// SPDX-License-Identifier: GPL-2.0-only /* * File: mca.c * Purpose: Generic MCA handling layer * * Copyright (C) 2003 Hewlett-Packard Co * David Mosberger-Tang * * Copyright (C) 2002 Dell Inc. * Copyright (C) Matt Domsch * * Copyright (C) 2002 Intel * Copyright (C) Jenna Hall * * Copyright (C) 2001 Intel * Copyright (C) Fred Lewis * * Copyright (C) 2000 Intel * Copyright (C) Chuck Fleckenstein * * Copyright (C) 1999, 2004-2008 Silicon Graphics, Inc. * Copyright (C) Vijay Chander * * Copyright (C) 2006 FUJITSU LIMITED * Copyright (C) Hidetoshi Seto * * 2000-03-29 Chuck Fleckenstein * Fixed PAL/SAL update issues, began MCA bug fixes, logging issues, * added min save state dump, added INIT handler. * * 2001-01-03 Fred Lewis * Added setup of CMCI and CPEI IRQs, logging of corrected platform * errors, completed code for logging of corrected & uncorrected * machine check errors, and updated for conformance with Nov. 2000 * revision of the SAL 3.0 spec. * * 2002-01-04 Jenna Hall * Aligned MCA stack to 16 bytes, added platform vs. CPU error flag, * set SAL default return values, changed error record structure to * linked list, added init call to sal_get_state_info_size(). * * 2002-03-25 Matt Domsch * GUID cleanups. * * 2003-04-15 David Mosberger-Tang * Added INIT backtrace support. * * 2003-12-08 Keith Owens * smp_call_function() must not be called from interrupt context * (can deadlock on tasklist_lock). * Use keventd to call smp_call_function(). * * 2004-02-01 Keith Owens * Avoid deadlock when using printk() for MCA and INIT records. * Delete all record printing code, moved to salinfo_decode in user * space. Mark variables and functions static where possible. * Delete dead variables and functions. Reorder to remove the need * for forward declarations and to consolidate related code. * * 2005-08-12 Keith Owens * Convert MCA/INIT handlers to use per event stacks and SAL/OS * state. * * 2005-10-07 Keith Owens * Add notify_die() hooks. * * 2006-09-15 Hidetoshi Seto * Add printing support for MCA/INIT. * * 2007-04-27 Russ Anderson * Support multiple cpus going through OS_MCA in the same event. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "mca_drv.h" #include "entry.h" #include "irq.h" #if defined(IA64_MCA_DEBUG_INFO) # define IA64_MCA_DEBUG(fmt...) printk(fmt) #else # define IA64_MCA_DEBUG(fmt...) #endif #define NOTIFY_INIT(event, regs, arg, spin) \ do { \ if ((notify_die((event), "INIT", (regs), (arg), 0, 0) \ == NOTIFY_STOP) && ((spin) == 1)) \ ia64_mca_spin(__func__); \ } while (0) #define NOTIFY_MCA(event, regs, arg, spin) \ do { \ if ((notify_die((event), "MCA", (regs), (arg), 0, 0) \ == NOTIFY_STOP) && ((spin) == 1)) \ ia64_mca_spin(__func__); \ } while (0) /* Used by mca_asm.S */ DEFINE_PER_CPU(u64, ia64_mca_data); /* == __per_cpu_mca[smp_processor_id()] */ DEFINE_PER_CPU(u64, ia64_mca_per_cpu_pte); /* PTE to map per-CPU area */ DEFINE_PER_CPU(u64, ia64_mca_pal_pte); /* PTE to map PAL code */ DEFINE_PER_CPU(u64, ia64_mca_pal_base); /* vaddr PAL code granule */ DEFINE_PER_CPU(u64, ia64_mca_tr_reload); /* Flag for TR reload */ unsigned long __per_cpu_mca[NR_CPUS]; /* In mca_asm.S */ extern void ia64_os_init_dispatch_monarch (void); extern void ia64_os_init_dispatch_slave (void); static int monarch_cpu = -1; static ia64_mc_info_t ia64_mc_info; #define MAX_CPE_POLL_INTERVAL (15*60*HZ) /* 15 minutes */ #define MIN_CPE_POLL_INTERVAL (2*60*HZ) /* 2 minutes */ #define CMC_POLL_INTERVAL (1*60*HZ) /* 1 minute */ #define CPE_HISTORY_LENGTH 5 #define CMC_HISTORY_LENGTH 5 static struct timer_list cpe_poll_timer; static struct timer_list cmc_poll_timer; /* * This variable tells whether we are currently in polling mode. * Start with this in the wrong state so we won't play w/ timers * before the system is ready. */ static int cmc_polling_enabled = 1; /* * Clearing this variable prevents CPE polling from getting activated * in mca_late_init. Use it if your system doesn't provide a CPEI, * but encounters problems retrieving CPE logs. This should only be * necessary for debugging. */ static int cpe_poll_enabled = 1; extern void salinfo_log_wakeup(int type, u8 *buffer, u64 size, int irqsafe); static int mca_init __initdata; /* * limited & delayed printing support for MCA/INIT handler */ #define mprintk(fmt...) ia64_mca_printk(fmt) #define MLOGBUF_SIZE (512+256*NR_CPUS) #define MLOGBUF_MSGMAX 256 static char mlogbuf[MLOGBUF_SIZE]; static DEFINE_SPINLOCK(mlogbuf_wlock); /* mca context only */ static DEFINE_SPINLOCK(mlogbuf_rlock); /* normal context only */ static unsigned long mlogbuf_start; static unsigned long mlogbuf_end; static unsigned int mlogbuf_finished = 0; static unsigned long mlogbuf_timestamp = 0; static int loglevel_save = -1; #define BREAK_LOGLEVEL(__console_loglevel) \ oops_in_progress = 1; \ if (loglevel_save < 0) \ loglevel_save = __console_loglevel; \ __console_loglevel = 15; #define RESTORE_LOGLEVEL(__console_loglevel) \ if (loglevel_save >= 0) { \ __console_loglevel = loglevel_save; \ loglevel_save = -1; \ } \ mlogbuf_finished = 0; \ oops_in_progress = 0; /* * Push messages into buffer, print them later if not urgent. */ void ia64_mca_printk(const char *fmt, ...) { va_list args; int printed_len; char temp_buf[MLOGBUF_MSGMAX]; char *p; va_start(args, fmt); printed_len = vscnprintf(temp_buf, sizeof(temp_buf), fmt, args); va_end(args); /* Copy the output into mlogbuf */ if (oops_in_progress) { /* mlogbuf was abandoned, use printk directly instead. */ printk("%s", temp_buf); } else { spin_lock(&mlogbuf_wlock); for (p = temp_buf; *p; p++) { unsigned long next = (mlogbuf_end + 1) % MLOGBUF_SIZE; if (next != mlogbuf_start) { mlogbuf[mlogbuf_end] = *p; mlogbuf_end = next; } else { /* buffer full */ break; } } mlogbuf[mlogbuf_end] = '\0'; spin_unlock(&mlogbuf_wlock); } } EXPORT_SYMBOL(ia64_mca_printk); /* * Print buffered messages. * NOTE: call this after returning normal context. (ex. from salinfod) */ void ia64_mlogbuf_dump(void) { char temp_buf[MLOGBUF_MSGMAX]; char *p; unsigned long index; unsigned long flags; unsigned int printed_len; /* Get output from mlogbuf */ while (mlogbuf_start != mlogbuf_end) { temp_buf[0] = '\0'; p = temp_buf; printed_len = 0; spin_lock_irqsave(&mlogbuf_rlock, flags); index = mlogbuf_start; while (index != mlogbuf_end) { *p = mlogbuf[index]; index = (index + 1) % MLOGBUF_SIZE; if (!*p) break; p++; if (++printed_len >= MLOGBUF_MSGMAX - 1) break; } *p = '\0'; if (temp_buf[0]) printk("%s", temp_buf); mlogbuf_start = index; mlogbuf_timestamp = 0; spin_unlock_irqrestore(&mlogbuf_rlock, flags); } } EXPORT_SYMBOL(ia64_mlogbuf_dump); /* * Call this if system is going to down or if immediate flushing messages to * console is required. (ex. recovery was failed, crash dump is going to be * invoked, long-wait rendezvous etc.) * NOTE: this should be called from monarch. */ static void ia64_mlogbuf_finish(int wait) { BREAK_LOGLEVEL(console_loglevel); spin_lock_init(&mlogbuf_rlock); ia64_mlogbuf_dump(); printk(KERN_EMERG "mlogbuf_finish: printing switched to urgent mode, " "MCA/INIT might be dodgy or fail.\n"); if (!wait) return; /* wait for console */ printk("Delaying for 5 seconds...