From 5d1646d90e1f2cceb9f0828f4b28318cd0ec7744 Mon Sep 17 00:00:00 2001 From: Daniel Baumann Date: Sat, 27 Apr 2024 12:05:51 +0200 Subject: Adding upstream version 5.10.209. Signed-off-by: Daniel Baumann --- tools/lib/bpf/btf.c | 4484 +++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 4484 insertions(+) create mode 100644 tools/lib/bpf/btf.c (limited to 'tools/lib/bpf/btf.c') diff --git a/tools/lib/bpf/btf.c b/tools/lib/bpf/btf.c new file mode 100644 index 000000000..f7c48b1fb --- /dev/null +++ b/tools/lib/bpf/btf.c @@ -0,0 +1,4484 @@ +// SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) +/* Copyright (c) 2018 Facebook */ + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include "btf.h" +#include "bpf.h" +#include "libbpf.h" +#include "libbpf_internal.h" +#include "hashmap.h" + +#define BTF_MAX_NR_TYPES 0x7fffffffU +#define BTF_MAX_STR_OFFSET 0x7fffffffU + +static struct btf_type btf_void; + +struct btf { + /* raw BTF data in native endianness */ + void *raw_data; + /* raw BTF data in non-native endianness */ + void *raw_data_swapped; + __u32 raw_size; + /* whether target endianness differs from the native one */ + bool swapped_endian; + + /* + * When BTF is loaded from an ELF or raw memory it is stored + * in a contiguous memory block. The hdr, type_data, and, strs_data + * point inside that memory region to their respective parts of BTF + * representation: + * + * +--------------------------------+ + * | Header | Types | Strings | + * +--------------------------------+ + * ^ ^ ^ + * | | | + * hdr | | + * types_data-+ | + * strs_data------------+ + * + * If BTF data is later modified, e.g., due to types added or + * removed, BTF deduplication performed, etc, this contiguous + * representation is broken up into three independently allocated + * memory regions to be able to modify them independently. + * raw_data is nulled out at that point, but can be later allocated + * and cached again if user calls btf__get_raw_data(), at which point + * raw_data will contain a contiguous copy of header, types, and + * strings: + * + * +----------+ +---------+ +-----------+ + * | Header | | Types | | Strings | + * +----------+ +---------+ +-----------+ + * ^ ^ ^ + * | | | + * hdr | | + * types_data----+ | + * strs_data------------------+ + * + * +----------+---------+-----------+ + * | Header | Types | Strings | + * raw_data----->+----------+---------+-----------+ + */ + struct btf_header *hdr; + + void *types_data; + size_t types_data_cap; /* used size stored in hdr->type_len */ + + /* type ID to `struct btf_type *` lookup index */ + __u32 *type_offs; + size_t type_offs_cap; + __u32 nr_types; + + void *strs_data; + size_t strs_data_cap; /* used size stored in hdr->str_len */ + + /* lookup index for each unique string in strings section */ + struct hashmap *strs_hash; + /* whether strings are already deduplicated */ + bool strs_deduped; + /* BTF object FD, if loaded into kernel */ + int fd; + + /* Pointer size (in bytes) for a target architecture of this BTF */ + int ptr_sz; +}; + +static inline __u64 ptr_to_u64(const void *ptr) +{ + return (__u64) (unsigned long) ptr; +} + +/* Ensure given dynamically allocated memory region pointed to by *data* with + * capacity of *cap_cnt* elements each taking *elem_sz* bytes has enough + * memory to accomodate *add_cnt* new elements, assuming *cur_cnt* elements + * are already used. At most *max_cnt* elements can be ever allocated. + * If necessary, memory is reallocated and all existing data is copied over, + * new pointer to the memory region is stored at *data, new memory region + * capacity (in number of elements) is stored in *cap. + * On success, memory pointer to the beginning of unused memory is returned. + * On error, NULL is returned. + */ +void *btf_add_mem(void **data, size_t *cap_cnt, size_t elem_sz, + size_t cur_cnt, size_t max_cnt, size_t add_cnt) +{ + size_t new_cnt; + void *new_data; + + if (cur_cnt + add_cnt <= *cap_cnt) + return *data + cur_cnt * elem_sz; + + /* requested more than the set limit */ + if (cur_cnt + add_cnt > max_cnt) + return NULL; + + new_cnt = *cap_cnt; + new_cnt += new_cnt / 4; /* expand by 25% */ + if (new_cnt < 16) /* but at least 16 elements */ + new_cnt = 16; + if (new_cnt > max_cnt) /* but not exceeding a set limit */ + new_cnt = max_cnt; + if (new_cnt < cur_cnt + add_cnt) /* also ensure we have enough memory */ + new_cnt = cur_cnt + add_cnt; + + new_data = libbpf_reallocarray(*data, new_cnt, elem_sz); + if (!new_data) + return NULL; + + /* zero out newly allocated portion of memory */ + memset(new_data + (*cap_cnt) * elem_sz, 0, (new_cnt - *cap_cnt) * elem_sz); + + *data = new_data; + *cap_cnt = new_cnt; + return new_data + cur_cnt * elem_sz; +} + +/* Ensure given dynamically allocated memory region has enough allocated space + * to accommodate *need_cnt* elements of size *elem_sz* bytes each + */ +int btf_ensure_mem(void **data, size_t *cap_cnt, size_t elem_sz, size_t need_cnt) +{ + void *p; + + if (need_cnt <= *cap_cnt) + return 0; + + p = btf_add_mem(data, cap_cnt, elem_sz, *cap_cnt, SIZE_MAX, need_cnt - *cap_cnt); + if (!p) + return -ENOMEM; + + return 0; +} + +static int btf_add_type_idx_entry(struct btf *btf, __u32 type_off) +{ + __u32 *p; + + p = btf_add_mem((void **)&btf->type_offs, &btf->type_offs_cap, sizeof(__u32), + btf->nr_types + 1, BTF_MAX_NR_TYPES, 1); + if (!p) + return -ENOMEM; + + *p = type_off; + return 0; +} + +static void btf_bswap_hdr(struct btf_header *h) +{ + h->magic = bswap_16(h->magic); + h->hdr_len = bswap_32(h->hdr_len); + h->type_off = bswap_32(h->type_off); + h->type_len = bswap_32(h->type_len); + h->str_off = bswap_32(h->str_off); + h->str_len = bswap_32(h->str_len); +} + +static int btf_parse_hdr(struct btf *btf) +{ + struct btf_header *hdr = btf->hdr; + __u32 meta_left; + + if (btf->raw_size < sizeof(struct btf_header)) { + pr_debug("BTF header not found\n"); + return -EINVAL; + } + + if (hdr->magic == bswap_16(BTF_MAGIC)) { + btf->swapped_endian = true; + if (bswap_32(hdr->hdr_len) != sizeof(struct btf_header)) { + pr_warn("Can't load BTF with non-native endianness due to unsupported header length %u\n", + bswap_32(hdr->hdr_len)); + return -ENOTSUP; + } + btf_bswap_hdr(hdr); + } else if (hdr->magic != BTF_MAGIC) { + pr_debug("Invalid BTF magic: %x\n", hdr->magic); + return -EINVAL; + } + + if (btf->raw_size < hdr->hdr_len) { + pr_debug("BTF header len %u larger than data size %u\n", + hdr->hdr_len, btf->raw_size); + return -EINVAL; + } + + meta_left = btf->raw_size - hdr->hdr_len; + if (meta_left < (long long)hdr->str_off + hdr->str_len) { + pr_debug("Invalid BTF total size: %u\n", btf->raw_size); + return -EINVAL; + } + + if ((long long)hdr->type_off + hdr->type_len > hdr->str_off) { + pr_debug("Invalid BTF data sections layout: type data at %u + %u, strings data at %u + %u\n", + hdr->type_off, hdr->type_len, hdr->str_off, hdr->str_len); + return -EINVAL; + } + + if (hdr->type_off % 4) { + pr_debug("BTF type section is not aligned to 4 bytes\n"); + return -EINVAL; + } + + return 0; +} + +static int btf_parse_str_sec(struct btf *btf) +{ + const struct btf_header *hdr = btf->hdr; + const char *start = btf->strs_data; + const char *end = start + btf->hdr->str_len; + + if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_STR_OFFSET || + start[0] || end[-1]) { + pr_debug("Invalid BTF string section\n"); + return -EINVAL; + } + + return 0; +} + +static int btf_type_size(const struct btf_type *t) +{ + const int base_size = sizeof(struct btf_type); + __u16 vlen = btf_vlen(t); + + switch (btf_kind(t)) { + case BTF_KIND_FWD: + case BTF_KIND_CONST: + case BTF_KIND_VOLATILE: + case BTF_KIND_RESTRICT: + case BTF_KIND_PTR: + case BTF_KIND_TYPEDEF: + case BTF_KIND_FUNC: + return base_size; + case BTF_KIND_INT: + return base_size + sizeof(__u32); + case BTF_KIND_ENUM: + return base_size + vlen * sizeof(struct btf_enum); + case BTF_KIND_ARRAY: + return base_size + sizeof(struct btf_array); + case BTF_KIND_STRUCT: + case BTF_KIND_UNION: + return base_size + vlen * sizeof(struct btf_member); + case BTF_KIND_FUNC_PROTO: + return base_size + vlen * sizeof(struct btf_param); + case BTF_KIND_VAR: + return base_size + sizeof(struct btf_var); + case BTF_KIND_DATASEC: + return base_size + vlen * sizeof(struct btf_var_secinfo); + default: + pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t)); + return -EINVAL; + } +} + +static void btf_bswap_type_base(struct btf_type *t) +{ + t->name_off = bswap_32(t->name_off); + t->info = bswap_32(t->info); + t->type = bswap_32(t->type); +} + +static int btf_bswap_type_rest(struct btf_type *t) +{ + struct btf_var_secinfo *v; + struct btf_member *m; + struct btf_array *a; + struct btf_param *p; + struct btf_enum *e; + __u16 vlen = btf_vlen(t); + int i; + + switch (btf_kind(t)) { + case BTF_KIND_FWD: + case BTF_KIND_CONST: + case BTF_KIND_VOLATILE: + case BTF_KIND_RESTRICT: + case BTF_KIND_PTR: + case BTF_KIND_TYPEDEF: + case BTF_KIND_FUNC: + return 0; + case BTF_KIND_INT: + *(__u32 *)(t + 1) = bswap_32(*(__u32 *)(t + 1)); + return 0; + case BTF_KIND_ENUM: + for (i = 0, e = btf_enum(t); i < vlen; i++, e++) { + e->name_off = bswap_32(e->name_off); + e->val = bswap_32(e->val); + } + return 0; + case BTF_KIND_ARRAY: + a = btf_array(t); + a->type = bswap_32(a->type); + a->index_type = bswap_32(a->index_type); + a->nelems = bswap_32(a->nelems); + return 0; + case BTF_KIND_STRUCT: + case BTF_KIND_UNION: + for (i = 0, m = btf_members(t); i < vlen; i++, m++) { + m->name_off = bswap_32(m->name_off); + m->type = bswap_32(m->type); + m->offset = bswap_32(m->offset); + } + return 0; + case BTF_KIND_FUNC_PROTO: + for (i = 0, p = btf_params(t); i < vlen; i++, p++) { + p->name_off = bswap_32(p->name_off); + p->type = bswap_32(p->type); + } + return 0; + case BTF_KIND_VAR: + btf_var(t)->linkage = bswap_32(btf_var(t)->linkage); + return 0; + case BTF_KIND_DATASEC: + for (i = 0, v = btf_var_secinfos(t); i < vlen; i++, v++) { + v->type = bswap_32(v->type); + v->offset = bswap_32(v->offset); + v->size = bswap_32(v->size); + } + return 0; + default: + pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t)); + return -EINVAL; + } +} + +static int btf_parse_type_sec(struct btf *btf) +{ + struct btf_header *hdr = btf->hdr; + void *next_type = btf->types_data; + void *end_type = next_type + hdr->type_len; + int err, i = 0, type_size; + + /* VOID (type_id == 0) is specially handled by btf__get_type_by_id(), + * so ensure we can never properly use its offset from index by + * setting it to a large value + */ + err = btf_add_type_idx_entry(btf, UINT_MAX); + if (err) + return err; + + while (next_type + sizeof(struct btf_type) <= end_type) { + i++; + + if (btf->swapped_endian) + btf_bswap_type_base(next_type); + + type_size = btf_type_size(next_type); + if (type_size < 0) + return type_size; + if (next_type + type_size > end_type) { + pr_warn("BTF type [%d] is malformed\n", i); + return -EINVAL; + } + + if (btf->swapped_endian && btf_bswap_type_rest(next_type)) + return -EINVAL; + + err = btf_add_type_idx_entry(btf, next_type - btf->types_data); + if (err) + return err; + + next_type += type_size; + btf->nr_types++; + } + + if (next_type != end_type) { + pr_warn("BTF types data is malformed\n"); + return -EINVAL; + } + + return 0; +} + +__u32 btf__get_nr_types(const struct btf *btf) +{ + return btf->nr_types; +} + +/* internal helper returning non-const pointer to a type */ +static struct btf_type *btf_type_by_id(struct btf *btf, __u32 type_id) +{ + if (type_id == 0) + return &btf_void; + + return btf->types_data + btf->type_offs[type_id]; +} + +const struct btf_type *btf__type_by_id(const struct btf *btf, __u32 type_id) +{ + if (type_id > btf->nr_types) + return NULL; + return btf_type_by_id((struct btf *)btf, type_id); +} + +static int determine_ptr_size(const struct btf *btf) +{ + const struct btf_type *t; + const char *name; + int i; + + for (i = 1; i <= btf->nr_types; i++) { + t = btf__type_by_id(btf, i); + if (!btf_is_int(t)) + continue; + + name = btf__name_by_offset(btf, t->name_off); + if (!name) + continue; + + if (strcmp(name, "long int") == 0 || + strcmp(name, "long unsigned int") == 0) { + if (t->size != 4 && t->size != 8) + continue; + return t->size; + } + } + + return -1; +} + +static size_t btf_ptr_sz(const struct btf *btf) +{ + if (!btf->ptr_sz) + ((struct btf *)btf)->ptr_sz = determine_ptr_size(btf); + return btf->ptr_sz < 0 ? sizeof(void *) : btf->ptr_sz; +} + +/* Return pointer size this BTF instance assumes. The size is heuristically + * determined by looking for 'long' or 'unsigned long' integer type and + * recording its size in bytes. If BTF type information doesn't have any such + * type, this function returns 0. In the latter case, native architecture's + * pointer size is assumed, so will be either 4 or 8, depending on + * architecture that libbpf was compiled for. It's possible to override + * guessed value by using btf__set_pointer_size() API. + */ +size_t btf__pointer_size(const struct btf *btf) +{ + if (!btf->ptr_sz) + ((struct btf *)btf)->ptr_sz = determine_ptr_size(btf); + + if (btf->ptr_sz < 0) + /* not enough BTF type info to guess */ + return 0; + + return btf->ptr_sz; +} + +/* Override or set pointer size in bytes. Only values of 4 and 8 are + * supported. + */ +int btf__set_pointer_size(struct btf *btf, size_t ptr_sz) +{ + if (ptr_sz != 4 && ptr_sz != 8) + return -EINVAL; + btf->ptr_sz = ptr_sz; + return 0; +} + +static bool is_host_big_endian(void) +{ +#if __BYTE_ORDER == __LITTLE_ENDIAN + return false; +#elif __BYTE_ORDER == __BIG_ENDIAN + return true; +#else +# error "Unrecognized __BYTE_ORDER__" +#endif +} + +enum btf_endianness btf__endianness(const struct btf *btf) +{ + if (is_host_big_endian()) + return btf->swapped_endian ? BTF_LITTLE_ENDIAN : BTF_BIG_ENDIAN; + else + return btf->swapped_endian ? BTF_BIG_ENDIAN : BTF_LITTLE_ENDIAN; +} + +int btf__set_endianness(struct btf *btf, enum btf_endianness endian) +{ + if (endian != BTF_LITTLE_ENDIAN && endian != BTF_BIG_ENDIAN) + return -EINVAL; + + btf->swapped_endian = is_host_big_endian() != (endian == BTF_BIG_ENDIAN); + if (!btf->swapped_endian) { + free(btf->raw_data_swapped); + btf->raw_data_swapped = NULL; + } + return 0; +} + +static bool btf_type_is_void(const struct btf_type *t) +{ + return t == &btf_void || btf_is_fwd(t); +} + +static bool btf_type_is_void_or_null(const struct btf_type *t) +{ + return !t || btf_type_is_void(t); +} + +#define MAX_RESOLVE_DEPTH 32 + +__s64 btf__resolve_size(const struct btf *btf, __u32 type_id) +{ + const struct btf_array *array; + const struct btf_type *t; + __u32 nelems = 1; + __s64 size = -1; + int i; + + t = btf__type_by_id(btf, type_id); + for (i = 0; i < MAX_RESOLVE_DEPTH && !btf_type_is_void_or_null(t); + i++) { + switch (btf_kind(t)) { + case BTF_KIND_INT: + case BTF_KIND_STRUCT: + case BTF_KIND_UNION: + case BTF_KIND_ENUM: + case BTF_KIND_DATASEC: + size = t->size; + goto done; + case BTF_KIND_PTR: + size = btf_ptr_sz(btf); + goto done; + case BTF_KIND_TYPEDEF: + case BTF_KIND_VOLATILE: + case BTF_KIND_CONST: + case BTF_KIND_RESTRICT: + case BTF_KIND_VAR: + type_id = t->type; + break; + case BTF_KIND_ARRAY: + array = btf_array(t); + if (nelems && array->nelems > UINT32_MAX / nelems) + return -E2BIG; + nelems *= array->nelems; + type_id = array->type; + break; + default: + return -EINVAL; + } + + t = btf__type_by_id(btf, type_id); + } + +done: + if (size < 0) + return -EINVAL; + if (nelems && size > UINT32_MAX / nelems) + return -E2BIG; + + return nelems * size; +} + +int btf__align_of(const struct btf *btf, __u32 id) +{ + const struct btf_type *t = btf__type_by_id(btf, id); + __u16 kind = btf_kind(t); + + switch (kind) { + case BTF_KIND_INT: + case BTF_KIND_ENUM: + return min(btf_ptr_sz(btf), (size_t)t->size); + case BTF_KIND_PTR: + return btf_ptr_sz(btf); + case BTF_KIND_TYPEDEF: + case BTF_KIND_VOLATILE: + case BTF_KIND_CONST: + case BTF_KIND_RESTRICT: + return btf__align_of(btf, t->type); + case BTF_KIND_ARRAY: + return btf__align_of(btf, btf_array(t)->type); + case BTF_KIND_STRUCT: + case BTF_KIND_UNION: { + const struct btf_member *m = btf_members(t); + __u16 vlen = btf_vlen(t); + int i, max_align = 1, align; + + for (i = 0; i < vlen; i++, m++) { + align = btf__align_of(btf, m->type); + if (align <= 0) + return align; + max_align = max(max_align, align); + + /* if field offset isn't aligned according to field + * type's alignment, then struct must be packed + */ + if (btf_member_bitfield_size(t, i) == 0 && + (m->offset % (8 * align)) != 0) + return 1; + } + + /* if struct/union size isn't a multiple of its alignment, + * then struct must be packed + */ + if ((t->size % max_align) != 0) + return 1; + + return max_align; + } + default: + pr_warn("unsupported BTF_KIND:%u\n", btf_kind(t)); + return 0; + } +} + +int btf__resolve_type(const struct btf *btf, __u32 type_id) +{ + const struct btf_type *t; + int depth = 0; + + t = btf__type_by_id(btf, type_id); + while (depth < MAX_RESOLVE_DEPTH && + !btf_type_is_void_or_null(t) && + (btf_is_mod(t) || btf_is_typedef(t) || btf_is_var(t))) { + type_id = t->type; + t = btf__type_by_id(btf, type_id); + depth++; + } + + if (depth == MAX_RESOLVE_DEPTH || btf_type_is_void_or_null(t)) + return -EINVAL; + + return type_id; +} + +__s32 btf__find_by_name(const struct btf *btf, const char *type_name) +{ + __u32 i; + + if (!strcmp(type_name, "void")) + return 0; + + for (i = 1; i <= btf->nr_types; i++) { + const struct btf_type *t = btf__type_by_id(btf, i); + const char *name = btf__name_by_offset(btf, t->name_off); + + if (name && !strcmp(type_name, name)) + return i; + } + + return -ENOENT; +} + +__s32 btf__find_by_name_kind(const struct btf *btf, const char *type_name, + __u32 kind) +{ + __u32 i; + + if (kind == BTF_KIND_UNKN || !strcmp(type_name, "void")) + return 0; + + for (i = 1; i <= btf->nr_types; i++) { + const struct btf_type *t = btf__type_by_id(btf, i); + const char *name; + + if (btf_kind(t) != kind) + continue; + name = btf__name_by_offset(btf, t->name_off); + if (name && !strcmp(type_name, name)) + return i; + } + + return -ENOENT; +} + +static bool btf_is_modifiable(const struct btf *btf) +{ + return (void *)btf->hdr != btf->raw_data; +} + +void btf__free(struct btf *btf) +{ + if (IS_ERR_OR_NULL(btf)) + return; + + if (btf->fd >= 0) + close(btf->fd); + + if (btf_is_modifiable(btf)) { + /* if BTF was modified after loading, it will have a split + * in-memory representation for header, types, and strings + * sections, so we need to free all of them individually. It + * might still have a cached contiguous raw data present, + * which will be unconditionally freed below. + */ + free(btf->hdr); + free(btf->types_data); + free(btf->strs_data); + } + free(btf->raw_data); + free(btf->raw_data_swapped); + free(btf->type_offs); + free(btf); +} + +struct btf *btf__new_empty(void) +{ + struct btf *btf; + + btf = calloc(1, sizeof(*btf)); + if (!btf) + return ERR_PTR(-ENOMEM); + + btf->fd = -1; + btf->ptr_sz = sizeof(void *); + btf->swapped_endian = false; + + /* +1 for empty string at offset 0 */ + btf->raw_size = sizeof(struct btf_header) + 1; + btf->raw_data = calloc(1, btf->raw_size); + if (!btf->raw_data) { + free(btf); + return ERR_PTR(-ENOMEM); + } + + btf->hdr = btf->raw_data; + btf->hdr->hdr_len = sizeof(struct btf_header); + btf->hdr->magic = BTF_MAGIC; + btf->hdr->version = BTF_VERSION; + + btf->types_data = btf->raw_data + btf->hdr->hdr_len; + btf->strs_data = btf->raw_data + btf->hdr->hdr_len; + btf->hdr->str_len = 1; /* empty string at offset 0 */ + + return btf; +} + +struct btf *btf__new(const void *data, __u32 size) +{ + struct btf *btf; + int err; + + btf = calloc(1, sizeof(struct btf)); + if (!btf) + return ERR_PTR(-ENOMEM); + + btf->raw_data = malloc(size); + if (!btf->raw_data) { + err = -ENOMEM; + goto done; + } + memcpy(btf->raw_data, data, size); + btf->raw_size = size; + + btf->hdr = btf->raw_data; + err = btf_parse_hdr(btf); + if (err) + goto done; + + btf->strs_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->str_off; + btf->types_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->type_off; + + err = btf_parse_str_sec(btf); + err = err ?: btf_parse_type_sec(btf); + if (err) + goto done; + + btf->fd = -1; + +done: + if (err) { + btf__free(btf); + return ERR_PTR(err); + } + + return btf; +} + +struct btf *btf__parse_elf(const char *path, struct btf_ext **btf_ext) +{ + Elf_Data *btf_data = NULL, *btf_ext_data = NULL; + int err = 0, fd = -1, idx = 0; + struct btf *btf = NULL; + Elf_Scn *scn = NULL; + Elf *elf = NULL; + GElf_Ehdr ehdr; + + if (elf_version(EV_CURRENT) == EV_NONE) { + pr_warn("failed to init libelf for %s\n", path); + return ERR_PTR(-LIBBPF_ERRNO__LIBELF); + } + + fd = open(path, O_RDONLY); + if (fd < 0) { + err = -errno; + pr_warn("failed to open %s: %s\n", path, strerror(errno)); + return ERR_PTR(err); + } + + err = -LIBBPF_ERRNO__FORMAT; + + elf = elf_begin(fd, ELF_C_READ, NULL); + if (!elf) { + pr_warn("failed to open %s as ELF file\n", path); + goto done; + } + if (!gelf_getehdr(elf, &ehdr)) { + pr_warn("failed to get EHDR from %s\n", path); + goto done; + } + if (!elf_rawdata(elf_getscn(elf, ehdr.e_shstrndx), NULL)) { + pr_warn("failed to get e_shstrndx from %s\n", path); + goto done; + } + + while ((scn = elf_nextscn(elf, scn)) != NULL) { + GElf_Shdr sh; + char *name; + + idx++; + if (gelf_getshdr(scn, &sh) != &sh) { + pr_warn("failed to get section(%d) header from %s\n", + idx, path); + goto done; + } + name = elf_strptr(elf, ehdr.e_shstrndx, sh.sh_name); + if (!name) { + pr_warn("failed to get section(%d) name from %s\n", + idx, path); + goto done; + } + if (strcmp(name, BTF_ELF_SEC) == 0) { + btf_data = elf_getdata(scn, 0); + if (!btf_data) { + pr_warn("failed to get section(%d, %s) data from %s\n", + idx, name, path); + goto done; + } + continue; + } else if (btf_ext && strcmp(name, BTF_EXT_ELF_SEC) == 0) { + btf_ext_data = elf_getdata(scn, 0); + if (!btf_ext_data) { + pr_warn("failed to get section(%d, %s) data from %s\n", + idx, name, path); + goto done; + } + continue; + } + } + + err = 0; + + if (!btf_data) { + err = -ENOENT; + goto done; + } + btf = btf__new(btf_data->d_buf, btf_data->d_size); + if (IS_ERR(btf)) + goto done; + + switch (gelf_getclass(elf)) { + case ELFCLASS32: + btf__set_pointer_size(btf, 4); + break; + case ELFCLASS64: + btf__set_pointer_size(btf, 8); + break; + default: + pr_warn("failed to get ELF class (bitness) for %s\n", path); + break; + } + + if (btf_ext && btf_ext_data) { + *btf_ext = btf_ext__new(btf_ext_data->d_buf, + btf_ext_data->d_size); + if (IS_ERR(*btf_ext)) + goto done; + } else if (btf_ext) { + *btf_ext = NULL; + } +done: + if (elf) + elf_end(elf); + close(fd); + + if (err) + return ERR_PTR(err); + /* + * btf is always parsed before btf_ext, so no need to clean up + * btf_ext, if btf loading failed + */ + if (IS_ERR(btf)) + return btf; + if (btf_ext && IS_ERR(*btf_ext)) { + btf__free(btf); + err = PTR_ERR(*btf_ext); + return ERR_PTR(err); + } + return btf; +} + +struct btf *btf__parse_raw(const char *path) +{ + struct btf *btf = NULL; + void *data = NULL; + FILE *f = NULL; + __u16 magic; + int err = 0; + long sz; + + f = fopen(path, "rb"); + if (!f) { + err = -errno; + goto err_out; + } + + /* check BTF magic */ + if (fread(&magic, 1, sizeof(magic), f) < sizeof(magic)) { + err = -EIO; + goto err_out; + } + if (magic != BTF_MAGIC && magic != bswap_16(BTF_MAGIC)) { + /* definitely not a raw BTF */ + err = -EPROTO; + goto err_out; + } + + /* get file size */ + if (fseek(f, 0, SEEK_END)) { + err = -errno; + goto err_out; + } + sz = ftell(f); + if (sz < 0) { + err = -errno; + goto err_out; + } + /* rewind to the start */ + if (fseek(f, 0, SEEK_SET)) { + err = -errno; + goto err_out; + } + + /* pre-alloc memory and read all of BTF data */ + data = malloc(sz); + if (!data) { + err = -ENOMEM; + goto err_out; + } + if (fread(data, 1, sz, f) < sz) { + err = -EIO; + goto err_out; + } + + /* finally parse BTF data */ + btf = btf__new(data, sz); + +err_out: + free(data); + if (f) + fclose(f); + return err ? ERR_PTR(err) : btf; +} + +struct btf *btf__parse(const char *path, struct btf_ext **btf_ext) +{ + struct btf *btf; + + if (btf_ext) + *btf_ext = NULL; + + btf = btf__parse_raw(path); + if (!IS_ERR(btf) || PTR_ERR(btf) != -EPROTO) + return btf; + + return btf__parse_elf(path, btf_ext); +} + +static int compare_vsi_off(const void *_a, const void *_b) +{ + const struct btf_var_secinfo *a = _a; + const struct btf_var_secinfo *b = _b; + + return a->offset - b->offset; +} + +static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf, + struct btf_type *t) +{ + __u32 size = 0, off = 0, i, vars = btf_vlen(t); + const char *name = btf__name_by_offset(btf, t->name_off); + const struct btf_type *t_var; + struct btf_var_secinfo *vsi; + const struct btf_var *var; + int ret; + + if (!name) { + pr_debug("No name found in string section for DATASEC kind.\n"); + return -ENOENT; + } + + /* .extern datasec size and var offsets were set correctly during + * extern collection step, so just skip straight to sorting variables + */ + if (t->size) + goto sort_vars; + + ret = bpf_object__section_size(obj, name, &size); + if (ret || !size || (t->size && t->size != size)) { + pr_debug("Invalid size for section %s: %u bytes\n", name, size); + return -ENOENT; + } + + t->size = size; + + for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) { + t_var = btf__type_by_id(btf, vsi->type); + var = btf_var(t_var); + + if (!btf_is_var(t_var)) { + pr_debug("Non-VAR type seen in section %s\n", name); + return -EINVAL; + } + + if (var->linkage == BTF_VAR_STATIC) + continue; + + name = btf__name_by_offset(btf, t_var->name_off); + if (!name) { + pr_debug("No name found in string section for VAR kind\n"); + return -ENOENT; + } + + ret = bpf_object__variable_offset(obj, name, &off); + if (ret) { + pr_debug("No offset found in symbol table for VAR %s\n", + name); + return -ENOENT; + } + + vsi->offset = off; + } + +sort_vars: + qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off); + return 0; +} + +int btf__finalize_data(struct bpf_object *obj, struct btf *btf) +{ + int err = 0; + __u32 i; + + for (i = 1; i <= btf->nr_types; i++) { + struct btf_type *t = btf_type_by_id(btf, i); + + /* Loader needs to fix up some of the things compiler + * couldn't get its hands on while emitting BTF. This + * is section size and global variable offset. We use + * the info from the ELF itself for this purpose. + */ + if (btf_is_datasec(t)) { + err = btf_fixup_datasec(obj, btf, t); + if (err) + break; + } + } + + return err; +} + +static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian); + +int btf__load(struct btf *btf) +{ + __u32 log_buf_size = 0, raw_size; + char *log_buf = NULL; + void *raw_data; + int err = 0; + + if (btf->fd >= 0) + return -EEXIST; + +retry_load: + if (log_buf_size) { + log_buf = malloc(log_buf_size); + if (!log_buf) + return -ENOMEM; + + *log_buf = 0; + } + + raw_data = btf_get_raw_data(btf, &raw_size, false); + if (!raw_data) { + err = -ENOMEM; + goto done; + } + /* cache native raw data representation */ + btf->raw_size = raw_size; + btf->raw_data = raw_data; + + btf->fd = bpf_load_btf(raw_data, raw_size, log_buf, log_buf_size, false); + if (btf->fd < 0) { + if (!log_buf || errno == ENOSPC) { + log_buf_size = max((__u32)BPF_LOG_BUF_SIZE, + log_buf_size << 1); + free(log_buf); + goto retry_load; + } + + err = -errno; + pr_warn("Error loading BTF: %s(%d)\n", strerror(errno), errno); + if (*log_buf) + pr_warn("%s\n", log_buf); + goto done; + } + +done: + free(log_buf); + return err; +} + +int btf__fd(const struct btf *btf) +{ + return btf->fd; +} + +void btf__set_fd(struct btf *btf, int fd) +{ + btf->fd = fd; +} + +static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian) +{ + struct btf_header *hdr = btf->hdr; + struct btf_type *t; + void *data, *p; + __u32 data_sz; + int i; + + data = swap_endian ? btf->raw_data_swapped : btf->raw_data; + if (data) { + *size = btf->raw_size; + return data; + } + + data_sz = hdr->hdr_len + hdr->type_len + hdr->str_len; + data = calloc(1, data_sz); + if (!data) + return NULL; + p = data; + + memcpy(p, hdr, hdr->hdr_len); + if (swap_endian) + btf_bswap_hdr(p); + p += hdr->hdr_len; + + memcpy(p, btf->types_data, hdr->type_len); + if (swap_endian) { + for (i = 1; i <= btf->nr_types; i++) { + t = p + btf->type_offs[i]; + /* btf_bswap_type_rest() relies on native t->info, so + * we swap base type info after we swapped all the + * additional information + */ + if (btf_bswap_type_rest(t)) + goto err_out; + btf_bswap_type_base(t); + } + } + p += hdr->type_len; + + memcpy(p, btf->strs_data, hdr->str_len); + p += hdr->str_len; + + *size = data_sz; + return data; +err_out: + free(data); + return NULL; +} + +const void *btf__get_raw_data(const struct btf *btf_ro, __u32 *size) +{ + struct btf *btf = (struct btf *)btf_ro; + __u32 data_sz; + void *data; + + data = btf_get_raw_data(btf, &data_sz, btf->swapped_endian); + if (!data) + return NULL; + + btf->raw_size = data_sz; + if (btf->swapped_endian) + btf->raw_data_swapped = data; + else + btf->raw_data = data; + *size = data_sz; + return data; +} + +const char *btf__str_by_offset(const struct btf *btf, __u32 offset) +{ + if (offset < btf->hdr->str_len) + return btf->strs_data + offset; + else + return NULL; +} + +const char *btf__name_by_offset(const struct btf *btf, __u32 offset) +{ + return btf__str_by_offset(btf, offset); +} + +int btf__get_from_id(__u32 id, struct btf **btf) +{ + struct bpf_btf_info btf_info = { 0 }; + __u32 len = sizeof(btf_info); + __u32 last_size; + int btf_fd; + void *ptr; + int err; + + err = 0; + *btf = NULL; + btf_fd = bpf_btf_get_fd_by_id(id); + if (btf_fd < 0) + return 0; + + /* we won't know btf_size until we call bpf_obj_get_info_by_fd(). so + * let's start with a sane default - 4KiB here - and resize it only if + * bpf_obj_get_info_by_fd() needs a bigger buffer. + */ + btf_info.btf_size = 4096; + last_size = btf_info.btf_size; + ptr = malloc(last_size); + if (!ptr) { + err = -ENOMEM; + goto exit_free; + } + + memset(ptr, 0, last_size); + btf_info.btf = ptr_to_u64(ptr); + err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len); + + if (!err && btf_info.btf_size > last_size) { + void *temp_ptr; + + last_size = btf_info.btf_size; + temp_ptr = realloc(ptr, last_size); + if (!temp_ptr) { + err = -ENOMEM; + goto exit_free; + } + ptr = temp_ptr; + memset(ptr, 0, last_size); + btf_info.btf = ptr_to_u64(ptr); + err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len); + } + + if (err || btf_info.btf_size > last_size) { + err = errno; + goto exit_free; + } + + *btf = btf__new((__u8 *)(long)btf_info.btf, btf_info.btf_size); + if (IS_ERR(*btf)) { + err = PTR_ERR(*btf); + *btf = NULL; + } + +exit_free: + close(btf_fd); + free(ptr); + + return err; +} + +int btf__get_map_kv_tids(const struct btf *btf, const char *map_name, + __u32 expected_key_size, __u32 expected_value_size, + __u32 *key_type_id, __u32 *value_type_id) +{ + const struct btf_type *container_type; + const struct btf_member *key, *value; + const size_t max_name = 256; + char container_name[max_name]; + __s64 key_size, value_size; + __s32 container_id; + + if (snprintf(container_name, max_name, "____btf_map_%s", map_name) == + max_name) { + pr_warn("map:%s length of '____btf_map_%s' is too long\n", + map_name, map_name); + return -EINVAL; + } + + container_id = btf__find_by_name(btf, container_name); + if (container_id < 0) { + pr_debug("map:%s container_name:%s cannot be found in BTF. Missing BPF_ANNOTATE_KV_PAIR?