From 5d1646d90e1f2cceb9f0828f4b28318cd0ec7744 Mon Sep 17 00:00:00 2001 From: Daniel Baumann Date: Sat, 27 Apr 2024 12:05:51 +0200 Subject: Adding upstream version 5.10.209. Signed-off-by: Daniel Baumann --- kernel/kcsan/core.c | 1099 +++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 1099 insertions(+) create mode 100644 kernel/kcsan/core.c (limited to 'kernel/kcsan/core.c') diff --git a/kernel/kcsan/core.c b/kernel/kcsan/core.c new file mode 100644 index 000000000..473dc0459 --- /dev/null +++ b/kernel/kcsan/core.c @@ -0,0 +1,1099 @@ +// SPDX-License-Identifier: GPL-2.0 + +#define pr_fmt(fmt) "kcsan: " fmt + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#include "atomic.h" +#include "encoding.h" +#include "kcsan.h" + +static bool kcsan_early_enable = IS_ENABLED(CONFIG_KCSAN_EARLY_ENABLE); +unsigned int kcsan_udelay_task = CONFIG_KCSAN_UDELAY_TASK; +unsigned int kcsan_udelay_interrupt = CONFIG_KCSAN_UDELAY_INTERRUPT; +static long kcsan_skip_watch = CONFIG_KCSAN_SKIP_WATCH; +static bool kcsan_interrupt_watcher = IS_ENABLED(CONFIG_KCSAN_INTERRUPT_WATCHER); + +#ifdef MODULE_PARAM_PREFIX +#undef MODULE_PARAM_PREFIX +#endif +#define MODULE_PARAM_PREFIX "kcsan." +module_param_named(early_enable, kcsan_early_enable, bool, 0); +module_param_named(udelay_task, kcsan_udelay_task, uint, 0644); +module_param_named(udelay_interrupt, kcsan_udelay_interrupt, uint, 0644); +module_param_named(skip_watch, kcsan_skip_watch, long, 0644); +module_param_named(interrupt_watcher, kcsan_interrupt_watcher, bool, 0444); + +bool kcsan_enabled; + +/* Per-CPU kcsan_ctx for interrupts */ +static DEFINE_PER_CPU(struct kcsan_ctx, kcsan_cpu_ctx) = { + .disable_count = 0, + .atomic_next = 0, + .atomic_nest_count = 0, + .in_flat_atomic = false, + .access_mask = 0, + .scoped_accesses = {LIST_POISON1, NULL}, +}; + +/* + * Helper macros to index into adjacent slots, starting from address slot + * itself, followed by the right and left slots. + * + * The purpose is 2-fold: + * + * 1. if during insertion the address slot is already occupied, check if + * any adjacent slots are free; + * 2. accesses that straddle a slot boundary due to size that exceeds a + * slot's range may check adjacent slots if any watchpoint matches. + * + * Note that accesses with very large size may still miss a watchpoint; however, + * given this should be rare, this is a reasonable trade-off to make, since this + * will avoid: + * + * 1. excessive contention between watchpoint checks and setup; + * 2. larger number of simultaneous watchpoints without sacrificing + * performance. + * + * Example: SLOT_IDX values for KCSAN_CHECK_ADJACENT=1, where i is [0, 1, 2]: + * + * slot=0: [ 1, 2, 0] + * slot=9: [10, 11, 9] + * slot=63: [64, 65, 63] + */ +#define SLOT_IDX(slot, i) (slot + ((i + KCSAN_CHECK_ADJACENT) % NUM_SLOTS)) + +/* + * SLOT_IDX_FAST is used in the fast-path. Not first checking the address's primary + * slot (middle) is fine if we assume that races occur rarely. The set of + * indices {SLOT_IDX(slot, i) | i in [0, NUM_SLOTS)} is equivalent to + * {SLOT_IDX_FAST(slot, i) | i in [0, NUM_SLOTS)}. + */ +#define SLOT_IDX_FAST(slot, i) (slot + i) + +/* + * Watchpoints, with each entry encoded as defined in encoding.h: in order to be + * able to safely update and access a watchpoint without introducing locking + * overhead, we encode each watchpoint as a single atomic long. The initial + * zero-initialized state matches INVALID_WATCHPOINT. + * + * Add NUM_SLOTS-1 entries to account for overflow; this helps avoid having to + * use more complicated SLOT_IDX_FAST calculation with modulo in the fast-path. + */ +static atomic_long_t watchpoints[CONFIG_KCSAN_NUM_WATCHPOINTS + NUM_SLOTS-1]; + +/* + * Instructions to skip watching counter, used in should_watch(). We use a + * per-CPU counter to avoid excessive contention. + */ +static DEFINE_PER_CPU(long, kcsan_skip); + +/* For kcsan_prandom_u32_max(). */ +static DEFINE_PER_CPU(u32, kcsan_rand_state); + +static __always_inline atomic_long_t *find_watchpoint(unsigned long addr, + size_t size, + bool expect_write, + long *encoded_watchpoint) +{ + const int slot = watchpoint_slot(addr); + const unsigned long addr_masked = addr & WATCHPOINT_ADDR_MASK; + atomic_long_t *watchpoint; + unsigned long wp_addr_masked; + size_t wp_size; + bool is_write; + int i; + + BUILD_BUG_ON(CONFIG_KCSAN_NUM_WATCHPOINTS < NUM_SLOTS); + + for (i = 0; i < NUM_SLOTS; ++i) { + watchpoint = &watchpoints[SLOT_IDX_FAST(slot, i)]; + *encoded_watchpoint = atomic_long_read(watchpoint); + if (!decode_watchpoint(*encoded_watchpoint, &wp_addr_masked, + &wp_size, &is_write)) + continue; + + if (expect_write && !is_write) + continue; + + /* Check if the watchpoint matches the access. */ + if (matching_access(wp_addr_masked, wp_size, addr_masked, size)) + return watchpoint; + } + + return NULL; +} + +static inline atomic_long_t * +insert_watchpoint(unsigned long addr, size_t size, bool is_write) +{ + const int slot = watchpoint_slot(addr); + const long encoded_watchpoint = encode_watchpoint(addr, size, is_write); + atomic_long_t *watchpoint; + int i; + + /* Check slot index logic, ensuring we stay within array bounds. */ + BUILD_BUG_ON(SLOT_IDX(0, 0) != KCSAN_CHECK_ADJACENT); + BUILD_BUG_ON(SLOT_IDX(0, KCSAN_CHECK_ADJACENT+1) != 0); + BUILD_BUG_ON(SLOT_IDX(CONFIG_KCSAN_NUM_WATCHPOINTS-1, KCSAN_CHECK_ADJACENT) != ARRAY_SIZE(watchpoints)-1); + BUILD_BUG_ON(SLOT_IDX(CONFIG_KCSAN_NUM_WATCHPOINTS-1, KCSAN_CHECK_ADJACENT+1) != ARRAY_SIZE(watchpoints) - NUM_SLOTS); + + for (i = 0; i < NUM_SLOTS; ++i) { + long expect_val = INVALID_WATCHPOINT; + + /* Try to acquire this slot. */ + watchpoint = &watchpoints[SLOT_IDX(slot, i)]; + if (atomic_long_try_cmpxchg_relaxed(watchpoint, &expect_val, encoded_watchpoint)) + return watchpoint; + } + + return NULL; +} + +/* + * Return true if watchpoint was successfully consumed, false otherwise. + * + * This may return false if: + * + * 1. another thread already consumed the watchpoint; + * 2. the thread that set up the watchpoint already removed it; + * 3. the watchpoint was removed and then re-used. + */ +static __always_inline bool +try_consume_watchpoint(atomic_long_t *watchpoint, long encoded_watchpoint) +{ + return atomic_long_try_cmpxchg_relaxed(watchpoint, &encoded_watchpoint, CONSUMED_WATCHPOINT); +} + +/* Return true if watchpoint was not touched, false if already consumed. */ +static inline bool consume_watchpoint(atomic_long_t *watchpoint) +{ + return atomic_long_xchg_relaxed(watchpoint, CONSUMED_WATCHPOINT) != CONSUMED_WATCHPOINT; +} + +/* Remove the watchpoint -- its slot may be reused after. */ +static inline void remove_watchpoint(atomic_long_t *watchpoint) +{ + atomic_long_set(watchpoint, INVALID_WATCHPOINT); +} + +static __always_inline struct kcsan_ctx *get_ctx(void) +{ + /* + * In interrupts, use raw_cpu_ptr to avoid unnecessary checks, that would + * also result in calls that generate warnings in uaccess regions. + */ + return in_task() ? ¤t->kcsan_ctx : raw_cpu_ptr(&kcsan_cpu_ctx); +} + +/* Check scoped accesses; never inline because this is a slow-path! */ +static noinline void kcsan_check_scoped_accesses(void) +{ + struct kcsan_ctx *ctx = get_ctx(); + struct list_head *prev_save = ctx->scoped_accesses.prev; + struct kcsan_scoped_access *scoped_access; + + ctx->scoped_accesses.prev = NULL; /* Avoid recursion. */ + list_for_each_entry(scoped_access, &ctx->scoped_accesses, list) + __kcsan_check_access(scoped_access->ptr, scoped_access->size, scoped_access->type); + ctx->scoped_accesses.prev = prev_save; +} + +/* Rules for generic atomic accesses. Called from fast-path. */ +static __always_inline bool +is_atomic(const volatile void *ptr, size_t size, int type, struct kcsan_ctx *ctx) +{ + if (type & KCSAN_ACCESS_ATOMIC) + return true; + + /* + * Unless explicitly declared atomic, never consider an assertion access + * as atomic. This allows using them also in atomic regions, such as + * seqlocks, without implicitly changing their semantics. + */ + if (type & KCSAN_ACCESS_ASSERT) + return false; + + if (IS_ENABLED(CONFIG_KCSAN_ASSUME_PLAIN_WRITES_ATOMIC) && + (type & KCSAN_ACCESS_WRITE) && size <= sizeof(long) && + !(type & KCSAN_ACCESS_COMPOUND) && IS_ALIGNED((unsigned long)ptr, size)) + return true; /* Assume aligned writes up to word size are atomic. */ + + if (ctx->atomic_next > 0) { + /* + * Because we do not have separate contexts for nested + * interrupts, in case atomic_next is set, we simply assume that + * the outer interrupt set atomic_next. In the worst case, we + * will conservatively consider operations as atomic. This is a + * reasonable trade-off to make, since this case should be + * extremely rare; however, even if extremely rare, it could + * lead to false positives otherwise. + */ + if ((hardirq_count() >> HARDIRQ_SHIFT) < 2) + --ctx->atomic_next; /* in task, or outer interrupt */ + return