\n"); udelay(5*1000000); mlogbuf_finished = 1; } /* * Print buffered messages from INIT context. */ static void ia64_mlogbuf_dump_from_init(void) { if (mlogbuf_finished) return; if (mlogbuf_timestamp && time_before(jiffies, mlogbuf_timestamp + 30 * HZ)) { printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT " " and the system seems to be messed up.\n"); ia64_mlogbuf_finish(0); return; } if (!spin_trylock(&mlogbuf_rlock)) { printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT. " "Generated messages other than stack dump will be " "buffered to mlogbuf and will be printed later.\n"); printk(KERN_ERR "INIT: If messages would not printed after " "this INIT, wait 30sec and assert INIT again.\n"); if (!mlogbuf_timestamp) mlogbuf_timestamp = jiffies; return; } spin_unlock(&mlogbuf_rlock); ia64_mlogbuf_dump(); } static inline void ia64_mca_spin(const char *func) { if (monarch_cpu == smp_processor_id()) ia64_mlogbuf_finish(0); mprintk(KERN_EMERG "%s: spinning here, not returning to SAL\n", func); while (1) cpu_relax(); } /* * IA64_MCA log support */ #define IA64_MAX_LOGS 2 /* Double-buffering for nested MCAs */ #define IA64_MAX_LOG_TYPES 4 /* MCA, INIT, CMC, CPE */ typedef struct ia64_state_log_s { spinlock_t isl_lock; int isl_index; unsigned long isl_count; ia64_err_rec_t *isl_log[IA64_MAX_LOGS]; /* need space to store header + error log */ } ia64_state_log_t; static ia64_state_log_t ia64_state_log[IA64_MAX_LOG_TYPES]; #define IA64_LOG_LOCK_INIT(it) spin_lock_init(&ia64_state_log[it].isl_lock) #define IA64_LOG_LOCK(it) spin_lock_irqsave(&ia64_state_log[it].isl_lock, s) #define IA64_LOG_UNLOCK(it) spin_unlock_irqrestore(&ia64_state_log[it].isl_lock,s) #define IA64_LOG_NEXT_INDEX(it) ia64_state_log[it].isl_index #define IA64_LOG_CURR_INDEX(it) 1 - ia64_state_log[it].isl_index #define IA64_LOG_INDEX_INC(it) \ {ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index; \ ia64_state_log[it].isl_count++;} #define IA64_LOG_INDEX_DEC(it) \ ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index #define IA64_LOG_NEXT_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)])) #define IA64_LOG_CURR_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)])) #define IA64_LOG_COUNT(it) ia64_state_log[it].isl_count static inline void ia64_log_allocate(int it, u64 size) { ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)] = (ia64_err_rec_t *)memblock_alloc(size, SMP_CACHE_BYTES); if (!ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)]) panic("%s: Failed to allocate %llu bytes\n", __func__, size); ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)] = (ia64_err_rec_t *)memblock_alloc(size, SMP_CACHE_BYTES); if (!ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)]) panic("%s: Failed to allocate %llu bytes\n", __func__, size); } /* * ia64_log_init * Reset the OS ia64 log buffer * Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE}) * Outputs : None */ static void __init ia64_log_init(int sal_info_type) { u64 max_size = 0; IA64_LOG_NEXT_INDEX(sal_info_type) = 0; IA64_LOG_LOCK_INIT(sal_info_type); // SAL will tell us the maximum size of any error record of this type max_size = ia64_sal_get_state_info_size(sal_info_type); if (!max_size) /* alloc_bootmem() doesn't like zero-sized allocations! */ return; // set up OS data structures to hold error info ia64_log_allocate(sal_info_type, max_size); } /* * ia64_log_get * * Get the current MCA log from SAL and copy it into the OS log buffer. * * Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE}) * irq_safe whether you can use printk at this point * Outputs : size (total record length) * *buffer (ptr to error record) * */ static u64 ia64_log_get(int sal_info_type, u8 **buffer, int irq_safe) { sal_log_record_header_t *log_buffer; u64 total_len = 0; unsigned long s; IA64_LOG_LOCK(sal_info_type); /* Get the process state information */ log_buffer = IA64_LOG_NEXT_BUFFER(sal_info_type); total_len = ia64_sal_get_state_info(sal_info_type, (u64 *)log_buffer); if (total_len) { IA64_LOG_INDEX_INC(sal_info_type); IA64_LOG_UNLOCK(sal_info_type); if (irq_safe) { IA64_MCA_DEBUG("%s: SAL error record type %d retrieved. Record length = %ld\n", __func__, sal_info_type, total_len); } *buffer = (u8 *) log_buffer; return total_len; } else { IA64_LOG_UNLOCK(sal_info_type); return 0; } } /* * ia64_mca_log_sal_error_record * * This function retrieves a specified error record type from SAL * and wakes up any processes waiting for error records. * * Inputs : sal_info_type (Type of error record MCA/CMC/CPE) * FIXME: remove MCA and irq_safe. */ static void ia64_mca_log_sal_error_record(int sal_info_type) { u8 *buffer; sal_log_record_header_t *rh; u64 size; int irq_safe = sal_info_type != SAL_INFO_TYPE_MCA; #ifdef IA64_MCA_DEBUG_INFO static const char * const rec_name[] = { "MCA", "INIT", "CMC", "CPE" }; #endif size = ia64_log_get(sal_info_type, &buffer, irq_safe); if (!size) return; salinfo_log_wakeup(sal_info_type, buffer, size, irq_safe); if (irq_safe) IA64_MCA_DEBUG("CPU %d: SAL log contains %s error record\n", smp_processor_id(), sal_info_type < ARRAY_SIZE(rec_name) ? rec_name[sal_info_type] : "UNKNOWN"); /* Clear logs from corrected errors in case there's no user-level logger */ rh = (sal_log_record_header_t *)buffer; if (rh->severity == sal_log_severity_corrected) ia64_sal_clear_state_info(sal_info_type); } /* * search_mca_table * See if the MCA surfaced in an instruction range * that has been tagged as recoverable. * * Inputs * first First address range to check * last Last address range to check * ip Instruction pointer, address we are looking for * * Return value: * 1 on Success (in the table)/ 0 on Failure (not in the table) */ int search_mca_table (const struct mca_table_entry *first, const struct mca_table_entry *last, unsigned long ip) { const struct mca_table_entry *curr; u64 curr_start, curr_end; curr = first; while (curr <= last) { curr_start = (u64) &curr->start_addr + curr->start_addr; curr_end = (u64) &curr->end_addr + curr->end_addr; if ((ip >= curr_start) && (ip <= curr_end)) { return 1; } curr++; } return 0; } /* Given an address, look for it in the mca tables. */ int mca_recover_range(unsigned long addr) { extern struct mca_table_entry __start___mca_table[]; extern struct mca_table_entry __stop___mca_table[]; return search_mca_table(__start___mca_table, __stop___mca_table-1, addr); } EXPORT_SYMBOL_GPL(mca_recover_range); int cpe_vector = -1; int ia64_cpe_irq = -1; static irqreturn_t ia64_mca_cpe_int_handler (int cpe_irq, void *arg) { static unsigned long cpe_history[CPE_HISTORY_LENGTH]; static int index; static DEFINE_SPINLOCK(cpe_history_lock); IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n", __func__, cpe_irq, smp_processor_id()); /* SAL spec states this should run w/ interrupts enabled */ local_irq_enable(); spin_lock(&cpe_history_lock); if (!cpe_poll_enabled && cpe_vector >= 0) { int i, count = 1; /* we know 1 happened now */ unsigned long now = jiffies; for (i = 0; i < CPE_HISTORY_LENGTH; i++) { if (now - cpe_history[i] <= HZ) count++; } IA64_MCA_DEBUG(KERN_INFO "CPE threshold %d/%d\n", count, CPE_HISTORY_LENGTH); if (count >= CPE_HISTORY_LENGTH) { cpe_poll_enabled = 1; spin_unlock(&cpe_history_lock); disable_irq_nosync(local_vector_to_irq(IA64_CPE_VECTOR)); /* * Corrected errors will still be corrected, but * make sure there's a log somewhere that indicates * something is generating more than we can handle. */ printk(KERN_WARNING "WARNING: Switching to polling CPE handler; error records may be lost\n"); mod_timer(&cpe_poll_timer, jiffies + MIN_CPE_POLL_INTERVAL); /* lock already released, get out now */ goto out; } else { cpe_history[index++] = now; if (index == CPE_HISTORY_LENGTH) index = 0; } } spin_unlock(&cpe_history_lock); out: /* Get the CPE error record and log it */ ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CPE); local_irq_disable(); return IRQ_HANDLED; } /* * ia64_mca_register_cpev * * Register the corrected platform error vector with SAL. * * Inputs * cpev Corrected Platform Error Vector number * * Outputs * None */ void ia64_mca_register_cpev (int cpev) { /* Register the CPE interrupt vector with SAL */ struct ia64_sal_retval isrv; isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_CPE_INT, SAL_MC_PARAM_MECHANISM_INT, cpev, 0, 0); if (isrv.status) { printk(KERN_ERR "Failed to register Corrected Platform " "Error interrupt vector with SAL (status %ld)\n", isrv.status); return; } IA64_MCA_DEBUG("%s: corrected platform error " "vector %#x registered\n", __func__, cpev); } /* * ia64_mca_cmc_vector_setup * * Setup the corrected machine check vector register in the processor. * (The interrupt is masked on boot. ia64_mca_late_init unmask this.) * This function is invoked on a per-processor basis. * * Inputs * None * * Outputs * None */ void ia64_mca_cmc_vector_setup (void) { cmcv_reg_t cmcv; cmcv.cmcv_regval = 0; cmcv.cmcv_mask = 1; /* Mask/disable interrupt at first */ cmcv.cmcv_vector = IA64_CMC_VECTOR; ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval); IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x registered.\n", __func__, smp_processor_id(), IA64_CMC_VECTOR); IA64_MCA_DEBUG("%s: CPU %d CMCV = %#016lx\n", __func__, smp_processor_id(), ia64_getreg(_IA64_REG_CR_CMCV)); } /* * ia64_mca_cmc_vector_disable * * Mask the corrected machine check vector register in the processor. * This function is invoked on a per-processor basis. * * Inputs * dummy(unused) * * Outputs * None */ static void ia64_mca_cmc_vector_disable (void *dummy) { cmcv_reg_t cmcv; cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV); cmcv.cmcv_mask = 1; /* Mask/disable interrupt */ ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval); IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x disabled.\n", __func__, smp_processor_id(), cmcv.cmcv_vector); } /* * ia64_mca_cmc_vector_enable * * Unmask the corrected machine check vector register in the processor. * This function is invoked on a per-processor basis. * * Inputs * dummy(unused) * * Outputs * None */ static void ia64_mca_cmc_vector_enable (void *dummy) { cmcv_reg_t cmcv; cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV); cmcv.cmcv_mask = 0; /* Unmask/enable interrupt */ ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval); IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x enabled.\n", __func__, smp_processor_id(), cmcv.cmcv_vector); } /* * ia64_mca_cmc_vector_disable_keventd * * Called via keventd (smp_call_function() is not safe in interrupt context) to * disable the cmc interrupt vector. */ static void ia64_mca_cmc_vector_disable_keventd(struct work_struct *unused) { on_each_cpu(ia64_mca_cmc_vector_disable, NULL, 0); } /* * ia64_mca_cmc_vector_enable_keventd * * Called via keventd (smp_call_function() is not safe in interrupt context) to * enable the cmc interrupt vector. */ static void ia64_mca_cmc_vector_enable_keventd(struct work_struct *unused) { on_each_cpu(ia64_mca_cmc_vector_enable, NULL, 0); } /* * ia64_mca_wakeup * * Send an inter-cpu interrupt to wake-up a particular cpu. * * Inputs : cpuid * Outputs : None */ static void ia64_mca_wakeup(int cpu) { ia64_send_ipi(cpu, IA64_MCA_WAKEUP_VECTOR, IA64_IPI_DM_INT, 0); } /* * ia64_mca_wakeup_all * * Wakeup all the slave cpus which have rendez'ed previously. * * Inputs : None * Outputs : None */ static void ia64_mca_wakeup_all(void) { int cpu; /* Clear the Rendez checkin flag for all cpus */ for_each_online_cpu(cpu) { if (ia64_mc_info.imi_rendez_checkin[cpu] == IA64_MCA_RENDEZ_CHECKIN_DONE) ia64_mca_wakeup(cpu); } } /* * ia64_mca_rendez_interrupt_handler * * This is handler used to put slave processors into spinloop * while the monarch processor does the mca handling and later * wake each slave up once the monarch is done. The state * IA64_MCA_RENDEZ_CHECKIN_DONE indicates the cpu is rendez'ed * in SAL. The state IA64_MCA_RENDEZ_CHECKIN_NOTDONE indicates * the cpu has come out of OS rendezvous. * * Inputs : None * Outputs : None */ static irqreturn_t ia64_mca_rendez_int_handler(int rendez_irq, void *arg) { unsigned long flags; int cpu = smp_processor_id(); struct ia64_mca_notify_die nd = { .sos = NULL, .monarch_cpu = &monarch_cpu }; /* Mask all interrupts */ local_irq_save(flags); NOTIFY_MCA(DIE_MCA_RENDZVOUS_ENTER, get_irq_regs(), (long)&nd, 1); ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_DONE; /* Register with the SAL monarch that the slave has * reached SAL */ ia64_sal_mc_rendez(); NOTIFY_MCA(DIE_MCA_RENDZVOUS_PROCESS, get_irq_regs(), (long)&nd, 1); /* Wait for the monarch cpu to exit. */ while (monarch_cpu != -1) cpu_relax(); /* spin until monarch leaves */ NOTIFY_MCA(DIE_MCA_RENDZVOUS_LEAVE, get_irq_regs(), (long)&nd, 1); ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE; /* Enable all interrupts */ local_irq_restore(flags); return IRQ_HANDLED; } /* * ia64_mca_wakeup_int_handler * * The interrupt handler for processing the inter-cpu interrupt to the * slave cpu which was spinning in the rendez loop. * Since this spinning is done by turning off the interrupts and * polling on the wakeup-interrupt bit in the IRR, there is * nothing useful to be done in the handler. * * Inputs : wakeup_irq (Wakeup-interrupt bit) * arg (Interrupt handler specific argument) * Outputs : None * */ static irqreturn_t ia64_mca_wakeup_int_handler(int wakeup_irq, void *arg) { return IRQ_HANDLED; } /* Function pointer for extra MCA recovery */ int (*ia64_mca_ucmc_extension) (void*,struct ia64_sal_os_state*) = NULL; int ia64_reg_MCA_extension(int (*fn)(void *, struct ia64_sal_os_state *)) { if (ia64_mca_ucmc_extension) return 1; ia64_mca_ucmc_extension = fn; return 0; } void ia64_unreg_MCA_extension(void) { if (ia64_mca_ucmc_extension) ia64_mca_ucmc_extension = NULL; } EXPORT_SYMBOL(ia64_reg_MCA_extension); EXPORT_SYMBOL(ia64_unreg_MCA_extension); static inline void copy_reg(const u64 *fr, u64 fnat, unsigned long *tr, unsigned long *tnat) { u64 fslot, tslot, nat; *tr = *fr; fslot = ((unsigned long)fr >> 3) & 63; tslot = ((unsigned long)tr >> 3) & 63; *tnat &= ~(1UL << tslot); nat = (fnat >> fslot) & 1; *tnat |= (nat << tslot); } /* Change the comm field on the MCA/INT task to include the pid that * was interrupted, it makes for easier debugging. If that