/* SPDX-License-Identifier: MIT */ /* * Copyright (C) 2017 Google, Inc. * Copyright _ 2017-2019, Intel Corporation. * * Authors: * Sean Paul * Ramalingam C */ #include #include #include #include #include #include "i915_reg.h" #include "intel_display_power.h" #include "intel_display_types.h" #include "intel_hdcp.h" #include "intel_sideband.h" #include "intel_connector.h" #define KEY_LOAD_TRIES 5 #define ENCRYPT_STATUS_CHANGE_TIMEOUT_MS 50 #define HDCP2_LC_RETRY_CNT 3 static bool intel_hdcp_is_ksv_valid(u8 *ksv) { int i, ones = 0; /* KSV has 20 1's and 20 0's */ for (i = 0; i < DRM_HDCP_KSV_LEN; i++) ones += hweight8(ksv[i]); if (ones != 20) return false; return true; } static int intel_hdcp_read_valid_bksv(struct intel_digital_port *dig_port, const struct intel_hdcp_shim *shim, u8 *bksv) { struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev); int ret, i, tries = 2; /* HDCP spec states that we must retry the bksv if it is invalid */ for (i = 0; i < tries; i++) { ret = shim->read_bksv(dig_port, bksv); if (ret) return ret; if (intel_hdcp_is_ksv_valid(bksv)) break; } if (i == tries) { drm_dbg_kms(&i915->drm, "Bksv is invalid\n"); return -ENODEV; } return 0; } /* Is HDCP1.4 capable on Platform and Sink */ bool intel_hdcp_capable(struct intel_connector *connector) { struct intel_digital_port *dig_port = intel_attached_dig_port(connector); const struct intel_hdcp_shim *shim = connector->hdcp.shim; bool capable = false; u8 bksv[5]; if (!shim) return capable; if (shim->hdcp_capable) { shim->hdcp_capable(dig_port, &capable); } else { if (!intel_hdcp_read_valid_bksv(dig_port, shim, bksv)) capable = true; } return capable; } /* Is HDCP2.2 capable on Platform and Sink */ bool intel_hdcp2_capable(struct intel_connector *connector) { struct intel_digital_port *dig_port = intel_attached_dig_port(connector); struct drm_i915_private *dev_priv = to_i915(connector->base.dev); struct intel_hdcp *hdcp = &connector->hdcp; bool capable = false; /* I915 support for HDCP2.2 */ if (!hdcp->hdcp2_supported) return false; /* MEI interface is solid */ mutex_lock(&dev_priv->hdcp_comp_mutex); if (!dev_priv->hdcp_comp_added || !dev_priv->hdcp_master) { mutex_unlock(&dev_priv->hdcp_comp_mutex); return false; } mutex_unlock(&dev_priv->hdcp_comp_mutex); /* Sink's capability for HDCP2.2 */ hdcp->shim->hdcp_2_2_capable(dig_port, &capable); return capable; } static bool intel_hdcp_in_use(struct drm_i915_private *dev_priv, enum transcoder cpu_transcoder, enum port port) { return intel_de_read(dev_priv, HDCP_STATUS(dev_priv, cpu_transcoder, port)) & HDCP_STATUS_ENC; } static bool intel_hdcp2_in_use(struct drm_i915_private *dev_priv, enum transcoder cpu_transcoder, enum port port) { return intel_de_read(dev_priv, HDCP2_STATUS(dev_priv, cpu_transcoder, port)) & LINK_ENCRYPTION_STATUS; } static int intel_hdcp_poll_ksv_fifo(struct intel_digital_port *dig_port, const struct intel_hdcp_shim *shim) { int ret, read_ret; bool ksv_ready; /* Poll for ksv list ready (spec says max time allowed is 5s) */ ret = __wait_for(read_ret = shim->read_ksv_ready(dig_port, &ksv_ready), read_ret || ksv_ready, 5 * 1000 * 1000, 1000, 100 * 1000); if (ret) return ret; if (read_ret) return read_ret; if (!ksv_ready) return -ETIMEDOUT; return 0; } static bool hdcp_key_loadable(struct drm_i915_private *dev_priv) { enum i915_power_well_id id; intel_wakeref_t wakeref; bool enabled = false; /* * On HSW and BDW, Display HW loads the Key as soon as Display resumes. * On all BXT+, SW can load the keys only