From 5d1646d90e1f2cceb9f0828f4b28318cd0ec7744 Mon Sep 17 00:00:00 2001 From: Daniel Baumann Date: Sat, 27 Apr 2024 12:05:51 +0200 Subject: Adding upstream version 5.10.209. Signed-off-by: Daniel Baumann --- fs/ntfs/aops.h | 93 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 93 insertions(+) create mode 100644 fs/ntfs/aops.h (limited to 'fs/ntfs/aops.h') diff --git a/fs/ntfs/aops.h b/fs/ntfs/aops.h new file mode 100644 index 000000000..f0962d46b --- /dev/null +++ b/fs/ntfs/aops.h @@ -0,0 +1,93 @@ +/* SPDX-License-Identifier: GPL-2.0-or-later */ +/** + * aops.h - Defines for NTFS kernel address space operations and page cache + * handling. Part of the Linux-NTFS project. + * + * Copyright (c) 2001-2004 Anton Altaparmakov + * Copyright (c) 2002 Richard Russon + */ + +#ifndef _LINUX_NTFS_AOPS_H +#define _LINUX_NTFS_AOPS_H + +#include +#include +#include +#include + +#include "inode.h" + +/** + * ntfs_unmap_page - release a page that was mapped using ntfs_map_page() + * @page: the page to release + * + * Unpin, unmap and release a page that was obtained from ntfs_map_page(). + */ +static inline void ntfs_unmap_page(struct page *page) +{ + kunmap(page); + put_page(page); +} + +/** + * ntfs_map_page - map a page into accessible memory, reading it if necessary + * @mapping: address space for which to obtain the page + * @index: index into the page cache for @mapping of the page to map + * + * Read a page from the page cache of the address space @mapping at position + * @index, where @index is in units of PAGE_SIZE, and not in bytes. + * + * If the page is not in memory it is loaded from disk first using the readpage + * method defined in the address space operations of @mapping and the page is + * added to the page cache of @mapping in the process. + * + * If the page belongs to an mst protected attribute and it is marked as such + * in its ntfs inode (NInoMstProtected()) the mst fixups are applied but no + * error checking is performed. This means the caller has to verify whether + * the ntfs record(s) contained in the page are valid or not using one of the + * ntfs_is_XXXX_record{,p}() macros, where XXXX is the record type you are + * expecting to see. (For details of the macros, see fs/ntfs/layout.h.) + * + * If the page is in high memory it is mapped into memory directly addressible + * by the kernel. + * + * Finally the page count is incremented, thus pinning the page into place. + * + * The above means that page_address(page) can be used on all pages obtained + * with ntfs_map_page() to get the kernel virtual address of the page. + * + * When finished with the page, the caller has to call ntfs_unmap_page() to + * unpin, unmap and release the page. + * + * Note this does not grant exclusive access. If such is desired, the caller + * must provide it independently of the ntfs_{un}map_page() calls by using + * a {rw_}semaphore or other means of serialization. A spin lock cannot be + * used as ntfs_map_page() can block. + * + * The unlocked and uptodate page is returned on success or an encoded error + * on failure. Caller has to test for error using the IS_ERR() macro on the + * return value. If that evaluates to 'true', the negative error code can be + * obtained using PTR_ERR() on the return value of ntfs_map_page(). + */ +static inline struct page *ntfs_map_page(struct address_space *mapping, + unsigned long index) +{ + struct page *page = read_mapping_page(mapping, index, NULL); + + if (!IS_ERR(page)) { + kmap(page); + if (!PageError(page)) + return page; + ntfs_unmap_page(page); + return ERR_PTR(-EIO); + } + return page; +} + +#ifdef NTFS_RW + +extern void mark_ntfs_record_dirty(struct page *page, const unsigned int ofs); + +#endif /* NTFS_RW */ + +#endif /* _LINUX_NTFS_AOPS_H */ -- cgit v1.2.3