pid was 0 * (swapper or nested MCA/INIT) then use the start of the previous comm * field suffixed with its cpu. */ static void ia64_mca_modify_comm(const struct task_struct *previous_current) { char *p, comm[sizeof(current->comm)]; if (previous_current->pid) snprintf(comm, sizeof(comm), "%s %d", current->comm, previous_current->pid); else { int l; if ((p = strchr(previous_current->comm, ' '))) l = p - previous_current->comm; else l = strlen(previous_current->comm); snprintf(comm, sizeof(comm), "%s %*s %d", current->comm, l, previous_current->comm, task_thread_info(previous_current)->cpu); } memcpy(current->comm, comm, sizeof(current->comm)); } static void finish_pt_regs(struct pt_regs *regs, struct ia64_sal_os_state *sos, unsigned long *nat) { const pal_min_state_area_t *ms = sos->pal_min_state; const u64 *bank; /* If ipsr.ic then use pmsa_{iip,ipsr,ifs}, else use * pmsa_{xip,xpsr,xfs} */ if (ia64_psr(regs)->ic) { regs->cr_iip = ms->pmsa_iip; regs->cr_ipsr = ms->pmsa_ipsr; regs->cr_ifs = ms->pmsa_ifs; } else { regs->cr_iip = ms->pmsa_xip; regs->cr_ipsr = ms->pmsa_xpsr; regs->cr_ifs = ms->pmsa_xfs; sos->iip = ms->pmsa_iip; sos->ipsr = ms->pmsa_ipsr; sos->ifs = ms->pmsa_ifs; } regs->pr = ms->pmsa_pr; regs->b0 = ms->pmsa_br0; regs->ar_rsc = ms->pmsa_rsc; copy_reg(&ms->pmsa_gr[1-1], ms->pmsa_nat_bits, ®s->r1, nat); copy_reg(&ms->pmsa_gr[2-1], ms->pmsa_nat_bits, ®s->r2, nat); copy_reg(&ms->pmsa_gr[3-1], ms->pmsa_nat_bits, ®s->r3, nat); copy_reg(&ms->pmsa_gr[8-1], ms->pmsa_nat_bits, ®s->r8, nat); copy_reg(&ms->pmsa_gr[9-1], ms->pmsa_nat_bits, ®s->r9, nat); copy_reg(&ms->pmsa_gr[10-1], ms->pmsa_nat_bits, ®s->r10, nat); copy_reg(&ms->pmsa_gr[11-1], ms->pmsa_nat_bits, ®s->r11, nat); copy_reg(&ms->pmsa_gr[12-1], ms->pmsa_nat_bits, ®s->r12, nat); copy_reg(&ms->pmsa_gr[13-1], ms->pmsa_nat_bits, ®s->r13, nat); copy_reg(&ms->pmsa_gr[14-1], ms->pmsa_nat_bits, ®s->r14, nat); copy_reg(&ms->pmsa_gr[15-1], ms->pmsa_nat_bits, ®s->r15, nat); if (ia64_psr(regs)->bn) bank = ms->pmsa_bank1_gr; else bank = ms->pmsa_bank0_gr; copy_reg(&bank[16-16], ms->pmsa_nat_bits, ®s->r16, nat); copy_reg(&bank[17-16], ms->pmsa_nat_bits, ®s->r17, nat); copy_reg(&bank[18-16], ms->pmsa_nat_bits, ®s->r18, nat); copy_reg(&bank[19-16], ms->pmsa_nat_bits, ®s->r19, nat); copy_reg(&bank[20-16], ms->pmsa_nat_bits, ®s->r20, nat); copy_reg(&bank[21-16], ms->pmsa_nat_bits, ®s->r21, nat); copy_reg(&bank[22-16], ms->pmsa_nat_bits, ®s->r22, nat); copy_reg(&bank[23-16], ms->pmsa_nat_bits, ®s->r23, nat); copy_reg(&bank[24-16], ms->pmsa_nat_bits, ®s->r24, nat); copy_reg(&bank[25-16], ms->pmsa_nat_bits, ®s->r25, nat); copy_reg(&bank[26-16], ms->pmsa_nat_bits, ®s->r26, nat); copy_reg(&bank[27-16], ms->pmsa_nat_bits, ®s->r27, nat); copy_reg(&bank[28-16], ms->pmsa_nat_bits, ®s->r28, nat); copy_reg(&bank[29-16], ms->pmsa_nat_bits, ®s->r29, nat); copy_reg(&bank[30-16], ms->pmsa_nat_bits, ®s->r30, nat); copy_reg(&bank[31-16], ms->pmsa_nat_bits, ®s->r31, nat); } /* On entry to this routine, we are running on the per cpu stack, see * mca_asm.h. The original stack has not been touched by this event. Some of * the original stack's registers will be in the RBS on this stack. This stack * also contains a partial pt_regs and switch_stack, the rest of the data is in * PAL minstate. * * The first thing to do is modify the original stack to look like a blocked * task so we can run backtrace on the original task. Also mark the per cpu * stack as current to ensure that we use the correct task state, it also means * that we can do backtrace on the MCA/INIT handler code itself. */ static struct task_struct * ia64_mca_modify_original_stack(struct pt_regs *regs, const struct switch_stack *sw, struct ia64_sal_os_state *sos, const char *type) { char *p; ia64_va va; extern char ia64_leave_kernel[]; /* Need asm address, not function descriptor */ const pal_min_state_area_t *ms = sos->pal_min_state; struct task_struct *previous_current; struct pt_regs *old_regs; struct switch_stack *old_sw; unsigned size = sizeof(struct pt_regs) + sizeof(struct switch_stack) + 16; unsigned long *old_bspstore, *old_bsp; unsigned long *new_bspstore, *new_bsp; unsigned long old_unat, old_rnat, new_rnat, nat; u64 slots, loadrs = regs->loadrs; u64 r12 = ms->pmsa_gr[12-1], r13 = ms->pmsa_gr[13-1]; u64 ar_bspstore = regs->ar_bspstore; u64 ar_bsp = regs->ar_bspstore + (loadrs >> 16); const char *msg; int cpu = smp_processor_id(); previous_current = curr_task(cpu); ia64_set_curr_task(cpu, current); if ((p = strchr(current->comm, ' '))) *p = '\0'; /* Best effort attempt to cope with MCA/INIT delivered while in * physical mode. */ regs->cr_ipsr = ms->pmsa_ipsr; if (ia64_psr(regs)->dt == 0) { va.l = r12; if (va.f.reg == 0) { va.f.reg = 7; r12 = va.l; } va.l = r13; if (va.f.reg == 0) { va.f.reg = 7; r13 = va.l; } } if (ia64_psr(regs)->rt == 0) { va.l = ar_bspstore; if (va.f.reg == 0) { va.f.reg = 7; ar_bspstore = va.l; } va.l = ar_bsp; if (va.f.reg == 0) { va.f.reg = 7; ar_bsp = va.l; } } /* mca_asm.S ia64_old_stack() cannot assume that the dirty registers * have been copied to the old stack, the old stack may fail the * validation tests below. So ia64_old_stack() must restore the dirty * registers from the new stack. The old and new bspstore probably * have different alignments, so loadrs calculated on the old bsp * cannot be used to restore from the new bsp. Calculate a suitable * loadrs for the new stack and save it in the new pt_regs, where * ia64_old_stack() can get it. */ old_bspstore = (unsigned long *)ar_bspstore; old_bsp = (unsigned long *)ar_bsp; slots = ia64_rse_num_regs(old_bspstore, old_bsp); new_bspstore = (unsigned long *)((u64)current + IA64_RBS_OFFSET); new_bsp = ia64_rse_skip_regs(new_bspstore, slots); regs->loadrs = (new_bsp - new_bspstore) * 8 << 16; /* Verify the previous stack state before we change it */ if (user_mode(regs)) { msg = "occurred in user space"; /* previous_current is guaranteed to be valid when the task was * in user space, so ... */ ia64_mca_modify_comm(previous_current); goto no_mod; } if (r13 != sos->prev_IA64_KR_CURRENT) { msg = "inconsistent previous current and r13"; goto no_mod; } if (!mca_recover_range(ms->pmsa_iip)) { if ((r12 - r13) >= KERNEL_STACK_SIZE) { msg = "inconsistent r12 and r13"; goto no_mod; } if ((ar_bspstore - r13) >= KERNEL_STACK_SIZE) { msg = "inconsistent ar.bspstore and r13"; goto no_mod; } va.p = old_bspstore; if (va.f.reg < 5) { msg = "old_bspstore is in the wrong region"; goto no_mod; } if ((ar_bsp - r13) >= KERNEL_STACK_SIZE) { msg = "inconsistent ar.bsp and r13"; goto no_mod; } size += (ia64_rse_skip_regs(old_bspstore, slots) - old_bspstore) * 8; if (ar_bspstore + size > r12) { msg = "no room for blocked state"; goto no_mod; } } ia64_mca_modify_comm(previous_current); /* Make the original task look blocked. First stack a struct pt_regs, * describing the state at the time of interrupt. mca_asm.S built a * partial pt_regs, copy it and fill in the blanks using minstate. */ p = (char *)r12 - sizeof(*regs); old_regs = (struct pt_regs *)p; memcpy(old_regs, regs, sizeof(*regs)); old_regs->loadrs = loadrs; old_unat = old_regs->ar_unat; finish_pt_regs(old_regs, sos, &old_unat); /* Next stack a struct switch_stack. mca_asm.S built a partial * switch_stack, copy it and fill in the blanks using pt_regs and * minstate. * * In the synthesized switch_stack, b0 points to ia64_leave_kernel, * ar.pfs is set to 0. * * unwind.c::unw_unwind() does special processing for interrupt frames. * It checks if the PRED_NON_SYSCALL predicate is set, if the predicate * is clear then unw_unwind() does _not_ adjust bsp over pt_regs. Not * that this is documented, of course. Set PRED_NON_SYSCALL in the * switch_stack on the original stack so it will unwind correctly when * unwind.c reads pt_regs. * * thread.ksp is updated to point to the synthesized switch_stack. */ p -= sizeof(struct switch_stack); old_sw = (struct switch_stack *)p; memcpy(old_sw, sw, sizeof(*sw)); old_sw->caller_unat = old_unat; old_sw->ar_fpsr = old_regs->ar_fpsr; copy_reg(&ms->pmsa_gr[4-1], ms->pmsa_nat_bits, &old_sw->r4, &old_unat); copy_reg(&ms->pmsa_gr[5-1], ms->pmsa_nat_bits, &old_sw->r5, &old_unat); copy_reg(&ms->pmsa_gr[6-1], ms->pmsa_nat_bits, &old_sw->r6, &old_unat); copy_reg(&ms->pmsa_gr[7-1], ms->pmsa_nat_bits, &old_sw->r7, &old_unat); old_sw->b0 = (u64)ia64_leave_kernel; old_sw->b1 = ms->pmsa_br1; old_sw->ar_pfs = 0; old_sw->ar_unat = old_unat; old_sw->pr = old_regs->pr | (1UL << PRED_NON_SYSCALL); previous_current->thread.ksp = (u64)p - 16; /* Finally copy the original stack's registers back to its RBS. * Registers from ar.bspstore through ar.bsp at the time of the event * are in the current RBS, copy them back to the original stack. The * copy must be done register by register because the original bspstore * and the current one have different alignments, so the saved RNAT * data occurs at different places. * * mca_asm does cover, so the old_bsp already includes all registers at * the time of MCA/INIT. It also does flushrs, so all registers before * this function have been written to backing store on the MCA/INIT * stack. */ new_rnat = ia64_get_rnat(ia64_rse_rnat_addr(new_bspstore)); old_rnat = regs->ar_rnat; while (slots--) { if (ia64_rse_is_rnat_slot(new_bspstore)) { new_rnat = ia64_get_rnat(new_bspstore++); } if (ia64_rse_is_rnat_slot(old_bspstore)) { *old_bspstore++ = old_rnat; old_rnat = 0; } nat = (new_rnat >> ia64_rse_slot_num(new_bspstore)) & 1UL; old_rnat &= ~(1UL << ia64_rse_slot_num(old_bspstore)); old_rnat |= (nat << ia64_rse_slot_num(old_bspstore)); *old_bspstore++ = *new_bspstore++; } old_sw->ar_bspstore = (unsigned long)old_bspstore; old_sw->ar_rnat = old_rnat; sos->prev_task = previous_current; return previous_current; no_mod: mprintk(KERN_INFO "cpu %d, %s %s, original stack not modified\n", smp_processor_id(), type, msg); old_unat = regs->ar_unat; finish_pt_regs(regs, sos, &old_unat); return previous_current; } /* The monarch/slave interaction is based on monarch_cpu and requires that all * slaves have entered rendezvous before the monarch leaves. If any cpu has * not entered rendezvous yet then wait a bit. The assumption is that any * slave that has not rendezvoused after a reasonable time is never going to do * so. In this context, slave includes cpus that respond to the MCA rendezvous * interrupt, as well as cpus that receive the INIT slave event. */ static void ia64_wait_for_slaves(int monarch, const char *type) { int c, i , wait; /* * wait 5 seconds total for slaves (arbitrary) */ for (i = 0; i < 5000; i++) { wait = 0; for_each_online_cpu(c) { if (c == monarch) continue; if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) { udelay(1000); /* short wait */ wait = 1; break; } } if (!wait) goto all_in; } /* * Maybe slave(s) dead. Print buffered messages immediately. */ ia64_mlogbuf_finish(0); mprintk(KERN_INFO "OS %s slave did not rendezvous on cpu", type); for_each_online_cpu(c) { if (c == monarch) continue; if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) mprintk(" %d", c); } mprintk("\n"); return; all_in: mprintk(KERN_INFO "All OS %s slaves have reached rendezvous\n", type); return; } /* mca_insert_tr * * Switch rid when TR reload and needed! * iord: 1: itr, 2: itr; * */ static void mca_insert_tr(u64 iord) { int i; u64 old_rr; struct ia64_tr_entry *p; unsigned long psr; int cpu = smp_processor_id(); if (!ia64_idtrs[cpu]) return; psr = ia64_clear_ic(); for (i = IA64_TR_ALLOC_BASE; i < IA64_TR_ALLOC_MAX; i++) { p = ia64_idtrs[cpu] + (iord - 1) * IA64_TR_ALLOC_MAX; if (p->pte & 0x1) { old_rr = ia64_get_rr(p->ifa); if (old_rr != p->rr) { ia64_set_rr(p->ifa, p->rr); ia64_srlz_d(); } ia64_ptr(iord, p->ifa, p->itir >> 2); ia64_srlz_i(); if (iord & 0x1) { ia64_itr(0x1, i, p->ifa, p->pte, p->itir >> 2); ia64_srlz_i(); } if (iord & 0x2) { ia64_itr(0x2, i, p->ifa, p->pte, p->itir >> 2); ia64_srlz_i(); } if (old_rr != p->rr) { ia64_set_rr(p->ifa, old_rr); ia64_srlz_d(); } } } ia64_set_psr(psr); } /* * ia64_mca_handler * * This is uncorrectable machine check handler called from OS_MCA * dispatch code which is in turn called from SAL_CHECK(). * This is the place where the core of OS MCA handling is done. * Right now the logs are extracted and displayed in a well-defined * format. This handler code is supposed to be run only on the * monarch processor. Once the monarch is done with MCA handling * further MCA logging is enabled by clearing logs. * Monarch also has the duty of sending wakeup-IPIs to pull the * slave processors out of rendezvous spinloop. * * If multiple processors call into OS_MCA, the first will become * the monarch. Subsequent cpus will be recorded in the mca_cpu * bitmask. After the first monarch has processed its MCA, it * will wake up the next cpu in the mca_cpu bitmask and then go * into the rendezvous loop. When all processors have serviced * their MCA, the last monarch frees up the rest of the processors. */ void ia64_mca_handler(struct pt_regs *regs, struct switch_stack *sw, struct ia64_sal_os_state *sos) { int recover, cpu = smp_processor_id(); struct task_struct *previous_current; struct ia64_mca_notify_die nd = { .sos = sos, .monarch_cpu = &monarch_cpu, .data = &recover }; static atomic_t mca_count; static cpumask_t mca_cpu; if (atomic_add_return(1, &mca_count) == 1) { monarch_cpu = cpu; sos->monarch = 1; } else { cpumask_set_cpu(cpu, &mca_cpu); sos->monarch = 0; } mprintk(KERN_INFO "Entered OS MCA handler. PSP=%lx cpu=%d " "monarch=%ld\n", sos->proc_state_param, cpu, sos->monarch); previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "MCA"); NOTIFY_MCA(DIE_MCA_MONARCH_ENTER, regs, (long)&nd, 1); ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_CONCURRENT_MCA; if (sos->monarch) { ia64_wait_for_slaves(cpu, "MCA"); /* Wakeup all the processors which are spinning in the * rendezvous loop. They will leave SAL, then spin in the OS * with interrupts disabled until this monarch cpu leaves the * MCA handler. That gets control back to the OS so we can * backtrace the other cpus, backtrace when spinning in SAL * does not work. */ ia64_mca_wakeup_all(); } else { while (cpumask_test_cpu(cpu, &mca_cpu)) cpu_relax(); /* spin until monarch wakes us */ } NOTIFY_MCA(DIE_MCA_MONARCH_PROCESS, regs, (long)&nd, 