_unlock(&data->update_lock);
+		return ret;
+	}
+	reg = ret;
+	data->conf1 = FAN_CHAN_TO_REG(reg, data->conf1);
+	if ((data->conf1 & ADM1031_CONF1_AUTO_MODE) ^
+	    (old_fan_mode & ADM1031_CONF1_AUTO_MODE)) {
+		if (data->conf1 & ADM1031_CONF1_AUTO_MODE) {
+			/*
+			 * Switch to Auto Fan Mode
+			 * Save PWM registers
+			 * Set PWM registers to 33% Both
+			 */
+			data->old_pwm[0] = data->pwm[0];
+			data->old_pwm[1] = data->pwm[1];
+			adm1031_write_value(client, ADM1031_REG_PWM, 0x55);
+		} else {
+			/* Switch to Manual Mode */
+			data->pwm[0] = data->old_pwm[0];
+			data->pwm[1] = data->old_pwm[1];
+			/* Restore PWM registers */
+			adm1031_write_value(client, ADM1031_REG_PWM,
+					    data->pwm[0] | (data->pwm[1] << 4));
+		}
+	}
+	data->conf1 = FAN_CHAN_TO_REG(reg, data->conf1);
+	adm1031_write_value(client, ADM1031_REG_CONF1, data->conf1);
+	mutex_unlock(&data->update_lock);
+	return count;
+}
+
+static SENSOR_DEVICE_ATTR_RW(auto_fan1_channel, fan_auto_channel, 0);
+static SENSOR_DEVICE_ATTR_RW(auto_fan2_channel, fan_auto_channel, 1);
+
+/* Auto Temps */
+static ssize_t auto_temp_off_show(struct device *dev,
+				  struct device_attribute *attr, char *buf)
+{
+	int nr = to_sensor_dev_attr(attr)->index;
+	struct adm1031_data *data = adm1031_update_device(dev);
+	return sprintf(buf, "%d\n",
+		       AUTO_TEMP_OFF_FROM_REG(data->auto_temp[nr]));
+}
+static ssize_t auto_temp_min_show(struct device *dev,
+				  struct device_attribute *attr, char *buf)
+{
+	int nr = to_sensor_dev_attr(attr)->index;
+	struct adm1031_data *data = adm1031_update_device(dev);
+	return sprintf(buf, "%d\n",
+		       AUTO_TEMP_MIN_FROM_REG(data->auto_temp[nr]));
+}
+static ssize_t
+auto_temp_min_store(struct device *dev, struct device_attribute *attr,
+		    const char *buf, size_t count)
+{
+	struct adm1031_data *data = dev_get_drvdata(dev);
+	struct i2c_client *client = data->client;
+	int nr = to_sensor_dev_attr(attr)->index;
+	long val;
+	int ret;
+
+	ret = kstrtol(buf, 10, &val);
+	if (ret)
+		return ret;
+
+	val = clamp_val(val, 0, 127000);
+	mutex_lock(&data->update_lock);
+	data->auto_temp[nr] = AUTO_TEMP_MIN_TO_REG(val, data->auto_temp[nr]);
+	adm1031_write_value(client, ADM1031_REG_AUTO_TEMP(nr),
+			    data->auto_temp[nr]);
+	mutex_unlock(&data->update_lock);
+	return count;
+}
+static ssize_t auto_temp_max_show(struct device *dev,
+				  struct device_attribute *attr, char *buf)
+{
+	int nr = to_sensor_dev_attr(attr)->index;
+	struct adm1031_data *data = adm1031_update_device(dev);
+	return sprintf(buf, "%d\n",
+		       AUTO_TEMP_MAX_FROM_REG(data->auto_temp[nr]));
+}
+static ssize_t
+auto_temp_max_store(struct device *dev, struct device_attribute *attr,
+		    const char *buf, size_t count)
+{
+	struct adm1031_data *data = dev_get_drvdata(dev);
+	struct i2c_client *client = data->client;
+	int nr = to_sensor_dev_attr(attr)->index;
+	long val;
+	int ret;
+
+	ret = kstrtol(buf, 10, &val);