when the PW#1 is turned on. */ if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) id = HSW_DISP_PW_GLOBAL; else id = SKL_DISP_PW_1; /* PG1 (power well #1) needs to be enabled */ with_intel_runtime_pm(&dev_priv->runtime_pm, wakeref) enabled = intel_display_power_well_is_enabled(dev_priv, id); /* * Another req for hdcp key loadability is enabled state of pll for * cdclk. Without active crtc we wont land here. So we are assuming that * cdclk is already on. */ return enabled; } static void intel_hdcp_clear_keys(struct drm_i915_private *dev_priv) { intel_de_write(dev_priv, HDCP_KEY_CONF, HDCP_CLEAR_KEYS_TRIGGER); intel_de_write(dev_priv, HDCP_KEY_STATUS, HDCP_KEY_LOAD_DONE | HDCP_KEY_LOAD_STATUS | HDCP_FUSE_IN_PROGRESS | HDCP_FUSE_ERROR | HDCP_FUSE_DONE); } static int intel_hdcp_load_keys(struct drm_i915_private *dev_priv) { int ret; u32 val; val = intel_de_read(dev_priv, HDCP_KEY_STATUS); if ((val & HDCP_KEY_LOAD_DONE) && (val & HDCP_KEY_LOAD_STATUS)) return 0; /* * On HSW and BDW HW loads the HDCP1.4 Key when Display comes * out of reset. So if Key is not already loaded, its an error state. */ if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) if (!(intel_de_read(dev_priv, HDCP_KEY_STATUS) & HDCP_KEY_LOAD_DONE)) return -ENXIO; /* * Initiate loading the HDCP key from fuses. * * BXT+ platforms, HDCP key needs to be loaded by SW. Only Gen 9 * platforms except BXT and GLK, differ in the key load trigger process * from other platforms. So GEN9_BC uses the GT Driver Mailbox i/f. */ if (IS_GEN9_BC(dev_priv)) { ret = sandybridge_pcode_write(dev_priv, SKL_PCODE_LOAD_HDCP_KEYS, 1); if (ret) { drm_err(&dev_priv->drm, "Failed to initiate HDCP key load (%d)\n", ret); return ret; } } else { intel_de_write(dev_priv, HDCP_KEY_CONF, HDCP_KEY_LOAD_TRIGGER); } /* Wait for the keys to load (500us) */ ret = __intel_wait_for_register(&dev_priv->uncore, HDCP_KEY_STATUS, HDCP_KEY_LOAD_DONE, HDCP_KEY_LOAD_DONE, 10, 1, &val); if (ret) return ret; else if (!(val & HDCP_KEY_LOAD_STATUS)) return -ENXIO; /* Send Aksv over to PCH display for use in authentication */ intel_de_write(dev_priv, HDCP_KEY_CONF, HDCP_AKSV_SEND_TRIGGER); return 0; } /* Returns updated SHA-1 index */ static int intel_write_sha_text(struct drm_i915_private *dev_priv, u32 sha_text) { intel_de_write(dev_priv, HDCP_SHA_TEXT, sha_text); if (intel_de_wait_for_set(dev_priv, HDCP_REP_CTL, HDCP_SHA1_READY, 1)) { drm_err(&dev_priv->drm, "Timed out waiting for SHA1 ready\n"); return -ETIMEDOUT; } return 0; } static u32 intel_hdcp_get_repeater_ctl(struct drm_i915_private *dev_priv, enum transcoder cpu_transcoder, enum port port) { if (INTEL_GEN(dev_priv) >= 12) { switch (cpu_transcoder) { case TRANSCODER_A: return HDCP_TRANSA_REP_PRESENT | HDCP_TRANSA_SHA1_M0; case TRANSCODER_B: return HDCP_TRANSB_REP_PRESENT | HDCP_TRANSB_SHA1_M0; case TRANSCODER_C: return HDCP_TRANSC_REP_PRESENT | HDCP_TRANSC_SHA1_M0; case TRANSCODER_D: return HDCP_TRANSD_REP_PRESENT | HDCP_TRANSD_SHA1_M0; default: drm_err(&dev_priv->drm, "Unknown transcoder %d\n", cpu_transcoder); return -EINVAL; } } switch (port) { case PORT_A: return HDCP_DDIA_REP_PRESENT | HDCP_DDIA_SHA1_M0; case PORT_B: return HDCP_DDIB_REP_PRESENT | HDCP_DDIB_SHA1_M0; case PORT_C: return HDCP_DDIC_REP_PRESENT | HDCP_DDIC_SHA1_M0; case PORT_D: return HDCP_DDID_REP_PRESENT | HDCP_DDID_SHA1_M0; case PORT_E: return HDCP_DDIE_REP_PRESENT | HDCP_DDIE_SHA1_M0; default: drm_err(&dev_priv->drm, "Unknown port %d\n", port); return -EINVAL; } } static int