1); /* Get the MCA error record and log it */ ia64_mca_log_sal_error_record(SAL_INFO_TYPE_MCA); /* MCA error recovery */ recover = (ia64_mca_ucmc_extension && ia64_mca_ucmc_extension( IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA), sos)); if (recover) { sal_log_record_header_t *rh = IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA); rh->severity = sal_log_severity_corrected; ia64_sal_clear_state_info(SAL_INFO_TYPE_MCA); sos->os_status = IA64_MCA_CORRECTED; } else { /* Dump buffered message to console */ ia64_mlogbuf_finish(1); } if (__this_cpu_read(ia64_mca_tr_reload)) { mca_insert_tr(0x1); /*Reload dynamic itrs*/ mca_insert_tr(0x2); /*Reload dynamic itrs*/ } NOTIFY_MCA(DIE_MCA_MONARCH_LEAVE, regs, (long)&nd, 1); if (atomic_dec_return(&mca_count) > 0) { int i; /* wake up the next monarch cpu, * and put this cpu in the rendez loop. */ for_each_online_cpu(i) { if (cpumask_test_cpu(i, &mca_cpu)) { monarch_cpu = i; cpumask_clear_cpu(i, &mca_cpu); /* wake next cpu */ while (monarch_cpu != -1) cpu_relax(); /* spin until last cpu leaves */ ia64_set_curr_task(cpu, previous_current); ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE; return; } } } ia64_set_curr_task(cpu, previous_current); ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE; monarch_cpu = -1; /* This frees the slaves and previous monarchs */ } static DECLARE_WORK(cmc_disable_work, ia64_mca_cmc_vector_disable_keventd); static DECLARE_WORK(cmc_enable_work, ia64_mca_cmc_vector_enable_keventd); /* * ia64_mca_cmc_int_handler * * This is corrected machine check interrupt handler. * Right now the logs are extracted and displayed in a well-defined * format. * * Inputs * interrupt number * client data arg ptr * * Outputs * None */ static irqreturn_t ia64_mca_cmc_int_handler(int cmc_irq, void *arg) { static unsigned long cmc_history[CMC_HISTORY_LENGTH]; static int index; static DEFINE_SPINLOCK(cmc_history_lock); IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n", __func__, cmc_irq, smp_processor_id()); /* SAL spec states this should run w/ interrupts enabled */ local_irq_enable(); spin_lock(&cmc_history_lock); if (!cmc_polling_enabled) { int i, count = 1; /* we know 1 happened now */ unsigned long now = jiffies; for (i = 0; i < CMC_HISTORY_LENGTH; i++) { if (now - cmc_history[i] <= HZ) count++; } IA64_MCA_DEBUG(KERN_INFO "CMC threshold %d/%d\n", count, CMC_HISTORY_LENGTH); if (count >= CMC_HISTORY_LENGTH) { cmc_polling_enabled = 1; spin_unlock(&cmc_history_lock); /* If we're being hit with CMC interrupts, we won't * ever execute the schedule_work() below. Need to * disable CMC interrupts on this processor now. */ ia64_mca_cmc_vector_disable(NULL); schedule_work(&cmc_disable_work); /* * Corrected errors will still be corrected, but * make sure there's a log somewhere that indicates * something is generating more than we can handle. */ printk(KERN_WARNING "WARNING: Switching to polling CMC handler; error records may be lost\n"); mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL); /* lock already released, get out now */ goto out; } else { cmc_history[index++] = now; if (index == CMC_HISTORY_LENGTH) index = 0; } } spin_unlock(&cmc_history_lock); out: /* Get the CMC error record and log it */ ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CMC); local_irq_disable(); return IRQ_HANDLED; } /* * ia64_mca_cmc_int_caller * * Triggered by sw interrupt from CMC polling routine. Calls * real interrupt handler and either triggers a sw interrupt * on the next cpu or does cleanup at the end. * * Inputs * interrupt number * client data arg ptr * Outputs * handled */ static irqreturn_t ia64_mca_cmc_int_caller(int cmc_irq, void *arg) { static int start_count = -1; unsigned int cpuid; cpuid = smp_processor_id(); /* If first cpu, update count */ if (start_count == -1) start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CMC); ia64_mca_cmc_int_handler(cmc_irq, arg); cpuid = cpumask_next(cpuid+1, cpu_online_mask); if (cpuid < nr_cpu_ids) { ia64_send_ipi(cpuid, IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0); } else { /* If no log record, switch out of polling mode */ if (start_count == IA64_LOG_COUNT(SAL_INFO_TYPE_CMC)) { printk(KERN_WARNING "Returning to interrupt driven CMC handler\n"); schedule_work(&cmc_enable_work); cmc_polling_enabled = 0; } else { mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL); } start_count = -1; } return IRQ_HANDLED; } /* * ia64_mca_cmc_poll * * Poll for Corrected Machine Checks (CMCs) * * Inputs : dummy(unused) * Outputs : None * */ static void ia64_mca_cmc_poll (struct timer_list *unused) { /* Trigger a CMC interrupt cascade */ ia64_send_ipi(cpumask_first(cpu_online_mask), IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0); } /* * ia64_mca_cpe_int_caller * * Triggered by sw interrupt from CPE polling routine. Calls * real interrupt handler and either triggers a sw interrupt * on the next cpu or does cleanup at the end. * * Inputs * interrupt number * client data arg ptr * Outputs * handled */ static irqreturn_t ia64_mca_cpe_int_caller(int cpe_irq, void *arg) { static int start_count = -1; static int poll_time = MIN_CPE_POLL_INTERVAL; unsigned int cpuid; cpuid = smp_processor_id(); /* If first cpu, update count */ if (start_count == -1) start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CPE); ia64_mca_cpe_int_handler(cpe_irq, arg); cpuid = cpumask_next(cpuid+1, cpu_online_mask); if (cpuid < NR_CPUS) { ia64_send_ipi(cpuid, IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0); } else { /* * If a log was recorded, increase our polling frequency, * otherwise, backoff or return to interrupt mode. */ if (start_count != IA64_LOG_COUNT(SAL_INFO_TYPE_CPE)) { poll_time = max(MIN_CPE_POLL_INTERVAL, poll_time / 2); } else if (cpe_vector < 0) { poll_time = min(MAX_CPE_POLL_INTERVAL, poll_time * 2); } else { poll_time = MIN_CPE_POLL_INTERVAL; printk(KERN_WARNING "Returning to interrupt driven CPE handler\n"); enable_irq(local_vector_to_irq(IA64_CPE_VECTOR)); cpe_poll_enabled = 0; } if (cpe_poll_enabled) mod_timer(&cpe_poll_timer, jiffies + poll_time); start_count = -1; } return IRQ_HANDLED; } /* * ia64_mca_cpe_poll * * Poll for Corrected Platform Errors (CPEs), trigger interrupt * on first cpu, from there it will trickle through all the cpus. * * Inputs : dummy(unused) * Outputs : None * */ static void ia64_mca_cpe_poll (struct timer_list *unused) { /* Trigger a CPE interrupt cascade */ ia64_send_ipi(cpumask_first(cpu_online_mask), IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0); } static int default_monarch_init_process(struct notifier_block *self, unsigned long val, void *data) { int c; struct task_struct *g, *t; if (val != DIE_INIT_MONARCH_PROCESS) return NOTIFY_DONE; #ifdef CONFIG_KEXEC if (atomic_read(&kdump_in_progress)) return NOTIFY_DONE; #endif /* * FIXME: mlogbuf will brim over with INIT stack dumps. * To enable show_stack from INIT, we use oops_in_progress which should * be used in real oops. This would cause something wrong after INIT. */ BREAK_LOGLEVEL(console_loglevel); ia64_mlogbuf_dump_from_init(); printk(KERN_ERR "Processes interrupted by