true; + } + + return ctx->atomic_nest_count > 0 || ctx->in_flat_atomic; +} + +static __always_inline bool +should_watch(const volatile void *ptr, size_t size, int type, struct kcsan_ctx *ctx) +{ + /* + * Never set up watchpoints when memory operations are atomic. + * + * Need to check this first, before kcsan_skip check below: (1) atomics + * should not count towards skipped instructions, and (2) to actually + * decrement kcsan_atomic_next for consecutive instruction stream. + */ + if (is_atomic(ptr, size, type, ctx)) + return false; + + if (this_cpu_dec_return(kcsan_skip) >= 0) + return false; + + /* + * NOTE: If we get here, kcsan_skip must always be reset in slow path + * via reset_kcsan_skip() to avoid underflow. + */ + + /* this operation should be watched */ + return true; +} + +/* + * Returns a pseudo-random number in interval [0, ep_ro). Simple linear + * congruential generator, using constants from "Numerical Recipes". + */ +static u32 kcsan_prandom_u32_max(u32 ep_ro) +{ + u32 state = this_cpu_read(kcsan_rand_state); + + state = 1664525 * state + 1013904223; + this_cpu_write(kcsan_rand_state, state); + + return state % ep_ro; +} + +static inline void reset_kcsan_skip(void) +{ + long skip_count = kcsan_skip_watch - + (IS_ENABLED(CONFIG_KCSAN_SKIP_WATCH_RANDOMIZE) ? + kcsan_prandom_u32_max(kcsan_skip_watch) : + 0); + this_cpu_write(kcsan_skip, skip_count); +} + +static __always_inline bool kcsan_is_enabled(void) +{ + return READ_ONCE(kcsan_enabled) && get_ctx()->disable_count == 0; +} + +/* Introduce delay depending on context and configuration. */ +static void delay_access(int type) +{ + unsigned int delay = in_task() ? kcsan_udelay_task : kcsan_udelay_interrupt; + /* For certain access types, skew the random delay to be longer. */ + unsigned int skew_delay_order = + (type & (KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_ASSERT)) ? 1 : 0; + + delay -= IS_ENABLED(CONFIG_KCSAN_DELAY_RANDOMIZE) ? + kcsan_prandom_u32_max(delay >> skew_delay_order) : + 0; + udelay(delay); +} + +void kcsan_save_irqtrace(struct task_struct *task) +{ +#ifdef CONFIG_TRACE_IRQFLAGS + task->kcsan_save_irqtrace = task->irqtrace; +#endif +} + +void kcsan_restore_irqtrace(struct task_struct *task) +{ +#ifdef CONFIG_TRACE_IRQFLAGS + task->irqtrace = task->kcsan_save_irqtrace; +#endif +} + +/* + * Pull everything together: check_access() below contains the performance + * critical operations; the fast-path (including check_access) functions should + * all be inlinable by the instrumentation functions. + * + * The slow-path (kcsan_found_watchpoint, kcsan_setup_watchpoint) are + * non-inlinable -- note that, we prefix these with "kcsan_" to ensure they can + * be filtered from the stacktrace, as well as give them unique names for the + * UACCESS whitelist of objtool. Each function uses user_access_save/restore(), + * since they do not access any user memory, but instrumentation is still + * emitted in UACCESS regions. + */ + +static noinline void kcsan_found_watchpoint(const volatile void *ptr, + size_t size, + int type, + atomic_long_t *watchpoint, + long encoded_watchpoint) +{ + unsigned long flags; + bool consumed; + + if (!kcsan_is_enabled()) + return; + + /* + * The access_mask check relies on value-change comparison. To avoid + * reporting a race where e.g. the writer set up the watchpoint, but the + * reader has access_mask!=0, we have to ignore the found watchpoint. + */ + if (get_ctx()->access_mask != 0) + return; + + /* + * Consume the watchpoint as soon as possible, to minimize the chances + * of !consumed. Consuming the watchpoint must always be guarded by + * kcsan_is_enabled() check, as otherwise we might erroneously + * triggering reports when disabled. + */ + consumed = try_consume_watchpoint(watchpoint, encoded_watchpoint); + + /* keep this after try_consume_watchpoint */ + flags = user_access_save(); + + if (consumed) { + kcsan_save_irqtrace(current); + kcsan_report(ptr, size, type, KCSAN_VALUE_CHANGE_MAYBE, + KCSAN_REPORT_CONSUMED_WATCHPOINT, + watchpoint - watchpoints); + kcsan_restore_irqtrace(current); + } else { + /* + * The other thread may not print any diagnostics, as it has + * already removed the watchpoint, or another thread consumed + * the watchpoint before this thread. + */ + atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_REPORT_RACES]); + } + + if ((type & KCSAN_ACCESS_ASSERT) != 0) + atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_ASSERT_FAILURES]); + else + atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_DATA_RACES]); + + user_access_restore(flags); +} + +static noinline void +kcsan_setup_watchpoint(const volatile void *ptr, size_t size, int type) +{ + const bool is_write = (type & KCSAN_ACCESS_WRITE) != 0; + const bool is_assert = (type & KCSAN_ACCESS_ASSERT) != 0; + atomic_long_t *watchpoint; + union { + u8 _1; + u16 _2; + u32 _4; + u64 _8; + } expect_value; + unsigned long access_mask; + enum kcsan_value_change value_change = KCSAN_VALUE_CHANGE_MAYBE; + unsigned long ua_flags = user_access_save(); + unsigned long irq_flags = 0; + + /* + * Always reset kcsan_skip counter in slow-path to avoid underflow; see + * should_watch(). + */ + reset_kcsan_skip(); + + if (!kcsan_is_enabled()) + goto out; + + /* + * Special atomic rules: unlikely to be true, so we check them here in + * the slow-path, and not in the fast-path in is_atomic(). Call after + * kcsan_is_enabled(), as we may access memory that is not yet + * initialized during early boot. + */ + if (!is_assert && kcsan_is_atomic_special(ptr)) + goto out; + + if (!check_encodable((unsigned long)ptr, size)) { + atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_UNENCODABLE_ACCESSES]); + goto out; + } + + /* + * Save and restore the IRQ state trace touched by KCSAN, since KCSAN's + * runtime is entered for every memory access, and potentially useful + * information is lost if dirtied by KCSAN. + */ + kcsan_save_irqtrace(current); + if (!kcsan_interrupt_watcher) + local_irq_save(irq_flags); + + watchpoint = insert_watchpoint((unsigned long)ptr, size, is_write); + if (watchpoint == NULL) { + /* + * Out of capacity: the size of 'watchpoints', and the frequency + * with which should_watch() returns true should be tweaked so + * that this case happens very rarely. + */ + atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_NO_CAPACITY]); + goto out_unlock; + } + + atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_SETUP_WATCHPOINTS]); + atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_USED_WATCHPOINTS]); + + /* + * Read the current value, to later check and infer a race if the data + * was modified via a non-instrumented access, e.g. from a device. + */ + expect_value._8 = 0; + switch (size) { + case 1: + expect_value._1 = READ_ONCE(*(const u8 *)ptr); + break; + case 2: + expect_value._2 = READ_ONCE(*(const u16 *)ptr); + break; + case 4: + expect_value._4 = READ_ONCE(*(const u32 *)ptr); + break; + case 8: + expect_value._8 = READ_ONCE(*(const u64 *)ptr); + break; + default: + break; /* ignore; we do not diff the values */ + } + + if (IS_ENABLED(CONFIG_KCSAN_DEBUG)) { + kcsan_disable_current(); + pr_err("watching %s, size: %zu, addr: %px [slot: %d, encoded: %lx]\n", + is_write ? "write" : "read", size, ptr, + watchpoint_slot((unsigned long)ptr), + encode_watchpoint((unsigned long)ptr, size, is_write)); + kcsan_enable_current(); + } + + /* + * Delay this thread, to increase probability of observing a racy + * conflicting access. + */ + delay_access(type); + + /* + * Re-read value, and check if it is as expected; if not, we infer a + * racy access. + */ + access_mask = get_ctx()->access_mask; + switch (size) { + case 1: + expect_value._1 ^= READ_ONCE(*(const u8 *)ptr); + if (access_mask) + expect_value._1 &= (u8)access_mask; + break; + case 2: + expect_value._2 ^= READ_ONCE(*(const u16 *)ptr); + if (access_mask) + expect_value._2 &= (u16)access_mask; + break; + case 4: + expect_value._4 ^= READ_ONCE(*(const u32 *)ptr); + if (access_mask) + expect_value._4 &= (u32)access_mask; + break; + case 8: + expect_value._8 ^= READ_ONCE(*(const u64 *)ptr); + if (access_mask) + expect_value._8 &= (u64)access_mask; + break; + default: + break; /* ignore; we do not diff the values */ + } + + /* Were we able to observe a value-change? */ + if (expect_value._8 != 0) + value_change = KCSAN_VALUE_CHANGE_TRUE; + + /* Check if this access raced with another. */ + if (!consume_watchpoint(watchpoint)) { + /* + * Depending on the access type, map a value_change of MAYBE to + * TRUE (always report) or FALSE (never report). + */ + if (value_change == KCSAN_VALUE_CHANGE_MAYBE) { + if (access_mask != 0) { + /* + * For access with access_mask, we require a + * value-change, as it is likely that races on + * ~access_mask bits are expected. + */ + value_change = KCSAN_VALUE_CHANGE_FALSE; + } else if (size > 8 || is_assert) { + /* Always