intel_hdcp_validate_v_prime(struct intel_connector *connector, const struct intel_hdcp_shim *shim, u8 *ksv_fifo, u8 num_downstream, u8 *bstatus) { struct intel_digital_port *dig_port = intel_attached_dig_port(connector); struct drm_i915_private *dev_priv = to_i915(connector->base.dev); enum transcoder cpu_transcoder = connector->hdcp.cpu_transcoder; enum port port = dig_port->base.port; u32 vprime, sha_text, sha_leftovers, rep_ctl; int ret, i, j, sha_idx; /* Process V' values from the receiver */ for (i = 0; i < DRM_HDCP_V_PRIME_NUM_PARTS; i++) { ret = shim->read_v_prime_part(dig_port, i, &vprime); if (ret) return ret; intel_de_write(dev_priv, HDCP_SHA_V_PRIME(i), vprime); } /* * We need to write the concatenation of all device KSVs, BINFO (DP) || * BSTATUS (HDMI), and M0 (which is added via HDCP_REP_CTL). This byte * stream is written via the HDCP_SHA_TEXT register in 32-bit * increments. Every 64 bytes, we need to write HDCP_REP_CTL again. This * index will keep track of our progress through the 64 bytes as well as * helping us work the 40-bit KSVs through our 32-bit register. * * NOTE: data passed via HDCP_SHA_TEXT should be big-endian */ sha_idx = 0; sha_text = 0; sha_leftovers = 0; rep_ctl = intel_hdcp_get_repeater_ctl(dev_priv, cpu_transcoder, port); intel_de_write(dev_priv, HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32); for (i = 0; i < num_downstream; i++) { unsigned int sha_empty; u8 *ksv = &ksv_fifo[i * DRM_HDCP_KSV_LEN]; /* Fill up the empty slots in sha_text and write it out */ sha_empty = sizeof(sha_text) - sha_leftovers; for (j = 0; j < sha_empty; j++) { u8 off = ((sizeof(sha_text) - j - 1 - sha_leftovers) * 8); sha_text |= ksv[j] << off; } ret = intel_write_sha_text(dev_priv, sha_text); if (ret < 0) return ret; /* Programming guide writes this every 64 bytes */ sha_idx += sizeof(sha_text); if (!(sha_idx % 64)) intel_de_write(dev_priv, HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32); /* Store the leftover bytes from the ksv in sha_text */ sha_leftovers = DRM_HDCP_KSV_LEN - sha_empty; sha_text = 0; for (j = 0; j < sha_leftovers; j++) sha_text |= ksv[sha_empty + j] << ((sizeof(sha_text) - j - 1) * 8); /* * If we still have room in sha_text for more data, continue. * Otherwise, write it out immediately. */ if (sizeof(sha_text) > sha_leftovers) continue; ret = intel_write_sha_text(dev_priv, sha_text); if (ret < 0) return ret; sha_leftovers = 0; sha_text = 0; sha_idx += sizeof(sha_text); } /* * We need to write BINFO/BSTATUS, and M0 now. Depending on how many * bytes are leftover from the last ksv, we might be able to fit them * all in sha_text (first 2 cases), or we might need to split them up * into 2 writes (last 2 cases). */ if (sha_leftovers == 0) { /* Write 16 bits of text, 16 bits of M0 */ intel_de_write(dev_priv, HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_16); ret = intel_write_sha_text(dev_priv, bstatus[0] << 8 | bstatus[1]); if (ret < 0) return ret; sha_idx += sizeof(sha_text); /* Write 32 bits of M0 */ intel_de_write(dev_priv, HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_0); ret = intel_write_sha_text(dev_priv, 0); if (ret < 0) return ret; sha_idx += sizeof(sha_text); /* Write 16 bits of M0 */ intel_de_write(dev_priv, HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_16); ret = intel_write_sha_text(dev_priv, 0); if (ret < 0) return ret; sha_idx += sizeof(sha_text); } else if (sha_leftovers == 1) { /* Write 24 bits of text, 8 bits of M0 */ intel_de_write(dev_priv, HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_24); sha_text |= bstatus[0] << 16 | bstatus[1] << 8; /* Only 24-bits of data, must be in the LSB */ sha_text = (sha_text & 0xffffff00) >> 8; ret = intel_write_sha_text(dev_priv, sha_text); if (ret < 0) return ret; sha_idx += sizeof(sha_text); /* Write 32 bits of M0 */ intel_de_write(dev_priv, HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_0); ret = intel_write_sha_text(dev_priv, 0); if (ret < 0) return ret; sha_idx += sizeof(sha_text); /* Write 24 bits of M0 */ intel_de_write(dev_priv, HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_8); ret = intel_write_sha_text(dev_priv, 0); if (ret < 0) return ret; sha_idx += sizeof(sha_text); } else if (sha_leftovers == 2) { /* Write 32 bits of text */ intel_de_write(dev_priv, HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32); sha_text |= bstatus[0] << 8 | bstatus[1]; ret = intel_write_sha_text(dev_priv, sha_text); if (ret < 0) return ret; sha_idx += sizeof(sha_text); /* Write 64 bits of M0 */ intel_de_write(dev_priv, HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_0); for (i = 0; i < 2; i++) { ret = intel_write_sha_text(dev_priv, 0); if (ret < 0) return ret; sha_idx += sizeof(sha_text); } /* * Terminate the SHA-1 stream by hand. For the other leftover * cases this is appended by the hardware. */ intel_de_write(dev_priv, HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32); sha_text = DRM_HDCP_SHA1_TERMINATOR << 24; ret = intel_write_sha_text(dev_priv, sha_text); if (ret < 0) return ret; sha_idx += sizeof(sha_text); } else if (sha_leftovers == 3) { /* Write 32 bits of text (filled from LSB) */ intel_de_write(dev_priv, HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32); sha_text |= bstatus[0]; ret = intel_write_sha_text(dev_priv, sha_text); if (ret < 0) return ret; sha_idx += sizeof(sha_text); /* Write 8 bits of text (filled from LSB), 24 bits of M0 */ intel_de_write(dev_priv, HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_8); ret = intel_write_sha_text(dev_priv, bstatus[1]); if (ret < 0) return ret; sha_idx += sizeof(sha_text); /* Write 32 bits of M0 */ intel_de_write(dev_priv, HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_0); ret = intel_write_sha_text(dev_priv, 0); if (ret < 0) return ret; sha_idx += sizeof(sha_text); /* Write 8 bits of M0 */ intel_de_write(dev_priv, HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_24); ret = intel_write_sha_text(dev_priv, 0); if (ret < 0) return ret; sha_idx += sizeof(sha_text); } else { drm_dbg_kms(&dev_priv->drm, "Invalid number of leftovers %d\n", sha_leftovers); return -EINVAL; } intel_de_write(dev_priv, HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32); /* Fill up to 64-4 bytes with zeros (leave the last write for length) */ while ((sha_idx % 64) < (64 - sizeof(sha_text))) { ret = intel_write_sha_text(dev_priv, 0); if (ret < 0) return ret; sha_idx += sizeof(sha_text); } /* * Last write gets the length of the concatenation in bits. That is: * - 5 bytes per device * - 10 bytes for BINFO/BSTATUS(2), M0(8) */ sha_text = (num_downstream * 5 + 10) * 8; ret = intel_write_sha_text(dev_priv, sha_text); if (ret < 0) return ret; /* Tell the HW we're done with the hash and wait for it to ACK */ intel_de_write(dev_priv, HDCP_REP_CTL, rep_ctl | HDCP_SHA1_COMPLETE_HASH); if (intel_de_wait_for_set(dev_priv, HDCP_REP_CTL, HDCP_SHA1_COMPLETE, 1)) { drm_err(&dev_priv->drm, "Timed out waiting for SHA1 complete\n"); return -ETIMEDOUT; } if (!