\n", + map_name, container_name); + return container_id; + } + + container_type = btf__type_by_id(btf, container_id); + if (!container_type) { + pr_warn("map:%s cannot find BTF type for container_id:%u\n", + map_name, container_id); + return -EINVAL; + } + + if (!btf_is_struct(container_type) || btf_vlen(container_type) < 2) { + pr_warn("map:%s container_name:%s is an invalid container struct\n", + map_name, container_name); + return -EINVAL; + } + + key = btf_members(container_type); + value = key + 1; + + key_size = btf__resolve_size(btf, key->type); + if (key_size < 0) { + pr_warn("map:%s invalid BTF key_type_size\n", map_name); + return key_size; + } + + if (expected_key_size != key_size) { + pr_warn("map:%s btf_key_type_size:%u != map_def_key_size:%u\n", + map_name, (__u32)key_size, expected_key_size); + return -EINVAL; + } + + value_size = btf__resolve_size(btf, value->type); + if (value_size < 0) { + pr_warn("map:%s invalid BTF value_type_size\n", map_name); + return value_size; + } + + if (expected_value_size != value_size) { + pr_warn("map:%s btf_value_type_size:%u != map_def_value_size:%u\n", + map_name, (__u32)value_size, expected_value_size); + return -EINVAL; + } + + *key_type_id = key->type; + *value_type_id = value->type; + + return 0; +} + +static size_t strs_hash_fn(const void *key, void *ctx) +{ + struct btf *btf = ctx; + const char *str = btf->strs_data + (long)key; + + return str_hash(str); +} + +static bool strs_hash_equal_fn(const void *key1, const void *key2, void *ctx) +{ + struct btf *btf = ctx; + const char *str1 = btf->strs_data + (long)key1; + const char *str2 = btf->strs_data + (long)key2; + + return strcmp(str1, str2) == 0; +} + +static void btf_invalidate_raw_data(struct btf *btf) +{ + if (btf->raw_data) { + free(btf->raw_data); + btf->raw_data = NULL; + } + if (btf->raw_data_swapped) { + free(btf->raw_data_swapped); + btf->raw_data_swapped = NULL; + } +} + +/* Ensure BTF is ready to be modified (by splitting into a three memory + * regions for header, types, and strings). Also invalidate cached + * raw_data, if any. + */ +static int btf_ensure_modifiable(struct btf *btf) +{ + void *hdr, *types, *strs, *strs_end, *s; + struct hashmap *hash = NULL; + long off; + int err; + + if (btf_is_modifiable(btf)) { + /* any BTF modification invalidates raw_data */ + btf_invalidate_raw_data(btf); + return 0; + } + + /* split raw data into three memory regions */ + hdr = malloc(btf->hdr->hdr_len); + types = malloc(btf->hdr->type_len); + strs = malloc(btf->hdr->str_len); + if (!hdr || !types || !strs) + goto err_out; + + memcpy(hdr, btf->hdr, btf->hdr->hdr_len); + memcpy(types, btf->types_data, btf->hdr->type_len); + memcpy(strs, btf->strs_data, btf->hdr->str_len); + + /* build lookup index for all strings */ + hash = hashmap__new(strs_hash_fn, strs_hash_equal_fn, btf); + if (IS_ERR(hash)) { + err = PTR_ERR(hash); + hash = NULL; + goto err_out; + } + + strs_end = strs + btf->hdr->str_len; + for (off = 0, s = strs; s < strs_end; off += strlen(s) + 1, s = strs + off) { + /* hashmap__add() returns EEXIST if string with the same + * content already is in the hash map + */ + err = hashmap__add(hash, (void *)off, (void *)off); + if (err == -EEXIST) + continue; /* duplicate */ + if (err) + goto err_out; + } + + /* only when everything was successful, update internal state */ + btf->hdr = hdr; + btf->types_data = types; + btf->types_data_cap = btf->hdr->type_len; + btf->strs_data = strs; + btf->strs_data_cap = btf->hdr->str_len; + btf->strs_hash = hash; + /* if BTF was created from scratch, all strings are guaranteed to be + * unique and deduplicated + */ + btf->strs_deduped = btf->hdr->str_len <= 1; + + /* invalidate raw_data representation */ + btf_invalidate_raw_data(btf); + + return 0; + +err_out: + hashmap__free(hash); + free(hdr); + free(types); + free(strs); + return -ENOMEM; +} + +static void *btf_add_str_mem(struct btf *btf, size_t add_sz) +{ + return btf_add_mem(&btf->strs_data, &btf->strs_data_cap, 1, + btf->hdr->str_len, BTF_MAX_STR_OFFSET, add_sz); +} + +/* Find an offset in BTF string section that corresponds to a given string *s*. + * Returns: + * - >0 offset into string section, if string is found; + * - -ENOENT, if string is not in the string section; + * - <0, on any other error. + */ +int btf__find_str(struct btf *btf, const char *s) +{ + long old_off, new_off, len; + void *p; + + /* BTF needs to be in a modifiable state to build string lookup index */ + if (btf_ensure_modifiable(btf)) + return -ENOMEM; + + /* see btf__add_str() for why we do this */ + len = strlen(s) + 1; + p = btf_add_str_mem(btf, len); + if (!p) + return -ENOMEM; + + new_off = btf->hdr->str_len; + memcpy(p, s, len); + + if (hashmap__find(btf->strs_hash, (void *)new_off, (void **)&old_off)) + return old_off; + + return -ENOENT; +} + +/* Add a string s to the BTF string section. + * Returns: + * - > 0 offset into string section, on success; + * - < 0, on error. + */ +int btf__add_str(struct btf *btf, const char *s) +{ + long old_off, new_off, len; + void *p; + int err; + + if (btf_ensure_modifiable(btf)) + return -ENOMEM; + + /* Hashmap keys are always offsets within btf->strs_data, so to even + * look up some string from the "outside", we need to first append it + * at the end, so that it can be addressed with an offset. Luckily, + * until btf->hdr->str_len is incremented, that string is just a piece + * of garbage for the rest of BTF code, so no harm, no foul. On the + * other hand, if the string is unique, it's already appended and + * ready to be used, only a simple btf->hdr->str_len increment away. + */ + len = strlen(s) + 1; + p = btf_add_str_mem(btf, len); + if (!p) + return -ENOMEM; + + new_off = btf->hdr->str_len; + memcpy(p, s, len); + + /* Now attempt to add the string, but only if the string with the same + * contents doesn't exist already (HASHMAP_ADD strategy). If such + * string exists, we'll get its offset in old_off (that's old_key). + */ + err = hashmap__insert(btf->strs_hash, (void *)new_off, (void *)new_off, + HASHMAP_ADD, (const void **)&old_off, NULL); + if (err == -EEXIST) + return old_off; /* duplicated string, return existing offset */ + if (err) + return err; + + btf->hdr->str_len += len; /* new unique string, adjust data length */ + return new_off; +} + +static void *btf_add_type_mem(struct btf *btf, size_t add_sz) +{ + return btf_add_mem(&btf->types_data, &btf->types_data_cap, 1, + btf->hdr->type_len, UINT_MAX, add_sz); +} + +static __u32 btf_type_info(int kind, int vlen, int kflag) +{ + return (kflag << 31) | (kind << 24) | vlen; +} + +static void btf_type_inc_vlen(struct btf_type *t) +{ + t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, btf_kflag(t)); +} + +/* + * Append new BTF_KIND_INT type with: + * - *name* - non-empty, non-NULL type name; + * - *sz* - power-of-2 (1, 2, 4, ..) size of the type, in bytes; + * - encoding is a combination of BTF_INT_SIGNED, BTF_INT_CHAR, BTF_INT_BOOL. + * Returns: + * - >0, type ID of newly added BTF type; + * - <0, on error. + */ +int btf__add_int(struct btf *btf, const char *name, size_t byte_sz, int encoding) +{ + struct btf_type *t; + int sz, err, name_off; + + /* non-empty name */ + if (!name || !name[0]) + return -EINVAL; + /* byte_sz must be power of 2 */ + if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 16) + return -EINVAL; + if (encoding & ~(BTF_INT_SIGNED | BTF_INT_CHAR | BTF_INT_BOOL)) + return -EINVAL; + + /* deconstruct BTF, if necessary, and invalidate raw_data */ + if (btf_ensure_modifiable(btf)) + return -ENOMEM; + + sz = sizeof(struct btf_type) + sizeof(int); + t = btf_add_type_mem(btf, sz); + if (!t) + return -ENOMEM; + + /* if something goes wrong later, we might end up with an extra string, + * but that shouldn't be a problem, because BTF can't be constructed + * completely anyway and will most probably be just discarded + */ + name_off = btf__add_str(btf, name); + if (name_off < 0) + return name_off; + + t->name_off = name_off; + t->info = btf_type_info(BTF_KIND_INT, 0, 0); + t->size = byte_sz; + /* set INT info, we don't allow setting legacy bit offset/size */ + *(__u32 *)(t + 1) = (encoding << 24) | (byte_sz * 8); + + err = btf_add_type_idx_entry(btf, btf->hdr->type_len); + if (err) + return err; + + btf->hdr->type_len += sz; + btf->hdr->str_off += sz; + btf->nr_types++; + return btf->nr_types; +} + +/* it's completely legal to append BTF types with type IDs pointing forward to + * types that haven't been appended yet, so we only make sure that id looks + * sane, we can't guarantee that ID will always be valid + */ +static int validate_type_id(int id) +{ + if (id < 0 || id > BTF_MAX_NR_TYPES) + return -EINVAL; + return 0; +} + +/* generic append function for PTR, TYPEDEF, CONST/VOLATILE/RESTRICT */ +static int btf_add_ref_kind(struct btf *btf, int kind, const char *name, int ref_type_id) +{ + struct btf_type *t; + int sz, name_off = 0, err; + + if (validate_type_id(ref_type_id)) + return -EINVAL; + + if (btf_ensure_modifiable(btf)) + return -ENOMEM; + + sz = sizeof(struct btf_type); + t = btf_add_type_mem(btf, sz); + if (!t) + return -ENOMEM; + + if (name && name[0]) { + name_off = btf__add_str(btf, name); + if (name_off < 0) + return name_off; + } + + t->name_off = name_off; + t->info = btf_type_info(kind, 0, 0); + t->type = ref_type_id; + + err = btf_add_type_idx_entry(btf, btf->hdr->type_len); + if (err) + return err; + + btf->hdr->type_len += sz; + btf->hdr->str_off += sz; + btf->nr_types++; + return btf->nr_types; +} + +/* + * Append new BTF_KIND_PTR type with: + * - *ref_type_id* - referenced type ID, it might not exist yet; + * Returns: + * - >0, type ID of newly added BTF type; + * - <0, on error. + */ +int btf__add_ptr(struct btf *btf, int ref_type_id) +{ + return btf_add_ref_kind(btf, BTF_KIND_PTR, NULL, ref_type_id); +} + +/* + * Append new BTF_KIND_ARRAY type with: + * - *index_type_id* - type ID of the type describing array index; + * - *elem_type_id* - type ID of the type describing array element; + * - *nr_elems* - the size of the array; + * Returns: + * - >0, type ID of newly added BTF type; + * - <0, on error. + */ +int btf__add_array(struct btf *btf, int index_type_id, int elem_type_id, __u32 nr_elems) +{ + struct btf_type *t; + struct btf_array *a; + int sz, err; + + if (validate_type_id(index_type_id) || validate_type_id(elem_type_id)) + return -EINVAL; + + if (btf_ensure_modifiable(btf)) + return -ENOMEM; + + sz = sizeof(struct btf_type) + sizeof(struct btf_array); + t = btf_add_type_mem(btf, sz); + if (!t) + return -ENOMEM; + + t->name_off = 0; + t->info = btf_type_info(BTF_KIND_ARRAY, 0, 0); + t->size = 0; + + a = btf_array(t); + a->type = elem_type_id; + a->index_type = index_type_id; + a->nelems = nr_elems; + + err = btf_add_type_idx_entry(btf, btf->hdr->type_len); + if (err) + return err; + + btf->hdr->type_len += sz; + btf->hdr->str_off += sz; + btf->nr_types++; + return btf->nr_types; +} + +/* generic STRUCT/UNION append function */ +static int btf_add_composite(struct btf *btf, int kind, const char *name, __u32 bytes_sz) +{ + struct btf_type *t; + int sz, err, name_off = 0; + + if (btf_ensure_modifiable(btf)) + return -ENOMEM; + + sz = sizeof(struct btf_type); + t = btf_add_type_mem(btf, sz); + if (!t) + return -ENOMEM; + + if (name && name[0]) { + name_off = btf__add_str(btf, name); + if (name_off < 0) + return name_off; + } + + /* start out with vlen=0 and no kflag; this will be adjusted when + * adding each member + */ + t->name_off = name_off; + t->info = btf_type_info(kind, 0, 0); + t->size = bytes_sz; + + err = btf_add_type_idx_entry(btf, btf->hdr->type_len); + if (err) + return err; + + btf->hdr->type_len += sz; + btf->hdr->str_off += sz; + btf->nr_types++; + return btf->nr_types; +} + +/* + * Append new BTF_KIND_STRUCT type with: + * - *name* - name of the struct, can be NULL or empty for anonymous structs; + * - *byte_sz* - size of the struct, in bytes; + * + * Struct initially has no fields in it. Fields can be added by + * btf__add_field() right after btf__add_struct() succeeds. + * + * Returns: + * - >0, type ID of newly added BTF type; + * - <0, on error. + */ +int btf__add_struct(struct btf *btf, const char *name, __u32 byte_sz) +{ + return btf_add_composite(btf, BTF_KIND_STRUCT, name, byte_sz); +} + +/* + * Append new BTF_KIND_UNION type with: + * - *name* - name of the union, can be NULL or empty for anonymous union; + * - *byte_sz* - size of the union, in bytes; + * + * Union initially has no fields in it. Fields can be added by + * btf__add_field() right after btf__add_union() succeeds. All fields + * should have *bit_offset* of 0. + * + * Returns: + * - >0, type ID of newly added BTF type; + * - <0, on error. + */ +int btf__add_union(struct btf *btf, const char *name, __u32 byte_sz) +{ + return btf_add_composite(btf, BTF_KIND_UNION, name, byte_sz); +} + +/* + * Append new field for the current STRUCT/UNION type with: + * - *name* - name of the field, can be NULL or empty for anonymous field; + * - *type_id* - type ID for the type describing field type; + * - *bit_offset* - bit offset of the start of the field within struct/union; + * - *bit_size* - bit size of a bitfield, 0 for non-bitfield fields; + * Returns: + * - 0, on success; + * - <0, on error. + */ +int btf__add_field(struct btf *btf, const char *name, int type_id, + __u32 bit_offset, __u32 bit_size) +{ + struct btf_type *t; + struct btf_member *m; + bool is_bitfield; + int sz, name_off = 0; + + /* last type should be union/struct */ + if (btf->nr_types == 0) + return -EINVAL; + t = btf_type_by_id(btf, btf->nr_types); + if (!btf_is_composite(t)) + return -EINVAL; + + if (validate_type_id(type_id)) + return -EINVAL; + /* best-effort bit field offset/size enforcement */ + is_bitfield = bit_size || (bit_offset % 8 != 0); + if (is_bitfield && (bit_size == 0 || bit_size > 255 || bit_offset > 0xffffff)) + return -EINVAL; + + /* only offset 0 is allowed for unions */ + if (btf_is_union(t) && bit_offset) + return -EINVAL; + + /* decompose and invalidate raw data */ + if (btf_ensure_modifiable(btf)) + return -ENOMEM; + + sz = sizeof(struct btf_member); + m = btf_add_type_mem(btf, sz); + if (!m) + return -ENOMEM; + + if (name && name[0]) { + name_off = btf__add_str(btf, name); + if (name_off < 0) + return name_off; + } + + m->name_off = name_off; + m->type = type_id; + m->offset = bit_offset | (bit_size << 24); + + /* btf_add_type_mem can invalidate t pointer */ + t = btf_type_by_id(btf, btf->nr_types); + /* update parent type's vlen and kflag */ + t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, is_bitfield || btf_kflag(t)); + + btf->hdr->type_len += sz; + btf->hdr->str_off += sz; + return 0; +} + +/* + * Append new BTF_KIND_ENUM type with: + * - *name* - name of the enum, can be NULL or empty for anonymous enums; + * - *byte_sz* - size of the enum, in bytes. + * + * Enum initially has no enum values in it (and corresponds to enum forward + * declaration). Enumerator values can be added by btf__add_enum_value() + * immediately after btf__add_enum() succeeds. + * + * Returns: + * - >0, type ID of newly added BTF type; + * - <0, on error. + */ +int btf__add_enum(struct btf *btf, const char *name, __u32 byte_sz) +{ + struct btf_type *t; + int sz, err, name_off = 0; + + /* byte_sz must be power of 2 */ + if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 8) + return -EINVAL; + + if (btf_ensure_modifiable(btf)) + return -ENOMEM; + + sz = sizeof(struct btf_type); + t = btf_add_type_mem(btf, sz); + if (!t) + return -ENOMEM; + + if (name && name[0]) { + name_off = btf__add_str(btf, name); + if (name_off < 0) + return name_off; + } + + /* start out with vlen=0; it will be adjusted when adding enum values */ + t->name_off = name_off; + t->info = btf_type_info(BTF_KIND_ENUM, 0, 0); + t->size = byte_sz; + + err = btf_add_type_idx_entry(btf, btf->hdr->type_len); + if (err) + return err; + + btf->hdr->type_len += sz; + btf->hdr->str_off += sz; + btf->nr_types++; + return btf->nr_types; +} + +/* + * Append new enum value for the current ENUM type with: + * - *name* - name of the enumerator value, can't be NULL or empty; + * - *value* - integer value corresponding to enum value *name*; + * Returns: + * - 0, on success; + * - <0, on error. + */ +int btf__add_enum_value(struct btf *btf, const char *name, __s64 value) +{ + struct btf_type *t; + struct btf_enum *v; + int sz, name_off; + + /* last type should be BTF_KIND_ENUM */ + if (btf->nr_types == 0) + return -EINVAL; + t = btf_type_by_id(btf, btf->nr_types); + if (!btf_is_enum(t)) + return -EINVAL; + + /* non-empty name */ + if (!name || !name[0]) + return -EINVAL; + if (value < INT_MIN || value > UINT_MAX) + return -E2BIG; + + /* decompose and invalidate raw data */ + if (btf_ensure_modifiable(btf)) + return -ENOMEM; + + sz = sizeof(struct btf_enum); + v = btf_add_type_mem(btf, sz); + if (!v) + return -ENOMEM; + + name_off = btf__add_str(btf, name); + if (name_off < 0) + return name_off; + + v->name_off = name_off; + v->val = value; + + /* update parent type's vlen */ + t = btf_type_by_id(btf, btf->nr_types); + btf_type_inc_vlen(t); + + btf->hdr->type_len += sz; + btf->hdr->str_off += sz; + return 0; +} + +/* + * Append new BTF_KIND_FWD type with: + * - *name*, non-empty/non-NULL name; + * - *fwd_kind*, kind of forward declaration, one of BTF_FWD_STRUCT, + * BTF_FWD_UNION, or BTF_FWD_ENUM; + * Returns: + * - >0, type ID of newly added BTF type; + * - <0, on error. + */ +int btf__add_fwd(struct btf *btf, const char *name, enum btf_fwd_kind fwd_kind) +{ + if (!name || !name[0]) + return -EINVAL; + + switch (fwd_kind) { + case BTF_FWD_STRUCT: + case BTF_FWD_UNION: { + struct btf_type *t; + int id; + + id = btf_add_ref_kind(btf, BTF_KIND_FWD, name, 0); + if (id <= 0) + return id; + t = btf_type_by_id(btf, id); + t->info = btf_type_info(BTF_KIND_FWD, 0, fwd_kind == BTF_FWD_UNION); + return id; + } + case BTF_FWD_ENUM: + /* enum forward in BTF currently is just an enum with no enum + * values; we also assume a standard 4-byte size for it + */ + return btf__add_enum(btf, name, sizeof(int)); + default: + return -EINVAL; + } +} + +/* + * Append new BTF_KING_TYPEDEF type with: + * - *name*, non-empty/non-NULL name; + * - *ref_type_id* - referenced type ID, it might not exist yet; + * Returns: + * - >0, type ID of newly added BTF type; + * - <0, on error. + */ +int btf__add_typedef(struct btf *btf, const char *name, int ref_type_id) +{ + if (!name || !name[0]) + return -EINVAL; + + return btf_add_ref_kind(btf, BTF_KIND_TYPEDEF, name, ref_type_id); +} + +/* + * Append new BTF_KIND_VOLATILE type with: + * - *ref_type_id* - referenced type ID, it might not exist yet; + * Returns: + * - >0, type ID of newly added BTF type; + * - <0, on error. + */ +int btf__add_volatile(struct btf *btf, int ref_type_id) +{ + return btf_add_ref_kind(btf, BTF_KIND_VOLATILE, NULL, ref_type_id); +} + +/* + * Append new BTF_KIND_CONST type with: + * - *ref_type_id* - referenced type ID, it might not exist yet; + * Returns: + * - >0, type ID of newly added BTF type; + * - <0, on error. + */ +int btf__add_const(struct btf *btf, int ref_type_id) +{ + return btf_add_ref_kind(btf, BTF_KIND_CONST, NULL, ref_type_id); +} + +/* + * Append new BTF_KIND_RESTRICT type with: + * - *ref_type_id* - referenced type ID, it might not exist yet; + * Returns: + * - >0, type ID of newly added BTF type; + * - <0, on error. + */ +int btf__add_restrict(struct btf *btf, int ref_type_id) +{ + return btf_add_ref_kind(btf, BTF_KIND_RESTRICT, NULL, ref_type_id); +} + +/* + * Append new BTF_KIND_FUNC type with: + * - *name*, non-empty/non-NULL name; + * - *proto_type_id* - FUNC_PROTO's type ID, it might not exist yet; + * Returns: + * - >0, type ID of newly added BTF type; + * - <0, on error. + */ +int btf__add_func(struct btf *btf, const char *name, + enum btf_func_linkage linkage, int proto_type_id) +{ + int id; + + if (!name || !name[0]) + return -EINVAL; + if (linkage != BTF_FUNC_STATIC && linkage != BTF_FUNC_GLOBAL && + linkage != BTF_FUNC_EXTERN) + return -EINVAL; + + id = btf_add_ref_kind(btf, BTF_KIND_FUNC, name, proto_type_id); + if (id > 0) { + struct btf_type *t = btf_type_by_id(btf, id); + + t->info = btf_type_info(BTF_KIND_FUNC, linkage, 0); + } + return id; +} + +/* + * Append new BTF_KIND_FUNC_PROTO with: + * - *ret_type_id* - type ID for return result of a function. + * + * Function prototype initially has no arguments, but they can be added by + * btf__add_func_param() one by one, immediately after + * btf__add_func_proto() succeeded. + * + * Returns: + * - >0, type ID of newly added BTF type; + * - <0, on error. + */ +int btf__add_func_proto(struct btf *btf, int ret_type_id) +{ + struct btf_type *t; + int sz, err; + + if (validate_type_id(ret_type_id)) + return -EINVAL; + + if (btf_ensure_modifiable(btf)) + return -ENOMEM; + + sz = sizeof(struct btf_type); + t = btf_add_type_mem(btf, sz); + if (!t) + return -ENOMEM; + + /* start out with vlen=0; this will be adjusted when adding enum + * values, if necessary + */ + t->name_off = 0; + t->info = btf_type_info(BTF_KIND_FUNC_PROTO, 0, 0); + t->type = ret_type_id; + + err = btf_add_type_idx_entry(btf, btf->hdr->type_len); + if (err) + return err; + + btf->hdr->type_len += sz; + btf->hdr->str_off += sz; + btf->nr_types++; + return btf->nr_types; +} + +/* + * Append new function parameter for current FUNC_PROTO type with: + * - *name* - parameter name, can be NULL or empty; + * - *type_id* - type ID describing the type of the parameter. + * Returns: + * - 0, on success; + * - <0, on error. + */ +int btf__add_func_param(struct btf *btf, const char *name, int type_id) +{ + struct btf_type *t; + struct btf_param *p; + int sz, name_off = 0; + + if (validate_type_id(type_id)) + return -EINVAL; + + /* last type should be BTF_KIND_FUNC_PROTO */ + if (btf->nr_types == 0) + return -EINVAL; + t = btf_type_by_id(btf, btf->nr_types); + if (!btf_is_func_proto(t)) + return -EINVAL; + + /* decompose and invalidate raw data */ + if (btf_ensure_modifiable(btf)) + return -ENOMEM; + + sz = sizeof(struct btf_param); + p = btf_add_type_mem(btf, sz); + if (!p) + return -ENOMEM; + + if (name && name[0]) { + name_off = btf__add_str(btf, name); + if (name_off < 0) + return name_off; + } + + p->name_off = name_off; + p->type = type_id; + + /* update parent type's vlen */ + t = btf_type_by_id(btf, btf->nr_types); + btf_type_inc_vlen(t); + + btf->hdr->type_len += sz; + btf->hdr->str_off += sz; + return 0; +} + +/* + * Append new BTF_KIND_VAR type with: + * - *name* - non-empty/non-NULL name; + * - *linkage* - variable linkage, one of BTF_VAR_STATIC, + * BTF_VAR_GLOBAL_ALLOCATED, or BTF_VAR_GLOBAL_EXTERN; + * - *type_id* - type ID of the type describing the type of the variable. + * Returns: + * - >0, type ID of newly added BTF type; + * - <0, on error. + */ +int btf__add_var(struct btf *btf, const char *name, int linkage, int type_id) +{ + struct btf_type *t; + struct btf_var *v; + int sz, err, name_off; + + /* non-empty name */ + if (!name || !name[0]) + return -EINVAL; + if (linkage != BTF_VAR_STATIC && linkage != BTF_VAR_GLOBAL_ALLOCATED && + linkage != BTF_VAR_GLOBAL_EXTERN) + return -EINVAL; + if (validate_type_id(type_id)) + return -EINVAL; + + /* deconstruct BTF, if necessary, and invalidate raw_data */ + if (btf_ensure_modifiable(btf)) + return -ENOMEM; + + sz = sizeof(struct btf_type) + sizeof(struct btf_var); + t = btf_add_type_mem(btf, sz); + if (!t) + return -ENOMEM; + + name_off = btf__add_str(btf, name); + if (name_off < 0) + return name_off; + + t->name_off = name_off; + t->info = btf_type_info(BTF_KIND_VAR, 0, 0); + t->type = type_id; + + v = btf_var(t); + v->linkage = linkage; + + err = btf_add_type_idx_entry(btf, btf->hdr->type_len); + if (err) + return err; + + btf->hdr->type_len += sz; + btf->hdr->str_off += sz; + btf->nr_types++; + return btf->nr_types; +} + +/* + * Append new BTF_KIND_DATASEC type with: + * - *name* - non-empty/non-NULL name; + * - *byte_sz* - data section size, in bytes. + * + * Data section is initially empty. Variables info can be added with + * btf__add_datasec_var_info() calls, after btf__add_datasec() succeeds. + * + * Returns: + * - >0, type ID of newly added BTF type; + * - <0, on error. + */ +int btf__add_datasec(struct btf *btf, const char *name, __u32 byte_sz) +{ + struct btf_type *t; + int sz, err, name_off; + + /* non-empty name */ + if (!name || !name[0]) + return -EINVAL; + + if (btf_ensure_modifiable(btf)) + return -ENOMEM; + + sz = sizeof(struct btf_type); + t = btf_add_type_mem(btf, sz); + if (!t) + return -ENOMEM; + + name_off = btf__add_str(btf, name); + if (name_off < 0) + return name_off; + + /* start with vlen=0, which will be update as var_secinfos are added */ + t->name_off = name_off; + t->info = btf_type_info(BTF_KIND_DATASEC, 0, 0); + t->size = byte_sz; + + err = btf_add_type_idx_entry(btf, btf->hdr->type_len); + if (err) + return err; + + btf->hdr->type_len += sz; + btf->hdr->str_off += sz; + btf->nr_types++; + return btf->nr_types; +} + +/* + * Append new data section variable information entry for current DATASEC type: + * - *var_type_id* - type ID, describing type of the variable; + * - *offset* - variable offset within data section, in bytes; + * - *byte_sz* - variable size, in bytes. + * + * Returns: + * - 0, on success; + * - <0, on error. + */ +int btf__add_datasec_var_info(struct btf *btf, int var_type_id, __u32 offset, __u32 byte_sz) +{ + struct btf_type *t; + struct btf_var_secinfo *v; + int sz; + + /* last type should be BTF_KIND_DATASEC */ + if (btf->nr_types == 0) + return -EINVAL; + t = btf_type_by_id(btf, btf->nr_types); + if (!btf_is_datasec(t)) + return -EINVAL; + + if (validate_type_id(var_type_id)) + return -EINVAL; + + /* decompose and invalidate raw data */ + if (btf_ensure_modifiable(btf)) + return -ENOMEM; + + sz = sizeof(struct btf_var_secinfo); + v = btf_add_type_mem(btf, sz); + if (!v) + return -ENOMEM; + + v->type = var_type_id; + v->offset = offset; + v->size = byte_sz; + + /* update parent type's vlen */ + t = btf_type_by_id(btf, btf->nr_types); + btf_type_inc_vlen(t); + + btf->hdr->type_len += sz; + btf->hdr->str_off += sz; + return 0; +} + +struct btf_ext_sec_setup_param { + __u32 off; + __u32 len; + __u32 min_rec_size; + struct btf_ext_info *ext_info; + const char *desc; +}; + +static int btf_ext_setup_info(struct btf_ext *btf_ext, + struct btf_ext_sec_setup_param *ext_sec) +{ + const struct btf_ext_info_sec *sinfo; + struct btf_ext_info *ext_info; + __u32 info_left, record_size; + /* The start of the info sec (including the __u32 record_size). */ + void *info; + + if (ext_sec->len == 0) + return 0; + + if (ext_sec->off & 0x03) { + pr_debug(".BTF.ext %s section is not aligned to 4 bytes\n", + ext_sec->desc); + return -EINVAL; + } + + info = btf_ext->data + btf_ext->hdr->hdr_len + ext_sec->off; + info_left = ext_sec->len; + + if (btf_ext->data + btf_ext->data_size < info + ext_sec->len) { + pr_debug("%s section (off:%u len:%u) is beyond the end of the ELF section .BTF.ext\n", + ext_sec->desc, ext_sec->off, ext_sec->len); + return -EINVAL; + } + + /* At least a record size */ + if (info_left < sizeof(__u32)) { + pr_debug(".BTF.ext %s record size not found\n", ext_sec->desc); + return -EINVAL; + } + + /* The record size needs to meet the minimum standard */ + record_size = *(__u32 *)info; + if (record_size < ext_sec->min_rec_size || + record_size & 0x03) { + pr_debug("%s section in .BTF.ext has invalid record size %u\n", + ext_sec->desc, record_size); + return -EINVAL; + } + + sinfo = info + sizeof(__u32); + info_left -= sizeof(__u32); + + /* If no records, return failure now so .BTF.ext won't be used. */ + if (!info_left) { + pr_debug("%s section in .BTF.ext has no records", ext_sec->desc); + return -EINVAL; + } + + while (info_left) { + unsigned int sec_hdrlen = sizeof(struct btf_ext_info_sec); + __u64 total_record_size; + __u32 num_records; + + if (info_left < sec_hdrlen) { + pr_debug("%s section header is not found in .BTF.ext\n", + ext_sec->desc); + return -EINVAL; + } + + num_records = sinfo->num_info; + if (num_records == 0) { + pr_debug("%s section has incorrect num_records in .BTF.ext\n", + ext_sec->desc); + return -EINVAL; + } + + total_record_size = sec_hdrlen + + (__u64)num_records * record_size; + if (info_left < total_record_size) { + pr_debug("%s section has incorrect num_records in .BTF.ext\n", + ext_sec->desc); + return -EINVAL; + } + + info_left -= total_record_size; + sinfo = (void *)sinfo + total_record_size; + } + + ext_info = ext_sec->ext_info; + ext_info->len = ext_sec->len - sizeof(__u32); + ext_info->rec_size = record_size; + ext_info->info = info + sizeof(__u32); + + return 0; +} + +static int btf_ext_setup_func_info(struct btf_ext *btf_ext) +{ + struct btf_ext_sec_setup_param param = { + .off = btf_ext->hdr->func_info_off, + .len = btf_ext->hdr->func_info_len, + .min_rec_size = sizeof(struct bpf_func_info_min), + .ext_info = &btf_ext->func_info, + .desc = "func_info" + }; + + return btf_ext_setup_info(btf_ext, ¶m); +} + +static int btf_ext_setup_line_info(struct btf_ext *btf_ext) +{ + struct btf_ext_sec_setup_param param = { + .off = btf_ext->hdr->line_info_off, + .len = btf_ext->hdr->line_info_len, + .min_rec_size = sizeof(struct bpf_line_info_min), + .ext_info = &btf_ext->line_info, + .desc = "line_info", + }; + + return btf_ext_setup_info(btf_ext, ¶m); +} + +static int btf_ext_setup_core_relos(struct btf_ext *btf_ext) +{ + struct btf_ext_sec_setup_param param = { + .off = btf_ext->hdr->core_relo_off, + .len = btf_ext->hdr->core_relo_len, + .min_rec_size = sizeof(struct bpf_core_relo), + .ext_info = &btf_ext->core_relo_info, + .desc = "core_relo", + }; + + return btf_ext_setup_info(btf_ext, ¶m); +} + +static int btf_ext_parse_hdr(__u8 *data, __u32 data_size) +{ + const struct btf_ext_header *hdr = (struct btf_ext_header *)data; + + if (data_size < offsetofend(struct btf_ext_header, hdr_len) || + data_size < hdr->hdr_len) { + pr_debug("BTF.ext header not found"); + return -EINVAL; + } + + if (hdr->magic == bswap_16(BTF_MAGIC)) { + pr_warn("BTF.ext in non-native endianness is not supported\n"); + return -ENOTSUP; + } else if (hdr->magic != BTF_MAGIC) { + pr_debug("Invalid BTF.ext magic:%x\n", hdr->magic); + return -EINVAL; + } + + if (hdr->version != BTF_VERSION) { + pr_debug("Unsupported BTF.ext version:%u\n", hdr->version); + return -ENOTSUP; + } + + if (hdr->flags) { + pr_debug("Unsupported BTF.ext flags:%x\n", hdr->flags); + return -ENOTSUP; + } + + if (data_size == hdr->hdr_len) { + pr_debug("BTF.ext has no data\n"); + return -EINVAL; + } + + return 0; +} + +void btf_ext__free(struct btf_ext *btf_ext) +{ + if (IS_ERR_OR_NULL(btf_ext)) + return; + free(btf_ext->data); + free(btf_ext); +} + +struct btf_ext *btf_ext__new(__u8 *data, __u32 size) +{ + struct btf_ext *btf_ext; + int err; + + err = btf_ext_parse_hdr(data, size); + if (err) + return ERR_PTR(err); + + btf_ext = calloc(1, sizeof(struct btf_ext)); + if (!btf_ext) + return ERR_PTR(-ENOMEM); + + btf_ext->data_size = size; + btf_ext->data = malloc(size); + if (!btf_ext->data) { + err = -ENOMEM; + goto done; + } + memcpy(btf_ext->data, data, size); + + if (btf_ext->hdr->hdr_len < + offsetofend(struct btf_ext_header, line_info_len)) + goto done; + err = btf_ext_setup_func_info(btf_ext); + if (err) + goto done; + + err = btf_ext_setup_line_info(btf_ext); + if (err) + goto done; + + if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, core_relo_len)) + goto done; + err = btf_ext_setup_core_relos(btf_ext); + if (err) + goto done; + +done: + if (err) { + btf_ext__free(btf_ext); + return ERR_PTR(err); + } + + return btf_ext; +} + +const void *btf_ext__get_raw_data(const struct btf_ext *btf_ext, __u32 *size) +{ + *size = btf_ext->data_size; + return btf_ext->data; +} + +static int btf_ext_reloc_info(const struct btf *btf, + const struct btf_ext_info *ext_info, + const char *sec_name, __u32 insns_cnt, + void **info, __u32 *cnt) +{ + __u32 sec_hdrlen = sizeof(struct btf_ext_info_sec); + __u32 i, record_size, existing_len, records_len; + struct btf_ext_info_sec *sinfo; + const char *info_sec_name; + __u64 remain_len; + void *data; + + record_size = ext_info->rec_size; + sinfo = ext_info->info; + remain_len = ext_info->len; + while (remain_len > 0) { + records_len = sinfo->num_info * record_size; + info_sec_name = btf__name_by_offset(btf, sinfo->sec_name_off); + if (strcmp(info_sec_name, sec_name)) { + remain_len -= sec_hdrlen + records_len; + sinfo = (void *)sinfo + sec_hdrlen + records_len; + continue; + } + + existing_len = (*cnt) * record_size; + data = realloc(*info, existing_len + records_len); + if (!data) + return -ENOMEM; + + memcpy(data + existing_len, sinfo->data, records_len); + /* adjust insn_off only, the rest data will be passed + * to the kernel. + */ + for (i = 0; i < sinfo->num_info; i++) { + __u32 *insn_off; + + insn_off = data + existing_len + (i * record_size); + *insn_off = *insn_off / sizeof(struct bpf_insn) + + insns_cnt; + } + *info = data; + *cnt += sinfo->num_info; + return 0; + } + + return -ENOENT; +} + +int btf_ext__reloc_func_info(const struct btf *btf, + const struct btf_ext *btf_ext, + const char *sec_name, __u32 insns_cnt, + void **func_info, __u32 *cnt) +{ + return btf_ext_reloc_info(btf, &btf_ext->func_info, sec_name, + insns_cnt, func_info, cnt); +} + +int btf_ext__reloc_line_info(const struct btf *btf, + const struct btf_ext *btf_ext, + const char *sec_name, __u32 insns_cnt, + void **line_info, __u32 *cnt) +{ + return btf_ext_reloc_info(btf, &btf_ext->line_info, sec_name, + insns_cnt, line_info, cnt); +} + +__u32 btf_ext__func_info_rec_size(const struct btf_ext *btf_ext) +{ + return btf_ext->func_info.rec_size; +} + +__u32 btf_ext__line_info_rec_size(const struct btf_ext *btf_ext) +{ + return btf_ext->line_info.rec_size; +} + +struct btf_dedup; + +static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext, + const struct btf_dedup_opts *opts); +static void btf_dedup_free(struct btf_dedup *d); +static int btf_dedup_strings(struct btf_dedup *d); +static int btf_dedup_prim_types(struct btf_dedup *d); +static int btf_dedup_struct_types(struct btf_dedup *d); +static int btf_dedup_ref_types(struct btf_dedup *d); +static int btf_dedup_compact_types(struct btf_dedup *d); +static int btf_dedup_remap_types(struct btf_dedup *d); + +/* + * Deduplicate BTF types and strings. + * + * BTF dedup algorithm takes as an input `struct btf` representing `.BTF` ELF + * section with all BTF type descriptors and string data. It overwrites that + * memory in-place with deduplicated types and strings without any loss of + * information. If optional `struct btf_ext` representing '.BTF.ext' ELF section + * is provided, all the strings referenced from .BTF.ext section are honored + * and updated to point to the right offsets after deduplication. + * + * If function returns with error, type/string data might be garbled and should + * be discarded. + * + * More verbose and detailed description of both problem btf_dedup is solving, + * as well as solution could be found at: + * https://facebookmicrosites.github.io/bpf/blog/2018/11/14/btf-enhancement.html + * + * Problem description and justification + * ===================================== + * + * BTF type information is typically emitted either as a result of conversion + * from DWARF to BTF or directly by compiler. In both cases, each compilation + * unit contains information about a subset of all the types that are used + * in an application. These subsets are frequently overlapping and contain a lot + * of duplicated information when later concatenated together into a single + * binary. This algorithm ensures that each unique type is represented by single + * BTF type descriptor, greatly reducing resulting size of BTF data. + * + * Compilation unit isolation and subsequent duplication of data is not the only + * problem. The same type hierarchy (e.g., struct and all the type that struct + * references) in different compilation units can be represented in BTF to + * various degrees of completeness (or, rather, incompleteness) due to + * struct/union forward declarations. + * + * Let's take a look at an example, that we'll use to better understand the + * problem (and solution). Suppose we have two compilation units, each using + * same `struct S`, but each of them having incomplete type information about + * struct's fields: + * + * // CU #1: + * struct S; + * struct A { + * int a; + * struct A* self; + * struct S* parent; + * }; + * struct B; + * struct S { + * struct A* a_ptr; + * struct B* b_ptr; + * }; + * + * // CU #2: + * struct S; + * struct A; + * struct B { + * int b; + * struct B* self; + * struct S* parent; + * }; + * struct S { + * struct A* a_ptr; + * struct B* b_ptr; + * }; + * + * In case of CU #1, BTF data will know only that `struct B` exist (but no + * more), but will know the complete type information about `struct A`. While + * for CU #2, it will know full type information about `struct B`, but will + * only know about forward declaration of `struct A` (in BTF terms, it will + * have `BTF_KIND_FWD` type descriptor with name `B`). + * + * This compilation unit isolation means that it's possible that there is no + * single CU with complete type information describing structs `S`, `A`, and + * `B`. Also, we might get tons of duplicated and redundant type information. + * + * Additional complication we need to keep in mind comes from the fact that + * types, in general, can form graphs containing cycles, not just DAGs. + * + * While algorithm does deduplication, it also merges and resolves type + * information (unless disabled throught `struct btf_opts`), whenever possible. + * E.g., in the example above with two compilation units having partial type + * information for structs `A` and `B`, the output of algorithm will emit + * a single copy of each BTF type that describes structs `A`, `B`, and `S` + * (as well as type information for `int` and pointers), as if they were defined + * in a single compilation unit as: + * + * struct A { + * int a; + * struct A* self; + * struct S* parent; + * }; + * struct B { + * int b; + * struct B* self; + * struct S* parent; + * }; + * struct S { + * struct A* a_ptr; + * struct B* b_ptr; + * }; + * + * Algorithm summary + * ================= + * + * Algorithm completes its work in 6 separate passes: + * + * 1. Strings deduplication. + * 2. Primitive types deduplication (int, enum, fwd). + * 3. Struct/union types deduplication. + * 4. Reference types deduplication (pointers, typedefs, arrays, funcs, func + * protos, and const/volatile/restrict modifiers). + * 5. Types compaction. + * 6. Types remapping. + * + * Algorithm determines canonical type descriptor, which is a single + * representative type for each truly unique type. This canonical type is the + * one that will go into final deduplicated BTF type information. For + * struct/unions, it is also the type that algorithm will merge additional type + * information into (while resolving FWDs), as it discovers it from data in + * other CUs. Each input BTF type eventually gets either mapped to itself, if + * that type is canonical, or to some other type, if that type is equivalent + * and was chosen as canonical representative. This mapping is stored in + * `btf_dedup->map` array. This map is also used to record STRUCT/UNION that + * FWD type got resolved to. + * + * To facilitate fast discovery of canonical types, we also maintain canonical + * index (`btf_dedup->dedup_table`), which maps type descriptor's signature hash + * (i.e., hashed kind, name, size, fields, etc) into a list of canonical types + * that match that signature. With sufficiently good choice of type signature + * hashing function, we can limit number of canonical types for each unique type + * signature to a very small number, allowing to find canonical type for any + * duplicated type very quickly. + * + * Struct/union deduplication is the most critical part and algorithm for + * deduplicating structs/unions is described in greater details in comments for + * `btf_dedup_is_equiv` function. + */ +int btf__dedup(struct btf *btf, struct btf_ext *btf_ext, + const struct btf_dedup_opts *opts) +{ + struct btf_dedup *d = btf_dedup_new(btf, btf_ext, opts); + int err; + + if (IS_ERR(d)) { + pr_debug("btf_dedup_new failed: %ld", PTR_ERR(d)); + return -EINVAL; + } + + if (btf_ensure_modifiable(btf)) + return -ENOMEM; + + err = btf_dedup_strings(d); + if (err < 0) { + pr_debug("btf_dedup_strings failed:%d\n", err); + goto done; + } + err = btf_dedup_prim_types(d); + if (err < 0) { + pr_debug("btf_dedup_prim_types failed:%d\n", err); + goto done; + } + err = btf_dedup_struct_types(d); + if (err < 0) { + pr_debug("btf_dedup_struct_types failed:%d\n", err); + goto done; + } + err = btf_dedup_ref_types(d); + if (err < 0) { + pr_debug("btf_dedup_ref_types failed:%d\n", err); + goto done; + } + err = btf_dedup_compact_types(d); + if (err < 0) { + pr_debug("btf_dedup_compact_types failed:%d\n", err); + goto done; + } + err = btf_dedup_remap_types(d); + if (err < 0) { + pr_debug("btf_dedup_remap_types failed:%d\n", err); + goto done; + } + +done: + btf_dedup_free(d); + return err; +} + +#define BTF_UNPROCESSED_ID ((__u32)-1) +#define BTF_IN_PROGRESS_ID ((__u32)-2) + +struct btf_dedup { + /* .BTF section to be deduped in-place */ + struct btf *btf; + /* + * Optional .BTF.ext section. When provided, any strings referenced + * from it will be taken into account when deduping strings + */ + struct btf_ext *btf_ext; + /* + * This is a map from any type's signature hash to a list of possible + * canonical representative type candidates. Hash collisions are + * ignored, so even types of various kinds can share same list of + * candidates, which is fine because we rely on subsequent + * btf_xxx_equal() checks to authoritatively verify type equality. + */ + struct hashmap *dedup_table; + /* Canonical types map */ + __u32 *map; + /* Hypothetical mapping, used during type graph equivalence checks */ + __u32 *hypot_map; + __u32 *hypot_list; + size_t hypot_cnt; + size_t hypot_cap; + /* Various option modifying behavior of algorithm */ + struct btf_dedup_opts opts; +}; + +struct btf_str_ptr { + const char *str; + __u32 new_off; + bool used; +}; + +struct btf_str_ptrs { + struct btf_str_ptr *ptrs; + const char *data; + __u32 cnt; + __u32 cap; +}; + +static long hash_combine(long h, long value) +{ + return h * 31 + value; +} + +#define for_each_dedup_cand(d, node, hash) \ + hashmap__for_each_key_entry(d->dedup_table, node, (void *)hash) + +static int btf_dedup_table_add(struct btf_dedup *d, long hash, __u32 type_id) +{ + return hashmap__append(d->dedup_table, + (void *)hash, (void *)(long)type_id); +} + +static int btf_dedup_hypot_map_add(struct btf_dedup *d, + __u32 from_id, __u32 to_id) +{ + if (d->hypot_cnt == d->hypot_cap) { + __u32 *new_list; + + d->hypot_cap += max((size_t)16, d->hypot_cap / 2); + new_list = libbpf_reallocarray(d->hypot_list, d->hypot_cap, sizeof(__u32)); + if (!new_list) + return -ENOMEM; + d->hypot_list = new_list; + } + d->hypot_list[d->hypot_cnt++] = from_id; + d->hypot_map[from_id] = to_id; + return 