assume a value-change. */ + value_change = KCSAN_VALUE_CHANGE_TRUE; + } + } + + /* + * No need to increment 'data_races' counter, as the racing + * thread already did. + * + * Count 'assert_failures' for each failed ASSERT access, + * therefore both this thread and the racing thread may + * increment this counter. + */ + if (is_assert && value_change == KCSAN_VALUE_CHANGE_TRUE) + atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_ASSERT_FAILURES]); + + kcsan_report(ptr, size, type, value_change, KCSAN_REPORT_RACE_SIGNAL, + watchpoint - watchpoints); + } else if (value_change == KCSAN_VALUE_CHANGE_TRUE) { + /* Inferring a race, since the value should not have changed. */ + + atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_RACES_UNKNOWN_ORIGIN]); + if (is_assert) + atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_ASSERT_FAILURES]); + + if (IS_ENABLED(CONFIG_KCSAN_REPORT_RACE_UNKNOWN_ORIGIN) || is_assert) + kcsan_report(ptr, size, type, KCSAN_VALUE_CHANGE_TRUE, + KCSAN_REPORT_RACE_UNKNOWN_ORIGIN, + watchpoint - watchpoints); + } + + /* + * Remove watchpoint; must be after reporting, since the slot may be + * reused after this point. + */ + remove_watchpoint(watchpoint); + atomic_long_dec(&kcsan_counters[KCSAN_COUNTER_USED_WATCHPOINTS]); +out_unlock: + if (!kcsan_interrupt_watcher) + local_irq_restore(irq_flags); + kcsan_restore_irqtrace(current); +out: + user_access_restore(ua_flags); +} + +static __always_inline void check_access(const volatile void *ptr, size_t size, + int type) +{ + const bool is_write = (type & KCSAN_ACCESS_WRITE) != 0; + atomic_long_t *watchpoint; + long encoded_watchpoint; + + /* + * Do nothing for 0 sized check; this comparison will be optimized out + * for constant sized instrumentation (__tsan_{read,write}N). + */ + if (unlikely(size == 0)) + return; + + /* + * Avoid user_access_save in fast-path: find_watchpoint is safe without + * user_access_save, as the address that ptr points to is only used to + * check if a watchpoint exists; ptr is never dereferenced. + */ + watchpoint = find_watchpoint((unsigned long)ptr, size, !is_write, + &encoded_watchpoint); + /* + * It is safe to check kcsan_is_enabled() after find_watchpoint in the + * slow-path, as long as no state changes that cause a race to be + * detected and reported have occurred until kcsan_is_enabled() is + * checked. + */ + + if (unlikely(watchpoint != NULL)) + kcsan_found_watchpoint(ptr, size, type, watchpoint, + encoded_watchpoint); + else { + struct kcsan_ctx *ctx = get_ctx(); /* Call only once in fast-path. */ + + if (unlikely(should_watch(ptr, size, type, ctx))) + kcsan_setup_watchpoint(ptr, size, type); + else if (unlikely(ctx->scoped_accesses.prev)) + kcsan_check_scoped_accesses(); + } +} + +/* === Public interface ===================================================== */ + +void __init kcsan_init(void) +{ + int cpu; + + BUG_ON(!in_task()); + + for_each_possible_cpu(cpu) + per_cpu(kcsan_rand_state, cpu) = (u32)get_cycles(); + + /* + * We are in the init task, and no other tasks should be running; + * WRITE_ONCE without memory barrier is sufficient. + */ + if (kcsan_early_enable) { + pr_info("enabled early\n"); + WRITE_ONCE(kcsan_enabled, true); + } +} + +/* === Exported interface =================================================== */ + +void kcsan_disable_current(void) +{ + ++get_ctx()->disable_count; +} +EXPORT_SYMBOL(kcsan_disable_current); + +void kcsan_enable_current(void) +{ + if (get_ctx()->disable_count-- == 0) { + /* + * Warn if kcsan_enable_current() calls are unbalanced with + * kcsan_disable_current() calls, which causes disable_count to + * become negative and should not happen. + */ + kcsan_disable_current(); /* restore to 0, KCSAN still enabled */ + kcsan_disable_current(); /* disable to generate warning */ + WARN(1, "Unbalanced %s()", __func__); + kcsan_enable_current(); + } +} +EXPORT_SYMBOL(kcsan_enable_current); + +void kcsan_enable_current_nowarn(void) +{ + if (get_ctx()->disable_count-- == 0) + kcsan_disable_current(); +} +EXPORT_SYMBOL(kcsan_enable_current_nowarn); + +void kcsan_nestable_atomic_begin(void) +{ + /* + * Do *not* check and warn if we are in a flat atomic region: nestable + * and flat atomic regions are independent from each other. + * See include/linux/kcsan.h: struct kcsan_ctx comments for more + * comments. + */ + + ++get_ctx()->atomic_nest_count; +} +EXPORT_SYMBOL(kcsan_nestable_atomic_begin); + +void