(intel_de_read(dev_priv, HDCP_REP_CTL) & HDCP_SHA1_V_MATCH)) { drm_dbg_kms(&dev_priv->drm, "SHA-1 mismatch, HDCP failed\n"); return -ENXIO; } return 0; } /* Implements Part 2 of the HDCP authorization procedure */ static int intel_hdcp_auth_downstream(struct intel_connector *connector) { struct intel_digital_port *dig_port = intel_attached_dig_port(connector); struct drm_i915_private *dev_priv = to_i915(connector->base.dev); const struct intel_hdcp_shim *shim = connector->hdcp.shim; u8 bstatus[2], num_downstream, *ksv_fifo; int ret, i, tries = 3; ret = intel_hdcp_poll_ksv_fifo(dig_port, shim); if (ret) { drm_dbg_kms(&dev_priv->drm, "KSV list failed to become ready (%d)\n", ret); return ret; } ret = shim->read_bstatus(dig_port, bstatus); if (ret) return ret; if (DRM_HDCP_MAX_DEVICE_EXCEEDED(bstatus[0]) || DRM_HDCP_MAX_CASCADE_EXCEEDED(bstatus[1])) { drm_dbg_kms(&dev_priv->drm, "Max Topology Limit Exceeded\n"); return -EPERM; } /* * When repeater reports 0 device count, HDCP1.4 spec allows disabling * the HDCP encryption. That implies that repeater can't have its own * display. As there is no consumption of encrypted content in the * repeater with 0 downstream devices, we are failing the * authentication. */ num_downstream = DRM_HDCP_NUM_DOWNSTREAM(bstatus[0]); if (num_downstream == 0) { drm_dbg_kms(&dev_priv->drm, "Repeater with zero downstream devices\n"); return -EINVAL; } ksv_fifo = kcalloc(DRM_HDCP_KSV_LEN, num_downstream, GFP_KERNEL); if (!ksv_fifo) { drm_dbg_kms(&dev_priv->drm, "Out of mem: ksv_fifo\n"); return -ENOMEM; } ret = shim->read_ksv_fifo(dig_port, num_downstream, ksv_fifo); if (ret) goto err; if (drm_hdcp_check_ksvs_revoked(&dev_priv->drm, ksv_fifo, num_downstream) > 0) { drm_err(&dev_priv->drm, "Revoked Ksv(s) in ksv_fifo\n"); ret = -EPERM; goto err; } /* * When V prime mismatches, DP Spec mandates re-read of * V prime atleast twice. */ for (i = 0; i < tries; i++) { ret = intel_hdcp_validate_v_prime(connector, shim, ksv_fifo, num_downstream, bstatus); if (!ret) break; } if (i == tries) { drm_dbg_kms(&dev_priv->drm, "V Prime validation failed.(%d)\n", ret); goto err; } drm_dbg_kms(&dev_priv->drm, "HDCP is enabled (%d downstream devices)\n", num_downstream); ret = 0; err: kfree(ksv_fifo); return ret; } /* Implements Part 1 of the HDCP authorization procedure */ static int intel_hdcp_auth(struct intel_connector *connector) { struct intel_digital_port *dig_port = intel_attached_dig_port(connector); struct drm_i915_private *dev_priv = to_i915(connector->base.dev); struct intel_hdcp *hdcp = &connector->hdcp; const struct intel_hdcp_shim *shim = hdcp->shim; enum transcoder cpu_transcoder = connector->hdcp.cpu_transcoder; enum port port = dig_port->base.port; unsigned long r0_prime_gen_start; int ret, i, tries = 2; union { u32 reg[2]; u8 shim[DRM_HDCP_AN_LEN]; } an; union { u32 reg[2]; u8 shim[DRM_HDCP_KSV_LEN]; } bksv; union { u32 reg; u8 shim[DRM_HDCP_RI_LEN]; } ri; bool repeater_present, hdcp_capable; /* * Detects whether the display is HDCP capable. Although we check for * valid Bksv below, the HDCP over DP spec requires that we check * whether the display supports HDCP before we write An. For HDMI * displays, this is not necessary. */ if (shim->hdcp_capable) { ret = shim->hdcp_capable(dig_port, &hdcp_capable); if (ret) return ret; if (!hdcp_capable) { drm_dbg_kms(&dev_priv->drm, "Panel is not HDCP capable\n"); return -EINVAL; } } /* Initialize An with 2 random values and acquire it */ for (i = 0; i < 