0; +} + +static void btf_dedup_clear_hypot_map(struct btf_dedup *d) +{ + int i; + + for (i = 0; i < d->hypot_cnt; i++) + d->hypot_map[d->hypot_list[i]] = BTF_UNPROCESSED_ID; + d->hypot_cnt = 0; +} + +static void btf_dedup_free(struct btf_dedup *d) +{ + hashmap__free(d->dedup_table); + d->dedup_table = NULL; + + free(d->map); + d->map = NULL; + + free(d->hypot_map); + d->hypot_map = NULL; + + free(d->hypot_list); + d->hypot_list = NULL; + + free(d); +} + +static size_t btf_dedup_identity_hash_fn(const void *key, void *ctx) +{ + return (size_t)key; +} + +static size_t btf_dedup_collision_hash_fn(const void *key, void *ctx) +{ + return 0; +} + +static bool btf_dedup_equal_fn(const void *k1, const void *k2, void *ctx) +{ + return k1 == k2; +} + +static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext, + const struct btf_dedup_opts *opts) +{ + struct btf_dedup *d = calloc(1, sizeof(struct btf_dedup)); + hashmap_hash_fn hash_fn = btf_dedup_identity_hash_fn; + int i, err = 0; + + if (!d) + return ERR_PTR(-ENOMEM); + + d->opts.dont_resolve_fwds = opts && opts->dont_resolve_fwds; + /* dedup_table_size is now used only to force collisions in tests */ + if (opts && opts->dedup_table_size == 1) + hash_fn = btf_dedup_collision_hash_fn; + + d->btf = btf; + d->btf_ext = btf_ext; + + d->dedup_table = hashmap__new(hash_fn, btf_dedup_equal_fn, NULL); + if (IS_ERR(d->dedup_table)) { + err = PTR_ERR(d->dedup_table); + d->dedup_table = NULL; + goto done; + } + + d->map = malloc(sizeof(__u32) * (1 + btf->nr_types)); + if (!d->map) { + err = -ENOMEM; + goto done; + } + /* special BTF "void" type is made canonical immediately */ + d->map[0] = 0; + for (i = 1; i <= btf->nr_types; i++) { + struct btf_type *t = btf_type_by_id(d->btf, i); + + /* VAR and DATASEC are never deduped and are self-canonical */ + if (btf_is_var(t) || btf_is_datasec(t)) + d->map[i] = i; + else + d->map[i] = BTF_UNPROCESSED_ID; + } + + d->hypot_map = malloc(sizeof(__u32) * (1 + btf->nr_types)); + if (!d->hypot_map) { + err = -ENOMEM; + goto done; + } + for (i = 0; i <= btf->nr_types; i++) + d->hypot_map[i] = BTF_UNPROCESSED_ID; + +done: + if (err) { + btf_dedup_free(d); + return ERR_PTR(err); + } + + return d; +} + +typedef int (*str_off_fn_t)(__u32 *str_off_ptr, void *ctx); + +/* + * Iterate over all possible places in .BTF and .BTF.ext that can reference + * string and pass pointer to it to a provided callback `fn`. + */ +static int btf_for_each_str_off(struct btf_dedup *d, str_off_fn_t fn, void *ctx) +{ + void *line_data_cur, *line_data_end; + int i, j, r, rec_size; + struct btf_type *t; + + for (i = 1; i <= d->btf->nr_types; i++) { + t = btf_type_by_id(d->btf, i); + r = fn(&t->name_off, ctx); + if (r) + return r; + + switch (btf_kind(t)) { + case BTF_KIND_STRUCT: + case BTF_KIND_UNION: { + struct btf_member *m = btf_members(t); + __u16 vlen = btf_vlen(t); + + for (j = 0; j < vlen; j++) { + r = fn(&m->name_off, ctx); + if (r) + return r; + m++; + } + break; + } + case BTF_KIND_ENUM: { + struct btf_enum *m = btf_enum(t); + __u16 vlen = btf_vlen(t); + + for (j = 0; j < vlen; j++) { + r = fn(&m->name_off, ctx); + if (r) + return r; + m++; + } + break; + } + case BTF_KIND_FUNC_PROTO: { + struct btf_param *m = btf_params(t); + __u16 vlen = btf_vlen(t); + + for (j = 0; j < vlen; j++) { + r = fn(&m->name_off, ctx); + if (r) + return r; + m++; + } + break; + } + default: + break; + } + } + + if (!d->btf_ext) + return 0; + + line_data_cur = d->btf_ext->line_info.info; + line_data_end = d->btf_ext->line_info.info + d->btf_ext->line_info.len; + rec_size = d->btf_ext->line_info.rec_size; + + while (line_data_cur < line_data_end) { + struct btf_ext_info_sec *sec = line_data_cur; + struct bpf_line_info_min *line_info; + __u32 num_info = sec->num_info; + + r = fn(&sec->sec_name_off, ctx); + if (r) + return r; + + line_data_cur += sizeof(struct btf_ext_info_sec); + for (i = 0; i < num_info; i++) { + line_info = line_data_cur; + r = fn(&line_info->file_name_off, ctx); + if (r) + return r; + r = fn(&line_info->line_off, ctx); + if (r) + return r; + line_data_cur += rec_size; + } + } + + return 0; +} + +static int str_sort_by_content(const void *a1, const void *a2) +{ + const struct btf_str_ptr *p1 = a1; + const struct btf_str_ptr *p2 = a2; + + return strcmp(p1->str, p2->str); +} + +static int str_sort_by_offset(const void *a1, const void *a2) +{ + const struct btf_str_ptr *p1 = a1; + const struct btf_str_ptr *p2 = a2; + + if (p1->str != p2->str) + return p1->str < p2->str ? -1 : 1; + return 0; +} + +static int btf_dedup_str_ptr_cmp(const void *str_ptr, const void *pelem) +{ + const struct btf_str_ptr *p = pelem; + + if (str_ptr != p->str) + return (const char *)str_ptr < p->str ? -1 : 1; + return 0; +} + +static int btf_str_mark_as_used(__u32 *str_off_ptr, void *ctx) +{ + struct btf_str_ptrs *strs; + struct btf_str_ptr *s; + + if (*str_off_ptr == 0) + return 0; + + strs = ctx; + s = bsearch(strs->data + *str_off_ptr, strs->ptrs, strs->cnt, + sizeof(struct btf_str_ptr), btf_dedup_str_ptr_cmp); + if (!s) + return -EINVAL; + s->used = true; + return 0; +} + +static int btf_str_remap_offset(__u32 *str_off_ptr, void *ctx) +{ + struct btf_str_ptrs *strs; + struct btf_str_ptr *s; + + if (*str_off_ptr == 0) + return 0; + + strs = ctx; + s = bsearch(strs->data + *str_off_ptr, strs->ptrs, strs->cnt, + sizeof(struct btf_str_ptr), btf_dedup_str_ptr_cmp); + if (!s) + return -EINVAL; + *str_off_ptr = s->new_off; + return 0; +} + +/* + * Dedup string and filter out those that are not referenced from either .BTF + * or .BTF.ext (if provided) sections. + * + * This is done by building index of all strings in BTF's string section, + * then iterating over all entities that can reference strings (e.g., type + * names, struct field names, .BTF.ext line info, etc) and marking corresponding + * strings as used. After that all used strings are deduped and compacted into + * sequential blob of memory and new offsets are calculated. Then all the string + * references are iterated again and rewritten using new offsets. + */ +static int btf_dedup_strings(struct btf_dedup *d) +{ + char *start = d->btf->strs_data; + char *end = start + d->btf->hdr->str_len; + char *p = start, *tmp_strs = NULL; + struct btf_str_ptrs strs = { + .cnt = 0, + .cap = 0, + .ptrs = NULL, + .data = start, + }; + int i, j, err = 0, grp_idx; + bool grp_used; + + if (d->btf->strs_deduped) + return 0; + + /* build index of all strings */ + while (p < end) { + if (strs.cnt + 1 > strs.cap) { + struct btf_str_ptr *new_ptrs; + + strs.cap += max(strs.cnt / 2, 16U); + new_ptrs = libbpf_reallocarray(strs.ptrs, strs.cap, sizeof(strs.ptrs[0])); + if (!new_ptrs) { + err = -ENOMEM; + goto done; + } + strs.ptrs = new_ptrs; + } + + strs.ptrs[strs.cnt].str = p; + strs.ptrs[strs.cnt].used = false; + + p += strlen(p) + 1; + strs.cnt++; + } + + /* temporary storage for deduplicated strings */ + tmp_strs = malloc(d->btf->hdr->str_len); + if (!tmp_strs) { + err = -ENOMEM; + goto done; + } + + /* mark all used strings */ + strs.ptrs[0].used = true; + err = btf_for_each_str_off(d, btf_str_mark_as_used, &strs); + if (err) + goto done; + + /* sort strings by context, so that we can identify duplicates */ + qsort(strs.ptrs, strs.cnt, sizeof(strs.ptrs[0]), str_sort_by_content); + + /* + * iterate groups of equal strings and if any instance in a group was + * referenced, emit single instance and remember new offset + */ + p = tmp_strs; + grp_idx = 0; + grp_used = strs.ptrs[0].used; + /* iterate past end to avoid code duplication after loop */ + for (i = 1; i <= strs.cnt; i++) { + /* + * when i == strs.cnt, we want to skip string comparison and go + * straight to handling last group of strings (otherwise we'd + * need to handle last group after the loop w/ duplicated code) + */ + if (i < strs.cnt && + !strcmp(strs.ptrs[i].str, strs.ptrs[grp_idx].str)) { + grp_used = grp_used || strs.ptrs[i].used; + continue; + } + + /* + * this check would have been required after the loop to handle + * last group of strings, but due to <= condition in a loop + * we avoid that duplication + */ + if (grp_used) { + int new_off = p - tmp_strs; + __u32 len = strlen(strs.ptrs[grp_idx].str); + + memmove(p, strs.ptrs[grp_idx].str, len + 1); + for (j = grp_idx; j < i; j++) + strs.ptrs[j].new_off = new_off; + p += len + 1; + } + + if (i < strs.cnt) { + grp_idx = i; + grp_used = strs.ptrs[i].used; + } + } + + /* replace original strings with deduped ones */ + d->btf->hdr->str_len = p - tmp_strs; + memmove(start, tmp_strs, d->btf->hdr->str_len); + end = start + d->btf->hdr->str_len; + + /* restore original order for further binary search lookups */ + qsort(strs.ptrs, strs.cnt, sizeof(strs.ptrs[0]), str_sort_by_offset); + + /* remap string offsets */ + err = btf_for_each_str_off(d, btf_str_remap_offset, &strs); + if (err) + goto done; + + d->btf->hdr->str_len = end - start; + d->btf->strs_deduped = true; + +done: + free(tmp_strs); + free(strs.ptrs); + return err; +} + +static long btf_hash_common(struct btf_type *t) +{ + long h; + + h = hash_combine(0, t->name_off); + h = hash_combine(h, t->info); + h = hash_combine(h, t->size); + return h; +} + +static bool btf_equal_common(struct btf_type *t1, struct btf_type *t2) +{ + return t1->name_off == t2->name_off && + t1->info == t2->info && + t1->size == t2->size; +} + +/* Calculate type signature hash of INT. */ +static long btf_hash_int(struct btf_type *t) +{ + __u32 info = *(__u32 *)(t + 1); + long h; + + h = btf_hash_common(t); + h = hash_combine(h, info); + return h; +} + +/* Check structural equality of two INTs. */ +static bool btf_equal_int(struct btf_type *t1, struct btf_type *t2) +{ + __u32 info1, info2; + + if (!btf_equal_common(t1, t2)) + return false; + info1 = *(__u32 *)(t1 + 1); + info2 = *(__u32 *)(t2 + 1); + return info1 == info2; +} + +/* Calculate type signature hash of ENUM. */ +static long btf_hash_enum(struct btf_type *t) +{ + long h; + + /* don't hash vlen and enum members to support enum fwd resolving */ + h = hash_combine(0, t->name_off); + h = hash_combine(h, t->info & ~0xffff); + h = hash_combine(h, t->size); + return h; +} + +/* Check structural equality of two ENUMs. */ +static bool btf_equal_enum(struct btf_type *t1, struct btf_type *t2) +{ + const struct btf_enum *m1, *m2; + __u16 vlen; + int i; + + if (!btf_equal_common(t1, t2)) + return false; + + vlen = btf_vlen(t1); + m1 = btf_enum(t1); + m2 = btf_enum(t2); + for (i = 0; i < vlen; i++) { + if (m1->name_off != m2->name_off || m1->val != m2->val) + return false; + m1++; + m2++; + } + return true; +} + +static inline bool btf_is_enum_fwd(struct btf_type *t) +{ + return btf_is_enum(t) && btf_vlen(t) == 0; +} + +static bool btf_compat_enum(struct btf_type *t1, struct btf_type *t2) +{ + if (!btf_is_enum_fwd(t1) && !btf_is_enum_fwd(t2)) + return btf_equal_enum(t1, t2); + /* ignore vlen when comparing */ + return t1->name_off == t2->name_off && + (t1->info & ~0xffff) == (t2->info & ~0xffff) && + t1->size == t2->size; +} + +/* + * Calculate type signature hash of STRUCT/UNION, ignoring referenced type IDs, + * as referenced type IDs equivalence is established separately during type + * graph equivalence check algorithm. + */ +static long btf_hash_struct(struct btf_type *t) +{ + const struct btf_member *member = btf_members(t); + __u32 vlen = btf_vlen(t); + long h = btf_hash_common(t); + int i; + + for (i = 0; i < vlen; i++) { + h = hash_combine(h, member->name_off); + h = hash_combine(h, member->offset); + /* no hashing of referenced type ID, it can be unresolved yet */ + member++; + } + return h; +} + +/* + * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type + * IDs. This check is performed during type graph equivalence check and + * referenced types equivalence is checked separately. + */ +static bool btf_shallow_equal_struct(struct btf_type *t1, struct btf_type *t2) +{ + const struct btf_member *m1, *m2; + __u16 vlen; + int i; + + if (!btf_equal_common(t1, t2)) + return false; + + vlen = btf_vlen(t1); + m1 = btf_members(t1); + m2 = btf_members(t2); + for (i = 0; i < vlen; i++) { + if (m1->name_off != m2->name_off || m1->offset != m2->offset) + return false; + m1++; + m2++; + } + return true; +} + +/* + * Calculate type signature hash of ARRAY, including referenced type IDs, + * under assumption that they were already resolved to canonical type IDs and + * are not going to change. + */ +static long btf_hash_array(struct btf_type *t) +{ + const struct btf_array *info = btf_array(t); + long h = btf_hash_common(t); + + h = hash_combine(h, info->type); + h = hash_combine(h, info->index_type); + h = hash_combine(h, info->nelems); + return h; +} + +/* + * Check exact equality of two ARRAYs, taking into account referenced + * type IDs, under assumption that they were already resolved to canonical + * type IDs and are not going to change. + * This function is called during reference types deduplication to compare + * ARRAY to potential canonical representative. + */ +static bool btf_equal_array(struct btf_type *t1, struct btf_type *t2) +{ + const struct btf_array *info1, *info2; + + if (!btf_equal_common(t1, t2)) + return false; + + info1 = btf_array(t1); + info2 = btf_array(t2); + return info1->type == info2->type && + info1->index_type == info2->index_type && + info1->nelems == info2->nelems; +} + +/* + * Check structural compatibility of two ARRAYs, ignoring referenced type + * IDs. This check is performed during type graph equivalence check and + * referenced types equivalence is checked separately. + */ +static bool btf_compat_array(struct btf_type *t1, struct btf_type *t2) +{ + if (!btf_equal_common(t1, t2)) + return false; + + return btf_array(t1)->nelems == btf_array(t2)->nelems; +} + +/* + * Calculate type signature hash of FUNC_PROTO, including referenced type IDs, + * under assumption that they were already resolved to canonical type IDs and + * are not going to change. + */ +static long btf_hash_fnproto(struct btf_type *t) +{ + const struct btf_param *member = btf_params(t); + __u16 vlen = btf_vlen(t); + long h = btf_hash_common(t); + int i; + + for (i = 0; i < vlen; i++) { + h = hash_combine(h, member->name_off); + h = hash_combine(h, member->type); + member++; + } + return h; +} + +/* + * Check exact equality of two FUNC_PROTOs, taking into account referenced + * type IDs, under assumption that they were already resolved to canonical + * type IDs and are not going to change. + * This function is called during reference types deduplication to compare + * FUNC_PROTO to potential canonical representative. + */ +static bool btf_equal_fnproto(struct btf_type *t1, struct btf_type *t2) +{ + const struct btf_param *m1, *m2; + __u16 vlen; + int i; + + if (!btf_equal_common(t1, t2)) + return false; + + vlen = btf_vlen(t1); + m1 = btf_params(t1); + m2 = btf_params(t2); + for (i = 0; i < vlen; i++) { + if (m1->name_off != m2->name_off || m1->type != m2->type) + return