+	if (ret)
+		return ret;
+
+	val = clamp_val(val, 0, 127000);
+	mutex_lock(&data->update_lock);
+	data->temp_max[nr] = AUTO_TEMP_MAX_TO_REG(val, data->auto_temp[nr],
+						  data->pwm[nr]);
+	adm1031_write_value(client, ADM1031_REG_AUTO_TEMP(nr),
+			    data->temp_max[nr]);
+	mutex_unlock(&data->update_lock);
+	return count;
+}
+
+static SENSOR_DEVICE_ATTR_RO(auto_temp1_off, auto_temp_off, 0);
+static SENSOR_DEVICE_ATTR_RW(auto_temp1_min, auto_temp_min, 0);
+static SENSOR_DEVICE_ATTR_RW(auto_temp1_max, auto_temp_max, 0);
+static SENSOR_DEVICE_ATTR_RO(auto_temp2_off, auto_temp_off, 1);
+static SENSOR_DEVICE_ATTR_RW(auto_temp2_min, auto_temp_min, 1);
+static SENSOR_DEVICE_ATTR_RW(auto_temp2_max, auto_temp_max, 1);
+static SENSOR_DEVICE_ATTR_RO(auto_temp3_off, auto_temp_off, 2);
+static SENSOR_DEVICE_ATTR_RW(auto_temp3_min, auto_temp_min, 2);
+static SENSOR_DEVICE_ATTR_RW(auto_temp3_max, auto_temp_max, 2);
+
+/* pwm */
+static ssize_t pwm_show(struct device *dev, struct device_attribute *attr,
+			char *buf)
+{
+	int nr = to_sensor_dev_attr(attr)->index;
+	struct adm1031_data *data = adm1031_update_device(dev);
+	return sprintf(buf, "%d\n", PWM_FROM_REG(data->pwm[nr]));
+}
+static ssize_t pwm_store(struct device *dev, struct device_attribute *attr,
+			 const char *buf, size_t count)
+{
+	struct adm1031_data *data = dev_get_drvdata(dev);
+	struct i2c_client *client = data->client;
+	int nr = to_sensor_dev_attr(attr)->index;
+	long val;
+	int ret, reg;
+
+	ret = kstrtol(buf, 10, &val);
+	if (ret)
+		return ret;
+
+	mutex_lock(&data->update_lock);
+	if ((data->conf1 & ADM1031_CONF1_AUTO_MODE) &&
+	    (((val>>4) & 0xf) != 5)) {
+		/* In automatic mode, the only PWM accepted is 33% */
+		mutex_unlock(&data->update_lock);
+		return -EINVAL;
+	}
+	data->pwm[nr] = PWM_TO_REG(val);
+	reg = adm1031_read_value(client, ADM1031_REG_PWM);
+	adm1031_write_value(client, ADM1031_REG_PWM,
+			    nr ? ((data->pwm[nr] << 4) & 0xf0) | (reg & 0xf)
+			    : (data->pwm[nr] & 0xf) | (reg & 0xf0));
+	mutex_unlock(&data->update_lock);
+	return count;
+}
+
+static SENSOR_DEVICE_ATTR_RW(pwm1, pwm, 0);
+static SENSOR_DEVICE_ATTR_RW(pwm2, pwm, 1);
+static SENSOR_DEVICE_ATTR_RW(auto_fan1_min_pwm, pwm, 0);
+static SENSOR_DEVICE_ATTR_RW(auto_fan2_min_pwm, pwm, 1);
+
+/* Fans */
+
+/*
+ * That function checks the cases where the fan reading is not
+ * relevant.  It is used to provide 0 as fan reading when the fan is
+ * not supposed to run
+ */
+static int trust_fan_readings(struct adm1031_data *data, int chan)
+{
+	int res = 0;
+
+	if (data->conf1 & ADM1031_CONF1_AUTO_MODE) {
+		switch (data->conf1 & 0x60) {
+		case 0x00:
+			/*
+			 * remote temp1 controls fan1,
+			 * remote temp2 controls fan2
+			 */
+			res = data->temp[chan+1] >=
+			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[chan+1]);
+			break;
+		case 0x20:	/* remote temp1 controls both fans */
+			res =
+			    data->temp[1] >=