kcsan_nestable_atomic_end(void) +{ + if (get_ctx()->atomic_nest_count-- == 0) { + /* + * Warn if kcsan_nestable_atomic_end() calls are unbalanced with + * kcsan_nestable_atomic_begin() calls, which causes + * atomic_nest_count to become negative and should not happen. + */ + kcsan_nestable_atomic_begin(); /* restore to 0 */ + kcsan_disable_current(); /* disable to generate warning */ + WARN(1, "Unbalanced %s()", __func__); + kcsan_enable_current(); + } +} +EXPORT_SYMBOL(kcsan_nestable_atomic_end); + +void kcsan_flat_atomic_begin(void) +{ + get_ctx()->in_flat_atomic = true; +} +EXPORT_SYMBOL(kcsan_flat_atomic_begin); + +void kcsan_flat_atomic_end(void) +{ + get_ctx()->in_flat_atomic = false; +} +EXPORT_SYMBOL(kcsan_flat_atomic_end); + +void kcsan_atomic_next(int n) +{ + get_ctx()->atomic_next = n; +} +EXPORT_SYMBOL(kcsan_atomic_next); + +void kcsan_set_access_mask(unsigned long mask) +{ + get_ctx()->access_mask = mask; +} +EXPORT_SYMBOL(kcsan_set_access_mask); + +struct kcsan_scoped_access * +kcsan_begin_scoped_access(const volatile void *ptr, size_t size, int type, + struct kcsan_scoped_access *sa) +{ + struct kcsan_ctx *ctx = get_ctx(); + + __kcsan_check_access(ptr, size, type); + + ctx->disable_count++; /* Disable KCSAN, in case list debugging is on. */ + + INIT_LIST_HEAD(&sa->list); + sa->ptr = ptr; + sa->size = size; + sa->type = type; + + if (!ctx->scoped_accesses.prev) /* Lazy initialize list head. */ + INIT_LIST_HEAD(&ctx->scoped_accesses); + list_add(&sa->list, &ctx->scoped_accesses); + + ctx->disable_count--; + return sa; +} +EXPORT_SYMBOL(kcsan_begin_scoped_access); + +void kcsan_end_scoped_access(struct kcsan_scoped_access *sa) +{ + struct kcsan_ctx *ctx = get_ctx(); + + if (WARN(!ctx->scoped_accesses.prev, "Unbalanced %s()?", __func__)) + return; + + ctx->disable_count++; /* Disable KCSAN, in case list debugging is on. */ + + list_del(&sa->list); + if (list_empty(&ctx->scoped_accesses)) + /* + * Ensure we do not enter kcsan_check_scoped_accesses() + * slow-path if unnecessary, and avoids requiring list_empty() + * in the fast-path (to avoid a READ_ONCE() and potential + * uaccess warning). + */ + ctx->scoped_accesses.prev = NULL; + + ctx->disable_count--; + + __kcsan_check_access(sa->ptr, sa->size, sa->type); +} +EXPORT_SYMBOL(kcsan_end_scoped_access); + +void __kcsan_check_access(const volatile void *ptr, size_t size, int type) +{ + check_access(ptr, size, type); +} +EXPORT_SYMBOL(__kcsan_check_access); + +/* + * KCSAN uses the same instrumentation that is emitted by supported compilers + * for ThreadSanitizer (TSAN). + * + * When enabled, the compiler emits instrumentation calls (the functions + * prefixed with "__tsan" below) for all loads and stores that it generated; + * inline asm is not instrumented. + * + * Note that, not all supported compiler versions distinguish aligned/unaligned + * accesses, but e.g. recent versions of Clang do. We simply alias the unaligned + * version to the generic version, which can handle both. + */ + +#define DEFINE_TSAN_READ_WRITE(size) \ + void __tsan_read##size(void *ptr); \ + void __tsan_read##size(void *ptr) \ + { \ + check_access(ptr, size, 0); \ + } \ + EXPORT_SYMBOL(__tsan_read##size); \ + void __tsan_unaligned_read##size(void *ptr) \ + __alias(__tsan_read##size); \ + EXPORT_SYMBOL(__tsan_unaligned_read##size); \ + void __tsan_write##size(void *ptr); \ + void __tsan_write##size(void *ptr) \ + { \ + check_access(ptr, size, KCSAN_ACCESS_WRITE); \ + } \ + EXPORT_SYMBOL(__tsan_write##size); \ + void __tsan_unaligned_write##size(void *ptr) \ + __alias(__tsan_write##size); \ + EXPORT_SYMBOL(__tsan_unaligned_write##size); \ + void __tsan_read_write##size(void *ptr); \ + void __tsan_read_write##size(void *ptr) \ + { \ + check_access(ptr, size, \ + KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE); \ + } \ + EXPORT_SYMBOL(__tsan_read_write##size); \ + void __tsan_unaligned_read_write##size(void *ptr) \ + __alias(__tsan_read_write##size); \ + EXPORT_SYMBOL(__tsan_unaligned_read_write##size) + +DEFINE_TSAN_READ_WRITE(1); +DEFINE_TSAN_READ_WRITE(2); +DEFINE_TSAN_READ_WRITE(4); +DEFINE_TSAN_READ_WRITE(8); +DEFINE_TSAN_READ_WRITE(16); + +void __tsan_read_range(void *ptr, size_t size); +void __tsan_read_range(void *ptr, size_t size) +{ + check_access(ptr, size, 0); +} +EXPORT_SYMBOL(__tsan_read_range); + +void __tsan_write_range(void *ptr, size_t size); +void __tsan_write_range(void *ptr, size_t