false; + m1++; + m2++; + } + return true; +} + +/* + * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type + * IDs. This check is performed during type graph equivalence check and + * referenced types equivalence is checked separately. + */ +static bool btf_compat_fnproto(struct btf_type *t1, struct btf_type *t2) +{ + const struct btf_param *m1, *m2; + __u16 vlen; + int i; + + /* skip return type ID */ + if (t1->name_off != t2->name_off || t1->info != t2->info) + return false; + + vlen = btf_vlen(t1); + m1 = btf_params(t1); + m2 = btf_params(t2); + for (i = 0; i < vlen; i++) { + if (m1->name_off != m2->name_off) + return false; + m1++; + m2++; + } + return true; +} + +/* + * Deduplicate primitive types, that can't reference other types, by calculating + * their type signature hash and comparing them with any possible canonical + * candidate. If no canonical candidate matches, type itself is marked as + * canonical and is added into `btf_dedup->dedup_table` as another candidate. + */ +static int btf_dedup_prim_type(struct btf_dedup *d, __u32 type_id) +{ + struct btf_type *t = btf_type_by_id(d->btf, type_id); + struct hashmap_entry *hash_entry; + struct btf_type *cand; + /* if we don't find equivalent type, then we are canonical */ + __u32 new_id = type_id; + __u32 cand_id; + long h; + + switch (btf_kind(t)) { + case BTF_KIND_CONST: + case BTF_KIND_VOLATILE: + case BTF_KIND_RESTRICT: + case BTF_KIND_PTR: + case BTF_KIND_TYPEDEF: + case BTF_KIND_ARRAY: + case BTF_KIND_STRUCT: + case BTF_KIND_UNION: + case BTF_KIND_FUNC: + case BTF_KIND_FUNC_PROTO: + case BTF_KIND_VAR: + case BTF_KIND_DATASEC: + return 0; + + case BTF_KIND_INT: + h = btf_hash_int(t); + for_each_dedup_cand(d, hash_entry, h) { + cand_id = (__u32)(long)hash_entry->value; + cand = btf_type_by_id(d->btf, cand_id); + if (btf_equal_int(t, cand)) { + new_id = cand_id; + break; + } + } + break; + + case BTF_KIND_ENUM: + h = btf_hash_enum(t); + for_each_dedup_cand(d, hash_entry, h) { + cand_id = (__u32)(long)hash_entry->value; + cand = btf_type_by_id(d->btf, cand_id); + if (btf_equal_enum(t, cand)) { + new_id = cand_id; + break; + } + if (d->opts.dont_resolve_fwds) + continue; + if (btf_compat_enum(t, cand)) { + if (btf_is_enum_fwd(t)) { + /* resolve fwd to full enum */ + new_id = cand_id; + break; + } + /* resolve canonical enum fwd to full enum */ + d->map[cand_id] = type_id; + } + } + break; + + case BTF_KIND_FWD: + h = btf_hash_common(t); + for_each_dedup_cand(d, hash_entry, h) { + cand_id = (__u32)(long)hash_entry->value; + cand = btf_type_by_id(d->btf, cand_id); + if (btf_equal_common(t, cand)) { + new_id = cand_id; + break; + } + } + break; + + default: + return -EINVAL; + } + + d->map[type_id] = new_id; + if (type_id == new_id && btf_dedup_table_add(d, h, type_id)) + return -ENOMEM; + + return 0; +} + +static int btf_dedup_prim_types(struct btf_dedup *d) +{ + int i, err; + + for (i = 1; i <= d->btf->nr_types; i++) { + err = btf_dedup_prim_type(d, i); + if (err) + return err; + } + return 0; +} + +/* + * Check whether type is already mapped into canonical one (could be to itself). + */ +static inline bool is_type_mapped(struct btf_dedup *d, uint32_t type_id) +{ + return d->map[type_id] <= BTF_MAX_NR_TYPES; +} + +/* + * Resolve type ID into its canonical type ID, if any; otherwise return original + * type ID. If type is FWD and is resolved into STRUCT/UNION already, follow + * STRUCT/UNION link and resolve it into canonical type ID as well. + */ +static inline __u32 resolve_type_id(struct btf_dedup *d, __u32 type_id) +{ + while (is_type_mapped(d, type_id) && d->map[type_id] != type_id) + type_id = d->map[type_id]; + return type_id; +} + +/* + * Resolve FWD to underlying STRUCT/UNION, if any; otherwise return original + * type ID. + */ +static uint32_t resolve_fwd_id(struct btf_dedup *d, uint32_t type_id) +{ + __u32 orig_type_id = type_id; + + if (!btf_is_fwd(btf__type_by_id(d->btf, type_id))) + return type_id; + + while (is_type_mapped(d, type_id) && d->map[type_id] != type_id) + type_id = d->map[type_id]; + + if (!btf_is_fwd(btf__type_by_id(d->btf, type_id))) + return type_id; + + return orig_type_id; +} + + +static inline __u16 btf_fwd_kind(struct btf_type *t) +{ + return btf_kflag(t) ? BTF_KIND_UNION : BTF_KIND_STRUCT; +} + +/* + * Check equivalence of BTF type graph formed by candidate struct/union (we'll + * call it "candidate graph" in this description for brevity) to a type graph + * formed by (potential) canonical struct/union ("canonical graph" for brevity + * here, though keep in mind that not all types in canonical graph are + * necessarily canonical representatives themselves, some of them might be + * duplicates or its uniqueness might not have been established yet). + * Returns: + * - >0, if type graphs are equivalent; + * - 0, if not equivalent; + * - <0, on error. + * + * Algorithm performs side-by-side DFS traversal of both type graphs and checks + * equivalence of BTF types at each step. If at any point BTF types in candidate + * and canonical graphs are not compatible structurally, whole graphs are + * incompatible. If types are structurally equivalent (i.e., all information + * except referenced type IDs is exactly the same), a mapping from `canon_id` to + * a `cand_id` is recored in hypothetical mapping (`btf_dedup->hypot_map`). + * If a type references other types, then those referenced types are checked + * for equivalence recursively. + * + * During DFS traversal, if we find that for current `canon_id` type we + * already have some mapping in hypothetical map, we check for two possible + * situations: + * - `canon_id` is mapped to exactly the same type as `cand_id`. This will + * happen when type graphs have cycles. In this case we assume those two + * types are equivalent. + * - `canon_id` is mapped to different type. This is contradiction in our + * hypothetical mapping, because same graph in canonical graph corresponds + * to two different types in candidate graph, which for equivalent type + * graphs shouldn't happen. This condition terminates equivalence check + * with negative result. + * + * If type graphs traversal exhausts types to check and find no contradiction, + * then type graphs are equivalent. + * + * When checking types for equivalence, there is one special case: FWD types. + * If FWD type resolution is allowed and one of the types (either from canonical + * or candidate graph) is FWD and other is STRUCT/UNION (depending on FWD's kind + * flag) and their names match, hypothetical mapping is updated to point from + * FWD to STRUCT/UNION. If graphs will be determined as equivalent successfully, + * this mapping will be used to record FWD -> STRUCT/UNION mapping permanently. + * + * Technically, this could lead to incorrect FWD to STRUCT/UNION resolution, + * if there are two exactly named (or anonymous) structs/unions that are + * compatible structurally, one of which has FWD field, while other is concrete + * STRUCT/UNION, but according to C sources they are different structs/unions + * that are referencing different types with the same name. This is extremely + * unlikely to happen, but btf_dedup API allows to disable FWD resolution if + * this logic is causing problems. + * + * Doing FWD resolution means that both candidate and/or canonical graphs can + * consists of portions of the graph that come from multiple compilation units. + * This is due to the fact that types within single compilation unit are always + * deduplicated and FWDs are already resolved, if referenced struct/union + * definiton is available. So, if we had unresolved FWD and found corresponding + * STRUCT/UNION, they will be from different compilation units. This + * consequently means that when we "link" FWD to corresponding STRUCT/UNION, + * type graph will likely have at least two different BTF types that describe + * same type (e.g., most probably there will be two different BTF types for the + * same 'int' primitive type) and could even have "overlapping" parts of type + * graph that describe same subset of types. + * + * This in turn means that our assumption that each type in canonical graph + * must correspond to exactly one type in candidate graph might not hold + * anymore and will make it harder to detect contradictions using hypothetical + * map. To handle this problem, we allow to follow FWD -> STRUCT/UNION + * resolution only in canonical graph. FWDs in candidate graphs are never + * resolved. To see why it's OK, let's check all possible situations w.r.t. FWDs + * that can occur: + * - Both types in canonical and candidate graphs are FWDs. If they are + * structurally equivalent, then they can either be both resolved to the + * same STRUCT/UNION or not resolved at all. In both cases they are + * equivalent and there is no need to resolve FWD on candidate side. + * - Both types in canonical and candidate graphs are concrete STRUCT/UNION, + * so nothing to resolve as well, algorithm will check equivalence anyway. + * - Type in canonical graph is FWD, while type in candidate is concrete + * STRUCT/UNION. In this case candidate graph comes from single compilation + * unit, so there is exactly one BTF type for each unique C type. After + * resolving FWD into STRUCT/UNION, there might be more than one BTF type + * in canonical graph mapping to single BTF type in candidate graph, but + * because hypothetical mapping maps from canonical to candidate types, it's + * alright, and we still maintain the property of having single `canon_id` + * mapping to single `cand_id` (there could be two different `canon_id` + * mapped to the same `cand_id`, but it's not contradictory). + * - Type in canonical graph is concrete STRUCT/UNION, while type in candidate + * graph is FWD. In this case we are just going to check compatibility of + * STRUCT/UNION and corresponding FWD, and if they are compatible, we'll + * assume that whatever STRUCT/UNION FWD resolves to must be equivalent to + * a concrete STRUCT/UNION from canonical graph. If the rest of type graphs + * turn out equivalent, we'll re-resolve FWD to concrete STRUCT/UNION from + * canonical graph. + */ +static int btf_dedup_is_equiv(struct btf_dedup *d, __u32 cand_id, + __u32 canon_id) +{ + struct btf_type *cand_type; + struct btf_type *canon_type; + __u32 hypot_type_id; + __u16 cand_kind; + __u16 canon_kind; + int i, eq; + + /* if both resolve to the same canonical, they must be equivalent */ + if (resolve_type_id(d, cand_id) == resolve_type_id(d, canon_id)) + return 1; + + canon_id = resolve_fwd_id(d, canon_id); + + hypot_type_id = d->hypot_map[canon_id]; + if (hypot_type_id <= BTF_MAX_NR_TYPES) + return hypot_type_id == cand_id; + + if (btf_dedup_hypot_map_add(d, canon_id, cand_id)) + return -ENOMEM; + + cand_type = btf_type_by_id(d->btf, cand_id); + canon_type = btf_type_by_id(d->btf, canon_id); + cand_kind = btf_kind(cand_type); + canon_kind = btf_kind(canon_type); + + if (cand_type->name_off != canon_type->name_off) + return 0; + + /* FWD <--> STRUCT/UNION equivalence check, if enabled */ + if (!d->opts.dont_resolve_fwds + && (cand_kind == BTF_KIND_FWD || canon_kind == BTF_KIND_FWD) + && cand_kind != canon_kind) { + __u16 real_kind; + __u16 fwd_kind; + + if (cand_kind == BTF_KIND_FWD) { + real_kind = canon_kind; + fwd_kind = btf_fwd_kind(cand_type); + } else { + real_kind = cand_kind; + fwd_kind = btf_fwd_kind(canon_type); + } + return fwd_kind == real_kind; + } + + if (cand_kind != canon_kind) + return 0; + + switch (cand_kind) { + case BTF_KIND_INT: + return btf_equal_int(cand_type, canon_type); + + case BTF_KIND_ENUM: + if (d->opts.dont_resolve_fwds) + return btf_equal_enum(cand_type, canon_type); + else + return btf_compat_enum(cand_type, canon_type); + + case BTF_KIND_FWD: + return btf_equal_common(cand_type, canon_type); + + case BTF_KIND_CONST: + case BTF_KIND_VOLATILE: + case BTF_KIND_RESTRICT: + case BTF_KIND_PTR: + case BTF_KIND_TYPEDEF: + case BTF_KIND_FUNC: + if (cand_type->info != canon_type->info) + return 0; + return btf_dedup_is_equiv(d, cand_type->type, canon_type->type); + + case BTF_KIND_ARRAY: { + const struct btf_array *cand_arr, *canon_arr; + + if (!btf_compat_array(cand_type, canon_type)) + return 0; + cand_arr = btf_array(cand_type); + canon_arr = btf_array(canon_type); + eq = btf_dedup_is_equiv(d, + cand_arr->index_type, canon_arr->index_type); + if (eq <= 0) + return eq; + return btf_dedup_is_equiv(d, cand_arr->type, canon_arr->type); + } + + case BTF_KIND_STRUCT: + case BTF_KIND_UNION: { + const struct btf_member *cand_m, *canon_m; + __u16 vlen; + + if (!btf_shallow_equal_struct(cand_type, canon_type)) + return 0; + vlen = btf_vlen(cand_type); + cand_m = btf_members(cand_type); + canon_m = btf_members(canon_type); + for (i = 0; i < vlen; i++) { + eq = btf_dedup_is_equiv(d, cand_m->type, canon_m->type); + if (eq <= 0) + return eq; + cand_m++; + canon_m++; + } + + return 1; + } + + case BTF_KIND_FUNC_PROTO: { + const struct btf_param *cand_p, *canon_p; + __u16 vlen; + + if (!btf_compat_fnproto(cand_type, canon_type)) + return 0; + eq = btf_dedup_is_equiv(d, cand_type->type, canon_type->type); + if (eq <= 0) + return eq; + vlen = btf_vlen(cand_type); + cand_p = btf_params(cand_type); + canon_p = btf_params(canon_type); + for (i = 0; i < vlen; i++) { + eq = btf_dedup_is_equiv(d, cand_p->type, canon_p->type); + if (eq <= 0) + return eq; + cand_p++; + canon_p++; + } + return 1; + } + + default: + return -EINVAL; + } + return 0; +} + +/* + * Use hypothetical mapping, produced by successful type graph equivalence + * check, to augment existing struct/union canonical mapping, where possible. + * + * If BTF_KIND_FWD resolution is allowed, this mapping is also used to record + * FWD -> STRUCT/UNION correspondence as well. FWD resolution is bidirectional: + * it doesn't matter if FWD type was part of canonical graph or candidate one, + * we are recording the mapping anyway. As opposed to carefulness required + * for struct/union correspondence mapping (described below), for FWD resolution + * it's not important, as by the time that FWD type (reference type) will be + * deduplicated all structs/unions will be deduped already anyway. + * + * Recording STRUCT/UNION mapping is purely a performance optimization and is + * not required for correctness. It needs to be done carefully to ensure that + * struct/union from candidate's type graph is not mapped into corresponding + * struct/union from canonical type graph that itself hasn't been resolved into + * canonical representative. The only guarantee we have is that canonical + * struct/union was determined as canonical and that won't change. But any + * types referenced through that struct/union fields could have been not yet + * resolved, so in case like that it's too early to establish any kind of + * correspondence between structs/unions. + * + * No canonical correspondence is derived for primitive types (they are already + * deduplicated completely