+			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[1]);
+			break;
+		case 0x40:	/* remote temp2 controls both fans */
+			res =
+			    data->temp[2] >=
+			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[2]);
+			break;
+		case 0x60:	/* max controls both fans */
+			res =
+			    data->temp[0] >=
+			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[0])
+			    || data->temp[1] >=
+			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[1])
+			    || (data->chip_type == adm1031
+				&& data->temp[2] >=
+				AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[2]));
+			break;
+		}
+	} else {
+		res = data->pwm[chan] > 0;
+	}
+	return res;
+}
+
+static ssize_t fan_show(struct device *dev, struct device_attribute *attr,
+			char *buf)
+{
+	int nr = to_sensor_dev_attr(attr)->index;
+	struct adm1031_data *data = adm1031_update_device(dev);
+	int value;
+
+	value = trust_fan_readings(data, nr) ? FAN_FROM_REG(data->fan[nr],
+				 FAN_DIV_FROM_REG(data->fan_div[nr])) : 0;
+	return sprintf(buf, "%d\n", value);
+}
+
+static ssize_t fan_div_show(struct device *dev, struct device_attribute *attr,
+			    char *buf)
+{
+	int nr = to_sensor_dev_attr(attr)->index;
+	struct adm1031_data *data = adm1031_update_device(dev);
+	return sprintf(buf, "%d\n", FAN_DIV_FROM_REG(data->fan_div[nr]));
+}
+static ssize_t fan_min_show(struct device *dev, struct device_attribute *attr,
+			    char *buf)
+{
+	int nr = to_sensor_dev_attr(attr)->index;
+	struct adm1031_data *data = adm1031_update_device(dev);
+	return sprintf(buf, "%d\n",
+		       FAN_FROM_REG(data->fan_min[nr],
+				    FAN_DIV_FROM_REG(data->fan_div[nr])));
+}
+static ssize_t fan_min_store(struct device *dev,
+			     struct device_attribute *attr, const char *buf,
+			     size_t count)
+{
+	struct adm1031_data *data = dev_get_drvdata(dev);
+	struct i2c_client *client = data->client;
+	int nr = to_sensor_dev_attr(attr)->index;
+	long val;
+	int ret;
+
+	ret = kstrtol(buf, 10, &val);
+	if (ret)
+		return ret;
+
+	mutex_lock(&data->update_lock);
+	if (val) {
+		data->fan_min[nr] =
+			FAN_TO_REG(val, FAN_DIV_FROM_REG(data->fan_div[nr]));
+	} else {
+		data->fan_min[nr] = 0xff;
+	}
+	adm1031_write_value(client, ADM1031_REG_FAN_MIN(nr), data->fan_min[nr]);
+	mutex_unlock(&data->update_lock);
+	return count;
+}
+static ssize_t fan_div_store(struct device *dev,
+			     struct device_attribute *attr, const char *buf,
+			     size_t count)
+{
+	struct adm1031_data *data = dev_get_drvdata(dev);
+	struct i2c_client *client = data->client;
+	int nr = to_sensor_dev_attr(attr)->index;
+	long val;
+	u8 tmp;
+	int old_div;
+	int new_min;
+	int ret;
+
+	ret = kstrtol(buf, 10, &val);
+	if (ret)
+		return ret;
+
+	tmp = val == 8 ? 0xc0 :
+	      val == 4 ? 0x80 :
+	      val == 2 ? 0x40 :
+	      val == 1 ? 0x00 :
+	      0xff;
+	if (tmp == 0xff)
+		return -EINVAL;
+
+	mutex_lock(&data->update_lock);
+	/* Get fresh readings */
+	data->fan_div[nr] = adm1031_read_value(client,