INIT -"); for_each_online_cpu(c) { struct ia64_sal_os_state *s; t = __va(__per_cpu_mca[c] + IA64_MCA_CPU_INIT_STACK_OFFSET); s = (struct ia64_sal_os_state *)((char *)t + MCA_SOS_OFFSET); g = s->prev_task; if (g) { if (g->pid) printk(" %d", g->pid); else printk(" %d (cpu %d task 0x%p)", g->pid, task_cpu(g), g); } } printk("\n\n"); if (read_trylock(&tasklist_lock)) { do_each_thread (g, t) { printk("\nBacktrace of pid %d (%s)\n", t->pid, t->comm); show_stack(t, NULL, KERN_DEFAULT); } while_each_thread (g, t); read_unlock(&tasklist_lock); } /* FIXME: This will not restore zapped printk locks. */ RESTORE_LOGLEVEL(console_loglevel); return NOTIFY_DONE; } /* * C portion of the OS INIT handler * * Called from ia64_os_init_dispatch * * Inputs: pointer to pt_regs where processor info was saved. SAL/OS state for * this event. This code is used for both monarch and slave INIT events, see * sos->monarch. * * All INIT events switch to the INIT stack and change the previous process to * blocked status. If one of the INIT events is the monarch then we are * probably processing the nmi button/command. Use the monarch cpu to dump all * the processes. The slave INIT events all spin until the monarch cpu * returns. We can also get INIT slave events for MCA, in which case the MCA * process is the monarch. */ void ia64_init_handler(struct pt_regs *regs, struct switch_stack *sw, struct ia64_sal_os_state *sos) { static atomic_t slaves; static atomic_t monarchs; struct task_struct *previous_current; int cpu = smp_processor_id(); struct ia64_mca_notify_die nd = { .sos = sos, .monarch_cpu = &monarch_cpu }; NOTIFY_INIT(DIE_INIT_ENTER, regs, (long)&nd, 0); mprintk(KERN_INFO "Entered OS INIT handler. PSP=%lx cpu=%d monarch=%ld\n", sos->proc_state_param, cpu, sos->monarch); salinfo_log_wakeup(SAL_INFO_TYPE_INIT, NULL, 0, 0); previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "INIT"); sos->os_status = IA64_INIT_RESUME; /* FIXME: Workaround for broken proms that drive all INIT events as * slaves. The last slave that enters is promoted to be a monarch. * Remove this code in September 2006, that gives platforms a year to * fix their proms and get their customers updated. */ if (!sos->monarch && atomic_add_return(1, &slaves) == num_online_cpus()) { mprintk(KERN_WARNING "%s: Promoting cpu %d to monarch.\n", __func__, cpu); atomic_dec(&slaves); sos->monarch = 1; } /* FIXME: Workaround for broken proms that drive all INIT events as * monarchs. Second and subsequent monarchs are demoted to slaves. * Remove this code in September 2006, that gives platforms a year to * fix their proms and get their customers updated. */ if (sos->monarch && atomic_add_return(1, &monarchs) > 1) { mprintk(KERN_WARNING "%s: Demoting cpu %d to slave.\n", __func__, cpu); atomic_dec(&monarchs); sos->monarch = 0; } if (!sos->monarch) { ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_INIT; #ifdef CONFIG_KEXEC while (monarch_cpu == -1 && !atomic_read(&kdump_in_progress)) udelay(1000); #else while (monarch_cpu == -1) cpu_relax(); /* spin until monarch enters */ #endif NOTIFY_INIT(DIE_INIT_SLAVE_ENTER, regs, (long)&nd, 1); NOTIFY_INIT(DIE_INIT_SLAVE_PROCESS, regs, (long)&nd, 1); #ifdef CONFIG_KEXEC while (monarch_cpu != -1 && !atomic_read(&kdump_in_progress)) udelay(1000); #else while (monarch_cpu != -1) cpu_relax(); /* spin until monarch leaves */ #endif NOTIFY_INIT(DIE_INIT_SLAVE_LEAVE, regs, (long)&nd, 1); mprintk("Slave on cpu %d returning to normal service.\n", cpu); ia64_set_curr_task(cpu, previous_current); ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE; atomic_dec(&slaves); return; } monarch_cpu = cpu; NOTIFY_INIT(DIE_INIT_MONARCH_ENTER, regs, (long)&nd, 1); /* * Wait for a bit. On some machines (e.g., HP's zx2000 and zx6000, INIT can be * generated via the BMC's command-line interface, but since the console is on the * same serial line, the user will need some time to switch out of the BMC before * the dump begins. */ mprintk("Delaying for 5 seconds...\n"); udelay(5*1000000); ia64_wait_for_slaves(cpu, "INIT"); /* If nobody intercepts DIE_INIT_MONARCH_PROCESS then we drop through * to default_monarch_init_process() above and just print all the * tasks. */ NOTIFY_INIT(DIE_INIT_MONARCH_PROCESS, regs, (long)&nd, 1); NOTIFY_INIT(DIE_INIT_MONARCH_LEAVE, regs, (long)&nd, 1); mprintk("\nINIT dump complete. Monarch on cpu %d returning to normal service.\n", cpu); atomic_dec(&monarchs); ia64_set_curr_task(cpu, previous_current); monarch_cpu = -1; return; } static int __init ia64_mca_disable_cpe_polling(char *str) { cpe_poll_enabled = 0; return 1; } __setup("disable_cpe_poll", ia64_mca_disable_cpe_polling); /* Minimal format of the MCA/INIT stacks. The pseudo processes that run on * these stacks can never sleep, they cannot return from the kernel to user * space, they do not appear in a normal ps listing. So there is no need to * format most of the fields. */ static void format_mca_init_stack(void *mca_data, unsigned long offset, const char *type, int cpu) { struct task_struct *p = (struct task_struct *)((char *)mca_data + offset); struct thread_info *ti; memset(p, 0, KERNEL_STACK_SIZE); ti = task_thread_info(p); ti->flags = _TIF_MCA_INIT; ti->preempt_count = 1; ti->task = p; ti->cpu = cpu; p->stack = ti; p->state = TASK_UNINTERRUPTIBLE; cpumask_set_cpu(cpu, &p->cpus_mask); INIT_LIST_HEAD(&p->tasks); p->parent = p->real_parent = p->group_leader = p; INIT_LIST_HEAD(&p->children); INIT_LIST_HEAD(&p->sibling); strncpy(p->comm, type, sizeof(p->comm)-1); } /* Caller prevents this from being called after init */ static void * __ref mca_bootmem(void) { return memblock_alloc(sizeof(struct ia64_mca_cpu), KERNEL_STACK_SIZE); } /* Do per-CPU MCA-related initialization. */ void ia64_mca_cpu_init(void *cpu_data) { void *pal_vaddr; void *data; long sz = sizeof(struct ia64_mca_cpu); int cpu = smp_processor_id(); static int first_time = 1; /* * Structure will already be allocated if cpu has been online, * then offlined. */ if (__per_cpu_mca[cpu]) { data = __va(__per_cpu_mca[cpu]); } else { if (first_time) { data = mca_bootmem(); first_time = 0; } else data = (void *)__get_free_pages(GFP_ATOMIC, get_order(sz)); if (!data) panic("Could not allocate MCA memory for cpu %d\n", cpu); } format_mca_init_stack(data, offsetof(struct ia64_mca_cpu, mca_stack), "MCA", cpu); format_mca_init_stack(data, offsetof(struct ia64_mca_cpu, init_stack), "INIT", cpu); __this_cpu_write(ia64_mca_data, (__per_cpu_mca[cpu] = __pa(data))); /* * Stash away a copy of the PTE needed to map the per-CPU page. * We may need it during MCA recovery. */ __this_cpu_write(ia64_mca_per_cpu_pte, pte_val(mk_pte_phys(__pa(cpu_data), PAGE_KERNEL))); /* * Also, stash away a copy of the PAL address and the PTE * needed to map it. */ pal_vaddr = efi_get_pal_addr(); if (!pal_vaddr) return; __this_cpu_write(ia64_mca_pal_base, GRANULEROUNDDOWN((unsigned long) pal_vaddr)); __this_cpu_write(ia64_mca_pal_pte, pte_val(mk_pte_phys(__pa(pal_vaddr), PAGE_KERNEL))); } static int ia64_mca_cpu_online(unsigned int cpu) { unsigned long flags; local_irq_save(flags); if (!cmc_polling_enabled) ia64_mca_cmc_vector_enable(NULL); local_irq_restore(flags); return 0; } /* * ia64_mca_init * * Do all the system level mca specific initialization. * * 1. Register spinloop and wakeup request interrupt vectors * * 2. Register OS_MCA handler entry point * * 3. Register OS_INIT handler entry point * * 4. Initialize MCA/CMC/INIT related log buffers maintained by the OS. * * Note that this initialization is done very early before some kernel * services are available. * * Inputs : None * * Outputs : None */ void __init ia64_mca_init(void) { ia64_fptr_t *init_hldlr_ptr_monarch = (ia64_fptr_t *)ia64_os_init_dispatch_monarch; ia64_fptr_t *init_hldlr_ptr_slave = (ia64_fptr_t *)ia64_os_init_dispatch_slave; ia64_fptr_t *mca_hldlr_ptr = (ia64_fptr_t *)ia64_os_mca_dispatch; int i; long rc; struct ia64_sal_retval isrv; unsigned long timeout = IA64_MCA_RENDEZ_TIMEOUT; /* platform specific */ static struct notifier_block default_init_monarch_nb = { .notifier_call = default_monarch_init_process, .priority = 0/* we need to notified last */ }; IA64_MCA_DEBUG("%s: begin\n", __func__); /* Clear the Rendez checkin flag for all cpus */ for(i = 0 ; i < NR_CPUS; i++) ia64_mc_info.imi_rendez_checkin[i] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE; /* * Register the rendezvous spinloop and wakeup mechanism with SAL */ /* Register the rendezvous interrupt vector with SAL */ while (1) { isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_INT, SAL_MC_PARAM_MECHANISM_INT, IA64_MCA_RENDEZ_VECTOR, timeout, SAL_MC_PARAM_RZ_ALWAYS); rc = isrv.status; if (rc == 0) break; if (rc == -2) { printk(KERN_INFO "Increasing MCA rendezvous timeout from " "%ld to %ld milliseconds\n", timeout, isrv.v0); timeout = isrv.v0; NOTIFY_MCA(DIE_MCA_NEW_TIMEOUT, NULL, timeout, 0); continue; } printk(KERN_ERR "Failed to register rendezvous interrupt " "with SAL (status %ld)\n", rc); return; } /* Register the wakeup interrupt vector with SAL */ isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_WAKEUP, SAL_MC_PARAM_MECHANISM_INT, IA64_MCA_WAKEUP_VECTOR, 0, 0); rc = isrv.status; if (rc) { printk(KERN_ERR "Failed to register wakeup interrupt with SAL " "(status %ld)\n", rc); return; } IA64_MCA_DEBUG("%s: registered MCA rendezvous spinloop and wakeup mech.\n", __func__); ia64_mc_info.imi_mca_handler = ia64_tpa(mca_hldlr_ptr->fp); /* * XXX - disable SAL checksum by setting size to 0; should be * ia64_tpa(ia64_os_mca_dispatch_end) - ia64_tpa(ia64_os_mca_dispatch); */ ia64_mc_info.imi_mca_handler_size = 0; /* Register the os mca handler with SAL */ if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_MCA, ia64_mc_info.imi_mca_handler, ia64_tpa(mca_hldlr_ptr->gp), ia64_mc_info.imi_mca_handler_size, 0, 0, 0))) { printk(KERN_ERR "Failed to register OS MCA handler with SAL " "(status %ld)\n", rc); return; } IA64_MCA_DEBUG("%s: registered OS MCA handler with SAL at 0x%lx, gp = 0x%lx\n", __func__, ia64_mc_info.imi_mca_handler, ia64_tpa(mca_hldlr_ptr->gp)); /* * XXX - disable SAL checksum by setting size to 0, should be * size of the actual init handler in mca_asm.S. */ ia64_mc_info.imi_monarch_init_handler = ia64_tpa(init_hldlr_ptr_monarch->fp); ia64_mc_info.imi_monarch_init_handler_size = 0; ia64_mc_info.imi_slave_init_handler = ia64_tpa(init_hldlr_ptr_slave->fp); ia64_mc_info.imi_slave_init_handler_size = 0; IA64_MCA_DEBUG("%s: OS INIT handler at %lx\n", __func__, ia64_mc_info.imi_monarch_init_handler); /* Register the os init handler with SAL */ if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_INIT, ia64_mc_info.imi_monarch_init_handler, ia64_tpa(ia64_getreg(_IA64_REG_GP)), ia64_mc_info.imi_monarch_init_handler_size, ia64_mc_info.imi_slave_init_handler, ia64_tpa(ia64_getreg(_IA64_REG_GP)), ia64_mc_info.imi_slave_init_handler_size))) { printk(KERN_ERR "Failed to register m/s INIT handlers with SAL " "(status %ld)\n", rc); return; } if (register_die_notifier(&default_init_monarch_nb)) { printk(KERN_ERR "Failed to register default monarch INIT process\n"); return; } IA64_MCA_DEBUG("%s: registered OS INIT handler with SAL\n", __func__); /* Initialize the areas set aside by the OS to buffer the * platform/processor error states for MCA/INIT/CMC * handling. */ ia64_log_init(SAL_INFO_TYPE_MCA); ia64_log_init(SAL_INFO_TYPE_INIT); ia64_log_init(SAL_INFO_TYPE_CMC); ia64_log_init(SAL_INFO_TYPE_CPE); mca_init = 1; printk(KERN_INFO "MCA related initialization done\n"); } /* * These pieces cannot be done in ia64_mca_init() because it is called before * early_irq_init() which would wipe out our percpu irq registrations. But we * cannot leave them until ia64_mca_late_init() because by then all the other * processors have been brought online and have set their own CMC vectors to * point at a non-existant action. Called from arch_early_irq_init(). */ void __init ia64_mca_irq_init(void) { /* * Configure the CMCI/P vector and handler. Interrupts for CMC are * per-processor, so AP CMC interrupts are setup in smp_callin() (smpboot.c). */ register_percpu_irq(IA64_CMC_VECTOR, ia64_mca_cmc_int_handler, 0, "cmc_hndlr"); register_percpu_irq(IA64_CMCP_VECTOR, ia64_mca_cmc_int_caller, 0, "cmc_poll"); ia64_mca_cmc_vector_setup(); /* Setup vector on BSP */ /* Setup the MCA rendezvous interrupt vector */ register_percpu_irq(IA64_MCA_RENDEZ_VECTOR, ia64_mca_rendez_int_handler, 0, "mca_rdzv"); /* Setup the MCA wakeup interrupt vector */ register_percpu_irq(IA64_MCA_WAKEUP_VECTOR, ia64_mca_wakeup_int_handler, 0, "mca_wkup"); /* Setup the CPEI/P handler */ register_percpu_irq(IA64_CPEP_VECTOR, ia64_mca_cpe_int_caller, 0, "cpe_poll"); } /* * ia64_mca_late_init * * Opportunity to setup things that require initialization later * than ia64_mca_init. Setup a timer to poll for CPEs if the * platform doesn't support an interrupt driven mechanism. * * Inputs : None * Outputs : Status */ static int __init ia64_mca_late_init(void) { if (!mca_init) return 0; /* Setup the CMCI/P vector and handler */ timer_setup(&cmc_poll_timer, ia64_mca_cmc_poll, 0); /* Unmask/enable the vector */ cmc_polling_enabled = 0; cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "ia64/mca:online", ia64_mca_cpu_online, NULL); IA64_MCA_DEBUG("%s: CMCI/P setup and enabled.\n", __func__); /* Setup the CPEI/P vector and handler */ cpe_vector = acpi_request_vector(ACPI_INTERRUPT_CPEI); timer_setup(&cpe_poll_timer, ia64_mca_cpe_poll, 0); { unsigned int irq; if (cpe_vector >= 0) { /* If platform supports CPEI, enable the irq. */ irq = local_vector_to_irq(cpe_vector); if (irq > 0) { cpe_poll_enabled = 0; irq_set_status_flags(irq, IRQ_PER_CPU); if (request_irq(irq, ia64_mca_cpe_int_handler, 0, "cpe_hndlr", NULL)) pr_err("Failed to register cpe_hndlr interrupt\n"); ia64_cpe_irq = irq; ia64_mca_register_cpev(cpe_vector); IA64_MCA_DEBUG("%s: CPEI/P setup and enabled.\n", __func__); return 0; } printk(KERN_ERR "%s: Failed to find irq for CPE " "interrupt handler, vector %d\n", __func__, cpe_vector); } /* If platform doesn't support CPEI, get the timer going. */ if (cpe_poll_enabled) { ia64_mca_cpe_poll(0UL); IA64_MCA_DEBUG("%s: CPEP setup and enabled.\n", __func__); } } return 0; } device_initcall(ia64_mca_late_init);