already anyway) or reference types (they rely on + * stability of struct/union canonical relationship for equivalence checks). + */ +static void btf_dedup_merge_hypot_map(struct btf_dedup *d) +{ + __u32 cand_type_id, targ_type_id; + __u16 t_kind, c_kind; + __u32 t_id, c_id; + int i; + + for (i = 0; i < d->hypot_cnt; i++) { + cand_type_id = d->hypot_list[i]; + targ_type_id = d->hypot_map[cand_type_id]; + t_id = resolve_type_id(d, targ_type_id); + c_id = resolve_type_id(d, cand_type_id); + t_kind = btf_kind(btf__type_by_id(d->btf, t_id)); + c_kind = btf_kind(btf__type_by_id(d->btf, c_id)); + /* + * Resolve FWD into STRUCT/UNION. + * It's ok to resolve FWD into STRUCT/UNION that's not yet + * mapped to canonical representative (as opposed to + * STRUCT/UNION <--> STRUCT/UNION mapping logic below), because + * eventually that struct is going to be mapped and all resolved + * FWDs will automatically resolve to correct canonical + * representative. This will happen before ref type deduping, + * which critically depends on stability of these mapping. This + * stability is not a requirement for STRUCT/UNION equivalence + * checks, though. + */ + if (t_kind != BTF_KIND_FWD && c_kind == BTF_KIND_FWD) + d->map[c_id] = t_id; + else if (t_kind == BTF_KIND_FWD && c_kind != BTF_KIND_FWD) + d->map[t_id] = c_id; + + if ((t_kind == BTF_KIND_STRUCT || t_kind == BTF_KIND_UNION) && + c_kind != BTF_KIND_FWD && + is_type_mapped(d, c_id) && + !is_type_mapped(d, t_id)) { + /* + * as a perf optimization, we can map struct/union + * that's part of type graph we just verified for + * equivalence. We can do that for struct/union that has + * canonical representative only, though. + */ + d->map[t_id] = c_id; + } + } +} + +/* + * Deduplicate struct/union types. + * + * For each struct/union type its type signature hash is calculated, taking + * into account type's name, size, number, order and names of fields, but + * ignoring type ID's referenced from fields, because they might not be deduped + * completely until after reference types deduplication phase. This type hash + * is used to iterate over all potential canonical types, sharing same hash. + * For each canonical candidate we check whether type graphs that they form + * (through referenced types in fields and so on) are equivalent using algorithm + * implemented in `btf_dedup_is_equiv`. If such equivalence is found and + * BTF_KIND_FWD resolution is allowed, then hypothetical mapping + * (btf_dedup->hypot_map) produced by aforementioned type graph equivalence + * algorithm is used to record FWD -> STRUCT/UNION mapping. It's also used to + * potentially map other structs/unions to their canonical representatives, + * if such relationship hasn't yet been established. This speeds up algorithm + * by eliminating some of the duplicate work. + * + * If no matching canonical representative was found, struct/union is marked + * as canonical for itself and is added into btf_dedup->dedup_table hash map + * for further look ups. + */ +static int btf_dedup_struct_type(struct btf_dedup *d, __u32 type_id) +{ + struct btf_type *cand_type, *t; + struct hashmap_entry *hash_entry; + /* if we don't find equivalent type, then we are canonical */ + __u32 new_id = type_id; + __u16 kind; + long h; + + /* already deduped or is in process of deduping (loop detected) */ + if (d->map[type_id] <= BTF_MAX_NR_TYPES) + return 0; + + t = btf_type_by_id(d->btf, type_id); + kind = btf_kind(t); + + if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION) + return 0; + + h = btf_hash_struct(t); + for_each_dedup_cand(d, hash_entry, h) { + __u32 cand_id = (__u32)(long)hash_entry->value; + int eq; + + /* + * Even though btf_dedup_is_equiv() checks for + * btf_shallow_equal_struct() internally when checking two + * structs (unions) for equivalence, we need to guard here + * from picking matching FWD type as a dedup candidate. + * This can happen due to hash collision. In such case just + * relying on btf_dedup_is_equiv() would lead to potentially + * creating a loop (FWD -> STRUCT and STRUCT -> FWD), because + * FWD and compatible STRUCT/UNION are considered equivalent. + */ + cand_type = btf_type_by_id(d->btf, cand_id); + if (!btf_shallow_equal_struct(t, cand_type)) + continue; + + btf_dedup_clear_hypot_map(d); + eq = btf_dedup_is_equiv(d, type_id, cand_id); + if (eq < 0) + return eq; + if (!eq) + continue; + new_id = cand_id; + btf_dedup_merge_hypot_map(d); + break; + } + + d->map[type_id] = new_id; + if (type_id == new_id && btf_dedup_table_add(d, h, type_id)) + return -ENOMEM; + + return 0; +} + +static int btf_dedup_struct_types(struct btf_dedup *d) +{ + int i, err; + + for (i = 1; i <= d->btf->nr_types; i++) { + err = btf_dedup_struct_type(d, i); + if (err) + return err; + } + return 0; +} + +/* + * Deduplicate reference type. + * + * Once all primitive and struct/union types got deduplicated, we can easily + * deduplicate all other (reference) BTF types. This is done in two steps: + * + * 1. Resolve all referenced type IDs into their canonical type IDs. This + * resolution can be done either immediately for primitive or struct/union types + * (because they were deduped in previous two phases) or recursively for + * reference types. Recursion will always terminate at either primitive or + * struct/union type, at which point we can "unwind" chain of reference types + * one by one. There is no danger of encountering cycles because in C type + * system the only way to form type cycle is through struct/union, so any chain + * of reference types, even those taking part in a type cycle, will inevitably + * reach struct/union at some point. + * + * 2. Once all referenced type IDs are resolved into canonical ones, BTF type + * becomes "stable", in the sense that no further deduplication will cause + * any changes to it. With that, it's now possible to calculate type's signature + * hash (this time taking into account referenced type IDs) and loop over all + * potential canonical representatives. If no match was found, current type + * will become canonical representative of itself and will be added into + * btf_dedup->dedup_table as another possible canonical representative. + */ +static int btf_dedup_ref_type(struct btf_dedup *d, __u32 type_id) +{ + struct hashmap_entry *hash_entry; + __u32 new_id = type_id, cand_id; + struct btf_type *t, *cand; + /* if we don't find equivalent type, then we are representative type */ + int ref_type_id; + long h; + + if (d->map[type_id] == BTF_IN_PROGRESS_ID) + return -ELOOP; + if (d->map[type_id] <= BTF_MAX_NR_TYPES) + return resolve_type_id(d, type_id); + + t = btf_type_by_id(d->btf, type_id); + d->map[type_id] = BTF_IN_PROGRESS_ID; + + switch (btf_kind(t)) { + case BTF_KIND_CONST: + case BTF_KIND_VOLATILE: + case BTF_KIND_RESTRICT: + case BTF_KIND_PTR: + case BTF_KIND_TYPEDEF: + case BTF_KIND_FUNC: + ref_type_id = btf_dedup_ref_type(d, t->type); + if (ref_type_id < 0) + return ref_type_id; + t->type = ref_type_id; + + h = btf_hash_common(t); + for_each_dedup_cand(d, hash_entry, h) { + cand_id = (__u32)(long)hash_entry->value; + cand = btf_type_by_id(d->btf, cand_id); + if (btf_equal_common(t, cand)) { + new_id = cand_id; + break; + } + } + break; + + case BTF_KIND_ARRAY: { + struct btf_array *info = btf_array(t); + + ref_type_id = btf_dedup_ref_type(d, info->type); + if (ref_type_id < 0) + return ref_type_id; + info->type = ref_type_id; + + ref_type_id = btf_dedup_ref_type(d, info->index_type); + if (ref_type_id < 0) + return ref_type_id; + info->index_type = ref_type_id; + + h = btf_hash_array(t); + for_each_dedup_cand(d, hash_entry, h) { + cand_id = (__u32)(long)hash_entry->value; + cand = btf_type_by_id(d->btf, cand_id); + if (btf_equal_array(t, cand)) { + new_id = cand_id; + break; + } + } + break; + } + + case BTF_KIND_FUNC_PROTO: { + struct btf_param *param; + __u16 vlen; + int i; + + ref_type_id = btf_dedup_ref_type(d, t->type); + if (ref_type_id < 0) + return ref_type_id; + t->type = ref_type_id; + + vlen = btf_vlen(t); + param = btf_params(t); + for (i = 0; i < vlen; i++) { + ref_type_id = btf_dedup_ref_type(d, param->type); + if (ref_type_id < 0) + return ref_type_id; + param->type = ref_type_id; + param++; + } + + h = btf_hash_fnproto(t); + for_each_dedup_cand(d, hash_entry, h) { + cand_id = (__u32)(long)hash_entry->value; + cand = btf_type_by_id(d->btf, cand_id); + if (btf_equal_fnproto(t, cand)) { + new_id = cand_id; + break; + } + } + break; + } + + default: + return -EINVAL; + } + + d->map[type_id] = new_id; + if (type_id == new_id && btf_dedup_table_add(d, h, type_id)) + return -ENOMEM; + + return new_id; +} + +static int btf_dedup_ref_types(struct btf_dedup *d) +{ + int i, err; + + for (i = 1; i <= d->btf->nr_types; i++) { + err = btf_dedup_ref_type(d, i); + if (err < 0) + return err; + } + /* we won't need d->dedup_table anymore */ + hashmap__free(d->dedup_table); + d->dedup_table = NULL; + return 0; +} + +/* + * Compact types. + * + * After we established for each type its corresponding canonical representative + * type, we now can eliminate types that are not canonical and leave only + * canonical ones layed out sequentially in memory by copying them over + * duplicates. During compaction btf_dedup->hypot_map array is reused to store + * a map from original type ID to a new compacted type ID, which will be used + * during next phase to "fix up" type IDs, referenced from struct/union and + * reference types. + */ +static int btf_dedup_compact_types(struct btf_dedup *d) +{ + __u32 *new_offs; + __u32 next_type_id = 1; + void *p; + int i, len; + + /* we are going to reuse hypot_map to store compaction remapping */ + d->hypot_map[0] = 0; + for (i = 1; i <= d->btf->nr_types; i++) + d->hypot_map[i] = BTF_UNPROCESSED_ID; + + p = d->btf->types_data; + + for (i = 1; i <= d->btf->nr_types; i++) { + if (d->map[i] != i) + continue; + + len = btf_type_size(btf__type_by_id(d->btf, i)); + if (len < 0) + return len; + + memmove(p, btf__type_by_id(d->btf, i), len); + d->hypot_map[i] = next_type_id; + d->btf->type_offs[next_type_id] = p - d->btf->types_data; + p += len; + next_type_id++; + } + + /* shrink struct btf's internal types index and update btf_header */ + d->btf->nr_types = next_type_id - 1; + d->btf->type_offs_cap = d->btf->nr_types + 1; + d->btf->hdr->type_len = p - d->btf->types_data; + new_offs = libbpf_reallocarray(d->btf->type_offs, d->btf->type_offs_cap, + sizeof(*new_offs)); + if (!new_offs) + return -ENOMEM; + d->btf->type_offs = new_offs; + d->btf->hdr->str_off = d->btf->hdr->type_len; + d->btf->raw_size = d->btf->hdr->hdr_len + d->btf->hdr->type_len + d->btf->hdr->str_len; + return 0; +} + +/* + * Figure out final (deduplicated and compacted) type ID for provided original + * `type_id` by first resolving it into corresponding canonical type ID and + * then mapping it to a deduplicated type ID, stored in btf_dedup->hypot_map, + * which is populated during compaction phase. + */ +static int btf_dedup_remap_type_id(struct btf_dedup *d, __u32 type_id) +{ + __u32 resolved_type_id, new_type_id; + + resolved_type_id = resolve_type_id(d, type_id); + new_type_id = d->hypot_map[resolved_type_id]; + if (new_type_id > BTF_MAX_NR_TYPES) + return -EINVAL; + return new_type_id; +} + +/* + * Remap referenced type IDs into deduped type IDs. + * + * After BTF types are deduplicated and compacted, their final type IDs may + * differ from original ones. The map from original to a corresponding + * deduped type ID is stored in btf_dedup->hypot_map and is populated during + * compaction phase. During remapping phase we are rewriting all type IDs + * referenced from any BTF type (e.g., struct fields, func proto args, etc) to + * their final deduped type IDs. + */ +static int btf_dedup_remap_type(struct btf_dedup *d, __u32 type_id) +{ + struct btf_type *t = btf_type_by_id(d->btf, type_id); + int i, r; + + switch (btf_kind(t)) { + case BTF_KIND_INT: + case BTF_KIND_ENUM: + break; + + case BTF_KIND_FWD: + case BTF_KIND_CONST: + case BTF_KIND_VOLATILE: + case BTF_KIND_RESTRICT: + case BTF_KIND_PTR: + case BTF_KIND_TYPEDEF: + case BTF_KIND_FUNC: + case BTF_KIND_VAR: + r = btf_dedup_remap_type_id(d, t->type); + if (r < 0) + return r; + t->type = r; + break; + + case BTF_KIND_ARRAY: { + struct btf_array *arr_info = btf_array(t); + + r = btf_dedup_remap_type_id(d, arr_info->type); + if (r < 0) + return r; + arr_info->type = r; + r = btf_dedup_remap_type_id(d, arr_info->index_type); + if (r < 0) + return r; + arr_info->index_type = r; + break; + } + + case BTF_KIND_STRUCT: + case BTF_KIND_UNION: { + struct btf_member *member = btf_members(t); + __u16 vlen = btf_vlen(t); + + for (i = 0; i < vlen; i++) { + r = btf_dedup_remap_type_id(d, member->type); + if (r < 0) + return r; + member->type = r; + member++; + } + break; + } + + case BTF_KIND_FUNC_PROTO: { + struct btf_param *param = btf_params(t); + __u16 vlen = btf_vlen(t); + + r = btf_dedup_remap_type_id(d, t->type); + if (r < 0) + return r; + t->type = r; + + for (i = 0; i < vlen; i++) { + r = btf_dedup_remap_type_id(d, param->type); + if (r < 0) + return r; + param->type = r; + param++; + } + break; + } + + case BTF_KIND_DATASEC: { + struct btf_var_secinfo *var = btf_var_secinfos(t); + __u16 vlen = btf_vlen(t); + + for (i = 0; i < vlen; i++) { + r = btf_dedup_remap_type_id(d, var->type); + if (r < 0) + return r; + var->type = r; + var++; + } + break; + } + + default: + return -EINVAL; + } + + return 0; +} + +static int btf_dedup_remap_types(struct btf_dedup *d) +{ + int i, r; + + for (i = 1; i <= d->btf->nr_types; i++) { + r = btf_dedup_remap_type(d, i); + if (r < 0) + return r; + } + return 0; +} + +/* + * Probe few well-known locations for vmlinux kernel image and try to load BTF + * data out of it to use for target BTF. + */ +struct btf *libbpf_find_kernel_btf(void) +{ + struct { + const char *path_fmt; + bool raw_btf; + } locations[] = { + /* try canonical vmlinux BTF through sysfs first */ + { "/sys/kernel/btf/vmlinux", true /* raw BTF */ }, + /* fall back to trying to find vmlinux ELF on disk otherwise */ + { "/boot/vmlinux-%1$s" }, + { "/lib/modules/%1$s/vmlinux-%1$s" }, + { "/lib/modules/%1$s/build/vmlinux" }, + { "/usr/lib/modules/%1$s/kernel/vmlinux" }, + { "/usr/lib/debug/boot/vmlinux-%1$s" }, + { "/usr/lib/debug/boot/vmlinux-%1$s.debug" }, + { "/usr/lib/debug/lib/modules/%1$s/vmlinux" }, + }; + char path[PATH_MAX + 1]; + struct utsname buf; + struct btf *btf; + int i; + + uname(&buf); + + for (i = 0; i < ARRAY_SIZE(locations); i++) { + snprintf(path, PATH_MAX, locations[i].path_fmt, buf.release); + + if (access(path, R_OK)) + continue; + + if (locations[i].raw_btf) + btf = btf__parse_raw(path); + else + btf = btf__parse_elf(path, NULL); + + pr_debug("loading kernel BTF '%s': %ld\n", + path, IS_ERR(btf) ? PTR_ERR(btf) : 0); + if (IS_ERR(btf)) + continue; + + return btf; + } + + pr_warn("failed to find valid kernel BTF\n"); + return ERR_PTR(-ESRCH); +} -- cgit v1.2.3