size) +{ + check_access(ptr, size, KCSAN_ACCESS_WRITE); +} +EXPORT_SYMBOL(__tsan_write_range); + +/* + * Use of explicit volatile is generally disallowed [1], however, volatile is + * still used in various concurrent context, whether in low-level + * synchronization primitives or for legacy reasons. + * [1] https://lwn.net/Articles/233479/ + * + * We only consider volatile accesses atomic if they are aligned and would pass + * the size-check of compiletime_assert_rwonce_type(). + */ +#define DEFINE_TSAN_VOLATILE_READ_WRITE(size) \ + void __tsan_volatile_read##size(void *ptr); \ + void __tsan_volatile_read##size(void *ptr) \ + { \ + const bool is_atomic = size <= sizeof(long long) && \ + IS_ALIGNED((unsigned long)ptr, size); \ + if (IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS) && is_atomic) \ + return; \ + check_access(ptr, size, is_atomic ? KCSAN_ACCESS_ATOMIC : 0); \ + } \ + EXPORT_SYMBOL(__tsan_volatile_read##size); \ + void __tsan_unaligned_volatile_read##size(void *ptr) \ + __alias(__tsan_volatile_read##size); \ + EXPORT_SYMBOL(__tsan_unaligned_volatile_read##size); \ + void __tsan_volatile_write##size(void *ptr); \ + void __tsan_volatile_write##size(void *ptr) \ + { \ + const bool is_atomic = size <= sizeof(long long) && \ + IS_ALIGNED((unsigned long)ptr, size); \ + if (IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS) && is_atomic) \ + return; \ + check_access(ptr, size, \ + KCSAN_ACCESS_WRITE | \ + (is_atomic ? KCSAN_ACCESS_ATOMIC : 0)); \ + } \ + EXPORT_SYMBOL(__tsan_volatile_write##size); \ + void __tsan_unaligned_volatile_write##size(void *ptr) \ + __alias(__tsan_volatile_write##size); \ + EXPORT_SYMBOL(__tsan_unaligned_volatile_write##size) + +DEFINE_TSAN_VOLATILE_READ_WRITE(1); +DEFINE_TSAN_VOLATILE_READ_WRITE(2); +DEFINE_TSAN_VOLATILE_READ_WRITE(4); +DEFINE_TSAN_VOLATILE_READ_WRITE(8); +DEFINE_TSAN_VOLATILE_READ_WRITE(16); + +/* + * The below are not required by KCSAN, but can still be emitted by the + * compiler. + */ +void __tsan_func_entry(void *call_pc); +void __tsan_func_entry(void *call_pc) +{ +} +EXPORT_SYMBOL(__tsan_func_entry); +void __tsan_func_exit(void); +void __tsan_func_exit(void) +{ +} +EXPORT_SYMBOL(__tsan_func_exit); +void __tsan_init(void); +void __tsan_init(void) +{ +} +EXPORT_SYMBOL(__tsan_init); + +/* + * Instrumentation for atomic builtins (__atomic_*, __sync_*). + * + * Normal kernel code _should not_ be using them directly, but some + * architectures may implement some or all atomics using the compilers' + * builtins. + * + * Note: If an architecture decides to fully implement atomics using the + * builtins, because they are implicitly instrumented by KCSAN (and KASAN, + * etc.), implementing the ARCH_ATOMIC interface (to get instrumentation via + * atomic-instrumented) is no longer necessary. + * + * TSAN instrumentation replaces atomic accesses with calls to any of the below + * functions, whose job is to also execute the operation itself. + */ + +#define DEFINE_TSAN_ATOMIC_LOAD_STORE(bits) \ + u##bits __tsan_atomic##bits##_load(const u##bits *ptr, int memorder); \ + u##bits __tsan_atomic##bits##_load(const u##bits *ptr, int memorder) \ + { \ + if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) { \ + check_access(ptr, bits / BITS_PER_BYTE, KCSAN_ACCESS_ATOMIC); \ + } \ + return __atomic_load_n(ptr, memorder); \ + } \ + EXPORT_SYMBOL(__tsan_atomic##bits##_load); \ + void __tsan_atomic##bits##_store(u##bits *ptr, u##bits v, int memorder); \ + void __tsan_atomic##bits##_store(u##bits *ptr, u##bits v, int memorder) \ + { \ + if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) { \ + check_access(ptr, bits / BITS_PER_BYTE, \ + KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ATOMIC); \ + } \ + __atomic_store_n(ptr, v, memorder); \ + } \ + EXPORT_SYMBOL(__tsan_atomic##bits##_store) + +#define DEFINE_TSAN_ATOMIC_RMW(op, bits, suffix) \ + u##bits __tsan_atomic##bits##_##op(u##bits *ptr, u##bits v, int memorder); \ + u##bits __tsan_atomic##bits##_##op(u##bits *ptr, u##bits v, int memorder) \ + { \ + if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) { \ + check_access(ptr, bits / BITS_PER_BYTE, \ + KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE | \ + KCSAN_ACCESS_ATOMIC); \ + } \ + return __atomic_##op##suffix(ptr, v, memorder); \ + } \ + EXPORT_SYMBOL(__tsan_atomic##bits##_##op) + +/* + * Note: CAS operations are always classified as write, even in case they + * fail. We