// SPDX-License-Identifier: GPL-2.0+ #include #include #include #include #include #include #include #include #include "decode-insn.h" DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL; DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); static void __kprobes post_kprobe_handler(struct kprobe_ctlblk *, struct pt_regs *); struct csky_insn_patch { kprobe_opcode_t *addr; u32 opcode; atomic_t cpu_count; }; static int __kprobes patch_text_cb(void *priv) { struct csky_insn_patch *param = priv; unsigned int addr = (unsigned int)param->addr; if (atomic_inc_return(¶m->cpu_count) == num_online_cpus()) { *(u16 *) addr = cpu_to_le16(param->opcode); dcache_wb_range(addr, addr + 2); atomic_inc(¶m->cpu_count); } else { while (atomic_read(¶m->cpu_count) <= num_online_cpus()) cpu_relax(); } icache_inv_range(addr, addr + 2); return 0; } static int __kprobes patch_text(kprobe_opcode_t *addr, u32 opcode) { struct csky_insn_patch param = { addr, opcode, ATOMIC_INIT(0) }; return stop_machine_cpuslocked(patch_text_cb, ¶m, cpu_online_mask); } static void __kprobes arch_prepare_ss_slot(struct kprobe *p) { unsigned long offset = is_insn32(p->opcode) ? 4 : 2; p->ainsn.api.restore = (unsigned long)p->addr + offset; patch_text(p->ainsn.api.insn, p->opcode); } static void __kprobes arch_prepare_simulate(struct kprobe *p) { p->ainsn.api.restore = 0; } static void __kprobes arch_simulate_insn(struct kprobe *p, struct pt_regs *regs) { struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); if (p->ainsn.api.handler) p->ainsn.api.handler((u32)p->opcode, (long)p->addr, regs); post_kprobe_handler(kcb, regs); } int __kprobes arch_prepare_kprobe(struct kprobe *p) { unsigned long probe_addr = (unsigned long)p->addr; if (probe_addr & 0x1) { pr_warn("Address not aligned.\n"); return -EINVAL; } /* copy instruction */ p->opcode = le32_to_cpu(*p->addr); /* decode instruction */ switch (csky_probe_decode_insn(p->addr, &p->ainsn.api)) { case INSN_REJECTED: /* insn not supported */ return -EINVAL; case INSN_GOOD_NO_SLOT: /* insn need simulation */ p->ainsn.api.insn = NULL; break; case INSN_GOOD: /* instruction uses slot */ p->ainsn.api.insn = get_insn_slot(); if (!p->ainsn.api.insn) return -ENOMEM; break; } /* prepare the instruction */ if (p->ainsn.api.insn) arch_prepare_ss_slot(p); else arch_prepare_simulate(p); return 0; } /* install breakpoint in text */ void __kprobes arch_arm_kprobe(struct kprobe *p) { patch_text(p->addr, USR_BKPT); } /* remove breakpoint from text */ void __kprobes arch_disarm_kprobe(struct kprobe *p) { patch_text(p->addr, p->opcode); } void __kprobes arch_remove_kprobe(struct kprobe *p) { if (p->ainsn.api.insn) { free_insn_slot(p->ainsn.api.insn, 0); p->ainsn.api.insn = NULL; } } static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb) { kcb->prev_kprobe.kp = kprobe_running(); kcb->prev_kprobe.status = kcb->kprobe_status; } static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb) { __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp); kcb->kprobe_status = kcb->prev_kprobe.status; } static void __kprobes set_current_kprobe(struct kprobe *p) { __this_cpu_write(current_kprobe, p); } /* * Interrupts need to be disabled before single-step mode is set, and not * reenabled until after single-step mode ends. * Without disabling interrupt on local CPU, there is a chance of * interrupt occurrence in the period of exception return and start of * out-of-line single-step, that result in wrongly single stepping * into the interrupt handler. */ static void __kprobes kprobes_save_local_irqflag(struct kprobe_ctlblk *kcb, struct pt_regs *regs) { kcb->saved_sr = regs->sr; regs->sr &= ~BIT(6); } static void __kprobes kprobes_restore_local_irqflag(struct kprobe_ctlblk *kcb, struct pt_regs *regs) { regs->sr = kcb->saved_sr; } static void __kprobes set_ss_context(struct kprobe_ctlblk *kcb, unsigned long addr, struct kprobe *p) { unsigned long offset = is_insn32(p->opcode) ? 4 : 2; kcb->ss_ctx.ss_pending = true; kcb->ss_ctx.match_addr = addr + offset; } static void __kprobes clear_ss_context(struct kprobe_ctlblk *kcb) { kcb->ss_ctx.ss_pending = false; kcb->ss_ctx.match_addr = 0; } #define TRACE_MODE_SI BIT(14) #define TRACE_MODE_MASK ~(0x3 << 14) #define TRACE_MODE_RUN 0 static void __kprobes setup_singlestep(struct kprobe *p, struct pt_regs *regs, struct kprobe_ctlblk *kcb, int reenter) { unsigned long slot; if (reenter) { save_previous_kprobe(kcb); set_current_kprobe(p); kcb->kprobe_status = KPROBE_REENTER; } else { kcb->kprobe_status = KPROBE_HIT_SS; } if (p->ainsn.api.insn) { /* prepare for single stepping */ slot = (unsigned long)p->ainsn.api.insn; set_ss_context(kcb, slot, p); /* mark pending ss */ /* IRQs and single stepping do not mix well. */ kprobes_save_local_irqflag(kcb, regs); regs->sr = (regs->sr & TRACE_MODE_MASK) | TRACE_MODE_SI; instruction_pointer_set(regs, slot); } else { /* insn simulation */ arch_simulate_insn(p, regs); } } static int __kprobes reenter_kprobe(struct kprobe *p, struct pt_regs *regs, struct kprobe_ctlblk *kcb) { switch (kcb->kprobe_status) { case KPROBE_HIT_SSDONE: case KPROBE_HIT_ACTIVE: kprobes_inc_nmissed_count(p); setup_singlestep(p, regs, kcb, 1); break; case KPROBE_HIT_SS: case KPROBE_REENTER: pr_warn("Unrecoverable kprobe detected.