+					       ADM1031_REG_FAN_DIV(nr));
+	data->fan_min[nr] = adm1031_read_value(client,
+					       ADM1031_REG_FAN_MIN(nr));
+
+	/* Write the new clock divider and fan min */
+	old_div = FAN_DIV_FROM_REG(data->fan_div[nr]);
+	data->fan_div[nr] = tmp | (0x3f & data->fan_div[nr]);
+	new_min = data->fan_min[nr] * old_div / val;
+	data->fan_min[nr] = new_min > 0xff ? 0xff : new_min;
+
+	adm1031_write_value(client, ADM1031_REG_FAN_DIV(nr),
+			    data->fan_div[nr]);
+	adm1031_write_value(client, ADM1031_REG_FAN_MIN(nr),
+			    data->fan_min[nr]);
+
+	/* Invalidate the cache: fan speed is no longer valid */
+	data->valid = 0;
+	mutex_unlock(&data->update_lock);
+	return count;
+}
+
+static SENSOR_DEVICE_ATTR_RO(fan1_input, fan, 0);
+static SENSOR_DEVICE_ATTR_RW(fan1_min, fan_min, 0);
+static SENSOR_DEVICE_ATTR_RW(fan1_div, fan_div, 0);
+static SENSOR_DEVICE_ATTR_RO(fan2_input, fan, 1);
+static SENSOR_DEVICE_ATTR_RW(fan2_min, fan_min, 1);
+static SENSOR_DEVICE_ATTR_RW(fan2_div, fan_div, 1);
+
+/* Temps */
+static ssize_t temp_show(struct device *dev, struct device_attribute *attr,
+			 char *buf)
+{
+	int nr = to_sensor_dev_attr(attr)->index;
+	struct adm1031_data *data = adm1031_update_device(dev);
+	int ext;
+	ext = nr == 0 ?
+	    ((data->ext_temp[nr] >> 6) & 0x3) * 2 :
+	    (((data->ext_temp[nr] >> ((nr - 1) * 3)) & 7));
+	return sprintf(buf, "%d\n", TEMP_FROM_REG_EXT(data->temp[nr], ext));
+}
+static ssize_t temp_offset_show(struct device *dev,
+				struct device_attribute *attr, char *buf)
+{
+	int nr = to_sensor_dev_attr(attr)->index;
+	struct adm1031_data *data = adm1031_update_device(dev);
+	return sprintf(buf, "%d\n",
+		       TEMP_OFFSET_FROM_REG(data->temp_offset[nr]));
+}
+static ssize_t temp_min_show(struct device *dev,
+			     struct device_attribute *attr, char *buf)
+{
+	int nr = to_sensor_dev_attr(attr)->index;
+	struct adm1031_data *data = adm1031_update_device(dev);
+	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_min[nr]));
+}
+static ssize_t temp_max_show(struct device *dev,
+			     struct device_attribute *attr, char *buf)
+{
+	int nr = to_sensor_dev_attr(attr)->index;
+	struct adm1031_data *data = adm1031_update_device(dev);
+	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[nr]));
+}
+static ssize_t temp_crit_show(struct device *dev,
+			      struct device_attribute *attr, char *buf)
+{
+	int nr = to_sensor_dev_attr(attr)->index;
+	struct adm1031_data *data = adm1031_update_device(dev);
+	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_crit[nr]));
+}
+static ssize_t temp_offset_store(struct device *dev,
+				 struct device_attribute *attr,
+				 const char *buf, size_t count)
+{
+	struct adm1031_data *data = dev_get_drvdata(dev);
+	struct i2c_client *client = data->client;
+	int nr = to_sensor_dev_attr(attr)->index;
+	long val;
+	int ret;
+
+	ret = kstrtol(buf, 10, &val);
+	if (ret)
+		return ret;
+
+	val = clamp_val(val, -15000, 15000);