cannot perform check_access() after a write, as it might lead to + * false positives, in cases such as: + * + * T0: __atomic_compare_exchange_n(&p->flag, &old, 1, ...) + * + * T1: if (__atomic_load_n(&p->flag, ...)) { + * modify *p; + * p->flag = 0; + * } + * + * The only downside is that, if there are 3 threads, with one CAS that + * succeeds, another CAS that fails, and an unmarked racing operation, we may + * point at the wrong CAS as the source of the race. However, if we assume that + * all CAS can succeed in some other execution, the data race is still valid. + */ +#define DEFINE_TSAN_ATOMIC_CMPXCHG(bits, strength, weak) \ + int __tsan_atomic##bits##_compare_exchange_##strength(u##bits *ptr, u##bits *exp, \ + u##bits val, int mo, int fail_mo); \ + int __tsan_atomic##bits##_compare_exchange_##strength(u##bits *ptr, u##bits *exp, \ + u##bits val, int mo, int fail_mo) \ + { \ + if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) { \ + check_access(ptr, bits / BITS_PER_BYTE, \ + KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE | \ + KCSAN_ACCESS_ATOMIC); \ + } \ + return __atomic_compare_exchange_n(ptr, exp, val, weak, mo, fail_mo); \ + } \ + EXPORT_SYMBOL(__tsan_atomic##bits##_compare_exchange_##strength) + +#define DEFINE_TSAN_ATOMIC_CMPXCHG_VAL(bits) \ + u##bits __tsan_atomic##bits##_compare_exchange_val(u##bits *ptr, u##bits exp, u##bits val, \ + int mo, int fail_mo); \ + u##bits __tsan_atomic##bits##_compare_exchange_val(u##bits *ptr, u##bits exp, u##bits val, \ + int mo, int fail_mo) \ + { \ + if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) { \ + check_access(ptr, bits / BITS_PER_BYTE, \ + KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE | \ + KCSAN_ACCESS_ATOMIC); \ + } \ + __atomic_compare_exchange_n(ptr, &exp, val, 0, mo, fail_mo); \ + return exp; \ + } \ + EXPORT_SYMBOL(__tsan_atomic##bits##_compare_exchange_val) + +#define DEFINE_TSAN_ATOMIC_OPS(bits) \ + DEFINE_TSAN_ATOMIC_LOAD_STORE(bits); \ + DEFINE_TSAN_ATOMIC_RMW(exchange, bits, _n); \ + DEFINE_TSAN_ATOMIC_RMW(fetch_add, bits, ); \ + DEFINE_TSAN_ATOMIC_RMW(fetch_sub, bits, ); \ + DEFINE_TSAN_ATOMIC_RMW(fetch_and, bits, ); \ + DEFINE_TSAN_ATOMIC_RMW(fetch_or, bits, ); \ + DEFINE_TSAN_ATOMIC_RMW(fetch_xor, bits, ); \ + DEFINE_TSAN_ATOMIC_RMW(fetch_nand, bits, ); \ + DEFINE_TSAN_ATOMIC_CMPXCHG(bits, strong, 0); \ + DEFINE_TSAN_ATOMIC_CMPXCHG(bits, weak, 1); \ + DEFINE_TSAN_ATOMIC_CMPXCHG_VAL(bits) + +DEFINE_TSAN_ATOMIC_OPS(8); +DEFINE_TSAN_ATOMIC_OPS(16); +DEFINE_TSAN_ATOMIC_OPS(32); +#ifdef CONFIG_64BIT +DEFINE_TSAN_ATOMIC_OPS(64); +#endif + +void __tsan_atomic_thread_fence(int memorder); +void __tsan_atomic_thread_fence(int memorder) +{ + __atomic_thread_fence(memorder); +} +EXPORT_SYMBOL(__tsan_atomic_thread_fence); + +void __tsan_atomic_signal_fence(int memorder); +void __tsan_atomic_signal_fence(int memorder) { } +EXPORT_SYMBOL(__tsan_atomic_signal_fence); + +#ifdef __HAVE_ARCH_MEMSET +void *__tsan_memset(void *s, int c, size_t count); +noinline void *__tsan_memset(void *s, int c, size_t count) +{ + /* + * Instead of not setting up watchpoints where accessed size is greater + * than MAX_ENCODABLE_SIZE, truncate checked size to MAX_ENCODABLE_SIZE. + */ + size_t check_len = min_t(size_t, count, MAX_ENCODABLE_SIZE); + + check_access(s, check_len, KCSAN_ACCESS_WRITE); + return memset(s, c, count); +} +#else +void *__tsan_memset(void *s, int c, size_t count) __alias(memset); +#endif +EXPORT_SYMBOL(__tsan_memset); + +#ifdef __HAVE_ARCH_MEMMOVE +void *__tsan_memmove(void *dst, const void *src, size_t len); +noinline void *__tsan_memmove(void *dst, const void *src, size_t len) +{ + size_t check_len = min_t(size_t, len, MAX_ENCODABLE_SIZE); + + check_access(dst, check_len, KCSAN_ACCESS_WRITE); + check_access(src, check_len, 0); + return memmove(dst, src, len); +} +#else +void *__tsan_memmove(void *dst, const void *src, size_t len) __alias(memmove); +#endif +EXPORT_SYMBOL(__tsan_memmove); + +#ifdef __HAVE_ARCH_MEMCPY +void *__tsan_memcpy(void *dst, const void *src, size_t len); +noinline void *__tsan_memcpy(void *dst, const void *src, size_t len) +{ + size_t check_len = min_t(size_t, len, MAX_ENCODABLE_SIZE); + + check_access(dst, check_len, KCSAN_ACCESS_WRITE); + check_access(src, check_len, 0); + return memcpy(dst, src, len); +} +#else +void *__tsan_memcpy(void *dst, const void *src, size_t len) __alias(memcpy); +#endif +EXPORT_SYMBOL(__tsan_memcpy); -- cgit v1.2.3