\n"); dump_kprobe(p); BUG(); break; default: WARN_ON(1); return 0; } return 1; } static void __kprobes post_kprobe_handler(struct kprobe_ctlblk *kcb, struct pt_regs *regs) { struct kprobe *cur = kprobe_running(); if (!cur) return; /* return addr restore if non-branching insn */ if (cur->ainsn.api.restore != 0) regs->pc = cur->ainsn.api.restore; /* restore back original saved kprobe variables and continue */ if (kcb->kprobe_status == KPROBE_REENTER) { restore_previous_kprobe(kcb); return; } /* call post handler */ kcb->kprobe_status = KPROBE_HIT_SSDONE; if (cur->post_handler) { /* post_handler can hit breakpoint and single step * again, so we enable D-flag for recursive exception. */ cur->post_handler(cur, regs, 0); } reset_current_kprobe(); } int __kprobes kprobe_fault_handler(struct pt_regs *regs, unsigned int trapnr) { struct kprobe *cur = kprobe_running(); struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); switch (kcb->kprobe_status) { case KPROBE_HIT_SS: case KPROBE_REENTER: /* * We are here because the instruction being single * stepped caused a page fault. We reset the current * kprobe and the ip points back to the probe address * and allow the page fault handler to continue as a * normal page fault. */ regs->pc = (unsigned long) cur->addr; if (!instruction_pointer(regs)) BUG(); if (kcb->kprobe_status == KPROBE_REENTER) restore_previous_kprobe(kcb); else reset_current_kprobe(); break; case KPROBE_HIT_ACTIVE: case KPROBE_HIT_SSDONE: /* * We increment the nmissed count for accounting, * we can also use npre/npostfault count for accounting * these specific fault cases. */ kprobes_inc_nmissed_count(cur); /* * We come here because instructions in the pre/post * handler caused the page_fault, this could happen * if handler tries to access user space by * copy_from_user(), get_user() etc. Let the * user-specified handler try to fix it first. */ if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr)) return 1; /* * In case the user-specified fault handler returned * zero, try to fix up. */ if (fixup_exception(regs)) return 1; } return 0; } int __kprobes kprobe_breakpoint_handler(struct pt_regs *regs) { struct kprobe *p, *cur_kprobe; struct kprobe_ctlblk *kcb; unsigned long addr = instruction_pointer(regs); kcb = get_kprobe_ctlblk(); cur_kprobe = kprobe_running(); p = get_kprobe((kprobe_opcode_t *) addr); if (p) { if (cur_kprobe) { if (reenter_kprobe(p, regs, kcb)) return 1; } else { /* Probe hit */ set_current_kprobe(p); kcb->kprobe_status = KPROBE_HIT_ACTIVE; /* * If we have no pre-handler or it returned 0, we * continue with normal processing. If we have a * pre-handler and it returned non-zero, it will * modify the execution path and no need to single * stepping. Let's just reset current kprobe and exit. * * pre_handler can hit a breakpoint and can step thru * before return. */ if (!p->pre_handler || !p->pre_handler(p, regs)) setup_singlestep(p, regs, kcb, 0); else reset_current_kprobe(); } return 1; } /* * The breakpoint instruction was removed right * after we hit it. Another cpu has removed * either a probepoint or a debugger breakpoint * at this address. In either case, no further * handling of this interrupt is appropriate. * Return back to original instruction, and continue. */ return 0; } int __kprobes kprobe_single_step_handler(struct pt_regs *regs) { struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); if ((kcb->ss_ctx.ss_pending) && (kcb->ss_ctx.match_addr == instruction_pointer(regs))) { clear_ss_context(kcb); /* clear pending ss */ kprobes_restore_local_irqflag(kcb, regs); regs->sr = (regs->sr & TRACE_MODE_MASK) | TRACE_MODE_RUN; post_kprobe_handler(kcb, regs); return 1; } return 0; } /* * Provide a blacklist of symbols identifying ranges which cannot be kprobed. * This blacklist is exposed to userspace via debugfs (kprobes/blacklist). */ int __init arch_populate_kprobe_blacklist(void) { int ret; ret = kprobe_add_area_blacklist((unsigned long)__irqentry_text_start, (unsigned long)__irqentry_text_end); return ret; } void __kprobes __used *trampoline_probe_handler(struct pt_regs *regs) { return (void *)kretprobe_trampoline_handler(regs, &kretprobe_trampoline, NULL); } void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs) { ri->ret_addr = (kprobe_opcode_t *)regs->lr; ri->fp = NULL; regs->lr = (unsigned long) &kretprobe_trampoline; } int __kprobes arch_trampoline_kprobe(struct kprobe *p) { return 0; } int __init arch_init_kprobes(void) { return 0; }