+	mutex_lock(&data->update_lock);
+	data->temp_offset[nr] = TEMP_OFFSET_TO_REG(val);
+	adm1031_write_value(client, ADM1031_REG_TEMP_OFFSET(nr),
+			    data->temp_offset[nr]);
+	mutex_unlock(&data->update_lock);
+	return count;
+}
+static ssize_t temp_min_store(struct device *dev,
+			      struct device_attribute *attr, const char *buf,
+			      size_t count)
+{
+	struct adm1031_data *data = dev_get_drvdata(dev);
+	struct i2c_client *client = data->client;
+	int nr = to_sensor_dev_attr(attr)->index;
+	long val;
+	int ret;
+
+	ret = kstrtol(buf, 10, &val);
+	if (ret)
+		return ret;
+
+	val = clamp_val(val, -55000, 127000);
+	mutex_lock(&data->update_lock);
+	data->temp_min[nr] = TEMP_TO_REG(val);
+	adm1031_write_value(client, ADM1031_REG_TEMP_MIN(nr),
+			    data->temp_min[nr]);
+	mutex_unlock(&data->update_lock);
+	return count;
+}
+static ssize_t temp_max_store(struct device *dev,
+			      struct device_attribute *attr, const char *buf,
+			      size_t count)
+{
+	struct adm1031_data *data = dev_get_drvdata(dev);
+	struct i2c_client *client = data->client;
+	int nr = to_sensor_dev_attr(attr)->index;
+	long val;
+	int ret;
+
+	ret = kstrtol(buf, 10, &val);
+	if (ret)
+		return ret;
+
+	val = clamp_val(val, -55000, 127000);
+	mutex_lock(&data->update_lock);
+	data->temp_max[nr] = TEMP_TO_REG(val);
+	adm1031_write_value(client, ADM1031_REG_TEMP_MAX(nr),
+			    data->temp_max[nr]);
+	mutex_unlock(&data->update_lock);
+	return count;
+}
+static ssize_t temp_crit_store(struct device *dev,
+			       struct device_attribute *attr, const char *buf,
+			       size_t count)
+{
+	struct adm1031_data *data = dev_get_drvdata(dev);
+	struct i2c_client *client = data->client;
+	int nr = to_sensor_dev_attr(attr)->index;
+	long val;
+	int ret;
+
+	ret = kstrtol(buf, 10, &val);
+	if (ret)
+		return ret;
+
+	val = clamp_val(val, -55000, 127000);
+	mutex_lock(&data->update_lock);
+	data->temp_crit[nr] = TEMP_TO_REG(val);
+	adm1031_write_value(client, ADM1031_REG_TEMP_CRIT(nr),
+			    data->temp_crit[nr]);
+	mutex_unlock(&data->update_lock);
+	return count;
+}
+
+static SENSOR_DEVICE_ATTR_RO(temp1_input, temp, 0);
+static SENSOR_DEVICE_ATTR_RW(temp1_offset, temp_offset, 0);
+static SENSOR_DEVICE_ATTR_RW(temp1_min, temp_min, 0);
+static SENSOR_DEVICE_ATTR_RW(temp1_max, temp_max, 0);
+static SENSOR_DEVICE_ATTR_RW(temp1_crit, temp_crit, 0);
+static SENSOR_DEVICE_ATTR_RO(temp2_input, temp, 1);
+static SENSOR_DEVICE_ATTR_RW(temp2_offset, temp_offset, 1);
+static SENSOR_DEVICE_ATTR_RW(temp2_min, temp_min, 1);
+static SENSOR_DEVICE_ATTR_RW(temp2_max, temp_max, 1);
+static SENSOR_DEVICE_ATTR_RW(temp2_crit, temp_crit, 1);
+static SENSOR_DEVICE_ATTR_RO(temp3_input, temp, 2);
+static SENSOR_DEVICE_ATTR_RW(temp3_offset, temp_offset, 2);
+static SENSOR_DEVICE_ATTR_RW(temp3_min, temp_min, 2);
+static SENSOR_DEVICE_ATTR_RW(temp3_max, temp_max, 2);
+static SENSOR_DEVICE_ATTR_RW(temp3_crit, temp_crit, 2);
+
+/* Alarms */
+static ssize_t alarms_show(struct device *dev, struct device_attribute *attr,
+			   char *buf)
+{
+	struct adm1031_data *data = adm1031_update_device(dev);
+	return sprintf(buf, "%d\n", data->alarm);
+}
+
+static DEVICE_ATTR_RO(alarms);
+
+static ssize_t alarm_show(struct device *dev, struct device_attribute *attr,
+			  char *buf)
+{
+	int bitnr = to_sensor_dev_attr(attr)->index;
+	struct adm1031_data *data = adm1031_update_device(dev);
+	return sprintf(buf, "%d\n", (data->alarm >> bitnr) & 1);
+}
+
+static SENSOR_DEVICE_ATTR_RO(fan1_alarm, alarm, 0);
+static SENSOR_DEVICE_ATTR_RO(fan1_fault, alarm, 1);
+static SENSOR_DEVICE_ATTR_RO(temp2_max_alarm, alarm, 2);
+static SENSOR_DEVICE_ATTR_RO(temp2_min_alarm, alarm, 3);
+static SENSOR_DEVICE_ATTR_RO(temp2_crit_alarm, alarm, 4);
+static SENSOR_DEVICE_ATTR_RO(temp2_fault, alarm, 5);
+static SENSOR_DEVICE_ATTR_RO(temp1_max_alarm, alarm, 6);
+static SENSOR_DEVICE_ATTR_RO(temp1_min_alarm, alarm, 7);
+static SENSOR_DEVICE_ATTR_RO(fan2_alarm, alarm, 8);
+static SENSOR_DEVICE_ATTR_RO(fan2_fault, alarm, 9);
+static SENSOR_DEVICE_ATTR_RO(temp3_max_alarm, alarm, 10);
+static SENSOR_DEVICE_ATTR_RO(temp3_min_alarm, alarm, 11);
+static SENSOR_DEVICE_ATTR_RO(temp3_crit_alarm, alarm, 12);
+static SENSOR_DEVICE_ATTR_RO(temp3_fault, alarm, 13);
+static SENSOR_DEVICE_ATTR_RO(temp1_crit_alarm, alarm, 14);
+
+/* Update Interval */
+static const unsigned int update_intervals[] = {
+	16000, 8000, 4000, 2000, 1000, 500, 250, 125,
+};
+
+static ssize_t update_interval_show(struct device *dev,
+				    struct device_attribute *attr, char *buf)
+{
+	struct adm1031_data *data = dev_get_drvdata(dev);
+
+	return sprintf(buf, "%u\n", data->update_interval);
+}
+
+static ssize_t update_interval_store(struct device *dev,
+				     struct device_attribute *attr,
+				     const char *buf, size_t count)
+{
+	struct adm1031_data *data = dev_get_drvdata(dev);
+	struct i2c_client *client = data->client;
+	unsigned long val;
+	int i, err;
+	u8 reg;
+
+	err = kstrtoul(buf, 10, &val);
+	if (err)
+		return err;
+
+	/*
+	 * Find the nearest update interval from the table.
+	 * Use it to determine the matching update rate.
+	 */
+	for (i = 0; i < ARRAY_SIZE(update_intervals) - 1; i++) {
+		if (val >= update_intervals[i])
+			break;
+	}
+	/* if not found, we point to the last entry (lowest update interval) */
+
+	/* set the new update rate while preserving other settings */
+	reg = adm1031_read_value(client, ADM1031_REG_FAN_FILTER);
+	reg &= ~ADM1031_UPDATE_RATE_MASK;
+	reg |= i << ADM1031_UPDATE_RATE_SHIFT;
+	adm1031_write_value(client, ADM1031_REG_FAN_FILTER, reg);
+
+	mutex_lock(&data->update_lock);
+	data->update_interval = update_intervals[i];
+	mutex_unlock(&data->update_lock);
+
+	return count;
+}
+
+static DEVICE_ATTR_RW(update_interval);
+
+static struct attribute *adm1031_attributes[] = {
+	&sensor_dev_attr_fan1_input.dev_attr.attr,
+	&sensor_dev_attr_fan1_div.dev_attr.attr,
+	&sensor_dev_attr_fan1_min.dev_attr.attr,
+	&sensor_dev_attr_fan1_alarm.dev_attr.attr,
+	&sensor_dev_attr_fan1_fault.dev_attr.attr,
+	&sensor_dev_attr_pwm1.dev_attr.attr,
+	&sensor_dev_attr_auto_fan1_channel.dev_attr.attr,
+	&sensor_dev_attr_temp1_input.dev_attr.attr,
+	&sensor_dev_attr_temp1_offset.dev_attr.attr,
+	&sensor_dev_attr_temp1_min.dev_attr.attr,
+	&sensor_dev_attr_temp1_min_alarm.dev_attr.attr,
+	&sensor_dev_attr_temp1_max.dev_attr.attr,
+	&sensor_dev_attr_temp1_max_alarm.dev_attr.attr,
+	&sensor_dev_attr_temp1_crit.dev_attr.attr,
+	&sensor_dev_attr_temp1_crit_alarm.dev_attr.attr,
+	&sensor_dev_attr_temp2_input.dev_attr.attr,
+	&sensor_dev_attr_temp2_offset.dev_attr.attr,
+	&sensor_dev_attr_temp2_min.dev_attr.attr,
+	&sensor_dev_attr_temp2_min_alarm.dev_attr.attr,
+	&sensor_dev_attr_temp2_max.dev_attr.attr,
+	&sensor_dev_attr_temp2_max_alarm.dev_attr.attr,
+	&sensor_dev_attr_temp2_crit.dev_attr.attr,
+	&sensor_dev_attr_temp2_crit_alarm.dev_attr.attr,
+	&sensor_dev_attr_temp2_fault.dev_attr.attr,
+
+	&sensor_dev_attr_auto_temp1_off.dev_attr.attr,
+	&sensor_dev_attr_auto_temp1_min.dev_attr.attr,
+	&sensor_dev_attr_auto_temp1_max.dev_attr.attr,
+
+	&sensor_dev_attr_auto_temp2_off.dev_attr.attr,
+	&sensor_dev_attr_auto_temp2_min.dev_attr.attr,
+	&sensor_dev_attr_auto_temp2_max.dev_attr.attr,
+
+	&sensor_dev_attr_auto_fan1_min_pwm.dev_attr.attr,
+
+	&dev_attr_update_interval.attr,
+	&dev_attr_alarms.attr,
+
+	NULL
+};
+
+static const struct attribute_group adm1031_group = {
+	.attrs = adm1031_attributes,
+};
+
+static struct attribute *adm1031_attributes_opt[] = {
+	&sensor_dev_attr_fan2_input.dev_attr.attr,
+	&sensor_dev_attr_fan2_div.dev_attr.attr,
+	&sensor_dev_attr_fan2_min.dev_attr.attr,
+	&sensor_dev_attr_fan2_alarm.dev_attr.attr,
+	&sensor_dev_attr_fan2_fault.dev_attr.attr,
+	&sensor_dev_attr_pwm2.dev_attr.attr,
+	&sensor_dev_attr_auto_fan2_channel.dev_attr.attr,
+	&sensor_dev_attr_temp3_input.dev_attr.attr,
+	&sensor_dev_attr_temp3_offset.dev_attr.attr,
+	&sensor_dev_attr_temp3_min.dev_attr.attr,
+	&sensor_dev_attr_temp3_min_alarm.dev_attr.attr,
+	&sensor_dev_attr_temp3_max.dev_attr.attr,
+	&sensor_dev_attr_temp3_max_alarm.dev_attr.attr,
+	&sensor_dev_attr_temp3_crit.dev_attr.attr,
+	&sensor_dev_attr_temp3_crit_alarm.dev_attr.attr,
+	&sensor_dev_attr_temp3_fault.dev_attr.attr,
+	&sensor_dev_attr_auto_temp3_off.dev_attr.attr,
+	&sensor_dev_attr_auto_temp3_min.dev_attr.attr,
+	&sensor_dev_attr_auto_temp3_max.dev_attr.attr,
+	&sensor_dev_attr_auto_fan2_min_pwm.dev_attr.attr,
+	NULL
+};
+
+static const struct attribute_group adm1031_group_opt = {
+	.attrs = adm1031_attributes_opt,
+};
+
+/* Return 0 if detection is successful, -ENODEV otherwise */
+static int adm1031_detect(struct i2c_client *client,
+			  struct i2c_board_info *info)
+{
+	struct i2c_adapter *adapter = client->adapter;
+	const char *name;
+	int id, co;
+
+	if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
+		return -ENODEV;
+
+	id = i2c_smbus_read_byte_data(client, 0x3d);
+	co = i2c_smbus_read_byte_data(client, 0x3e);
+
+	if (!((id == 0x31 || id == 0x30) && co == 0x41))
+		return -ENODEV;
+	name = (id == 0x30) ? "adm1030" : "adm1031";
+
+	strlcpy(info->type, name, I2C_NAME_SIZE);
+
+	return 0;
+}
+
+static void adm1031_init_client(struct i2c_client *client)
+{
+	unsigned int read_val;
+	unsigned int mask;
+	int i;
+	struct adm1031_data *data = i2c_get_clientdata(client);
+
+	mask = (ADM1031_CONF2_PWM1_ENABLE | ADM1031_CONF2_TACH1_ENABLE);
+	if (data->chip_type == adm1031) {
+		mask |= (ADM1031_CONF2_PWM2_ENABLE |
+			ADM1031_CONF2_TACH2_ENABLE);
+	}
+	/* Initialize the ADM1031 chip (enables fan speed reading ) */
+	read_val = adm1031_read_value(client, ADM1031_REG_CONF2);
+	if ((read_val | mask) != read_val)
+		adm1031_write_value(client, ADM1031_REG_CONF2, read_val | mask);
+
+	read_val = adm1031_read_value(client, ADM1031_REG_CONF1);
+	if ((read_val | ADM1031_CONF1_MONITOR_ENABLE) != read_val) {
+		adm1031_write_value(client, ADM1031_REG_CONF1,
+				    read_val | ADM1031_CONF1_MONITOR_ENABLE);
+	}
+
+	/* Read the chip's update rate */
+	mask = ADM1031_UPDATE_RATE_MASK;
+	read_val = adm1031_read_value(client, ADM1031_REG_FAN_FILTER);
+	i = (read_val & mask) >> ADM1031_UPDATE_RATE_SHIFT;
+	/* Save it as update interval */
+	data->update_interval = update_intervals[i];
+}
+
+static const struct i2c_device_id adm1031_id[];
+
+static int adm1031_probe(struct i2c_client *client)
+{
+	struct device *dev = &client->dev;
+	struct device *hwmon_dev;
+	struct adm1031_data *data;
+
+	data = devm_kzalloc(dev, sizeof(struct adm1031_data), GFP_KERNEL);
+	if (!data)
+		return -ENOMEM;
+
+	i2c_set_clientdata(client, data);
+	data->client = client;
+	data->chip_type = i2c_match_id(adm1031_id, client)->driver_data;
+	mutex_init(&data->update_lock);
+
+	if (data->chip_type == adm1030)
+		data->chan_select_table = &auto_channel_select_table_adm1030;
+	else
+		data->chan_select_table = &auto_channel_select_table_adm1031;
+
+	/* Initialize the ADM1031 chip */
+	adm1031_init_client(client);
+
+	/* sysfs hooks */
+	data->groups[0] = &adm1031_group;
+	if (data->chip_type == adm1031)
+		data->groups[1] = &adm1031_group_opt;
+
+	hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name,
+							   data, data->groups);
+	return PTR_ERR_OR_ZERO(hwmon_dev);
+}
+
+static const struct i2c_device_id adm1031_id[] = {
+	{ "adm1030", adm1030 },
+	{ "adm1031", adm1031 },
+	{ }
+};
+MODULE_DEVICE_TABLE(i2c, adm1031_id);
+
+static struct i2c_driver adm1031_driver = {
+	.class		= I2C_CLASS_HWMON,
+	.driver = {
+		.name = "adm1031",
+	},
+	.probe_new	= adm1031_probe,
+	.id_table	= adm1031_id,
+	.detect		= adm1031_detect,
+	.address_list	= normal_i2c,
+};
+
+module_i2c_driver(adm1031_driver);
+
+MODULE_AUTHOR("Alexandre d'Alton <alex@alexdalton.org>");
+MODULE_DESCRIPTION("ADM1031/ADM1030 driver");
+MODULE_LICENSE("GPL");
-- 
cgit v1.2.3