2; i++) intel_de_write(dev_priv, HDCP_ANINIT(dev_priv, cpu_transcoder, port), get_random_u32()); intel_de_write(dev_priv, HDCP_CONF(dev_priv, cpu_transcoder, port), HDCP_CONF_CAPTURE_AN); /* Wait for An to be acquired */ if (intel_de_wait_for_set(dev_priv, HDCP_STATUS(dev_priv, cpu_transcoder, port), HDCP_STATUS_AN_READY, 1)) { drm_err(&dev_priv->drm, "Timed out waiting for An\n"); return -ETIMEDOUT; } an.reg[0] = intel_de_read(dev_priv, HDCP_ANLO(dev_priv, cpu_transcoder, port)); an.reg[1] = intel_de_read(dev_priv, HDCP_ANHI(dev_priv, cpu_transcoder, port)); ret = shim->write_an_aksv(dig_port, an.shim); if (ret) return ret; r0_prime_gen_start = jiffies; memset(&bksv, 0, sizeof(bksv)); ret = intel_hdcp_read_valid_bksv(dig_port, shim, bksv.shim); if (ret < 0) return ret; if (drm_hdcp_check_ksvs_revoked(&dev_priv->drm, bksv.shim, 1) > 0) { drm_err(&dev_priv->drm, "BKSV is revoked\n"); return -EPERM; } intel_de_write(dev_priv, HDCP_BKSVLO(dev_priv, cpu_transcoder, port), bksv.reg[0]); intel_de_write(dev_priv, HDCP_BKSVHI(dev_priv, cpu_transcoder, port), bksv.reg[1]); ret = shim->repeater_present(dig_port, &repeater_present); if (ret) return ret; if (repeater_present) intel_de_write(dev_priv, HDCP_REP_CTL, intel_hdcp_get_repeater_ctl(dev_priv, cpu_transcoder, port)); ret = shim->toggle_signalling(dig_port, cpu_transcoder, true); if (ret) return ret; intel_de_write(dev_priv, HDCP_CONF(dev_priv, cpu_transcoder, port), HDCP_CONF_AUTH_AND_ENC); /* Wait for R0 ready */ if (wait_for(intel_de_read(dev_priv, HDCP_STATUS(dev_priv, cpu_transcoder, port)) & (HDCP_STATUS_R0_READY | HDCP_STATUS_ENC), 1)) { drm_err(&dev_priv->drm, "Timed out waiting for R0 ready\n"); return -ETIMEDOUT; } /* * Wait for R0' to become available. The spec says 100ms from Aksv, but * some monitors can take longer than this. We'll set the timeout at * 300ms just to be sure. * * On DP, there's an R0_READY bit available but no such bit * exists on HDMI. Since the upper-bound is the same, we'll just do * the stupid thing instead of polling on one and not the other. */ wait_remaining_ms_from_jiffies(r0_prime_gen_start, 300); tries = 3; /* * DP HDCP Spec mandates the two more reattempt to read R0, incase * of R0 mismatch. */ for (i = 0; i < tries; i++) { ri.reg = 0; ret = shim->read_ri_prime(dig_port, ri.shim); if (ret) return ret; intel_de_write(dev_priv, HDCP_RPRIME(dev_priv, cpu_transcoder, port), ri.reg); /* Wait for Ri prime match */ if (!wait_for(intel_de_read(dev_priv, HDCP_STATUS(dev_priv, cpu_transcoder, port)) & (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC), 1)) break; } if (i == tries) { drm_dbg_kms(&dev_priv->drm, "Timed out waiting for Ri prime match (%x)\n", intel_de_read(dev_priv, HDCP_STATUS(dev_priv, cpu_transcoder, port))); return -ETIMEDOUT; } /* Wait for encryption confirmation */ if (intel_de_wait_for_set(dev_priv, HDCP_STATUS(dev_priv, cpu_transcoder, port), HDCP_STATUS_ENC, ENCRYPT_STATUS_CHANGE_TIMEOUT_MS)) { drm_err(&dev_priv->drm, "Timed out waiting for encryption\n"); return -ETIMEDOUT; } /* * XXX: If we have MST-connected devices, we need to enable encryption * on those as well. */ if (repeater_present) return intel_hdcp_auth_downstream(connector); drm_dbg_kms(&dev_priv->drm, "HDCP is enabled (no repeater present)\n"); return 0; } static int _intel_hdcp_disable(struct intel_connector *connector) { struct intel_digital_port *dig_port = intel_attached_dig_port(connector); struct drm_i915_private *dev_priv = to_i915(connector->base.dev); struct intel_hdcp *hdcp = &connector->hdcp; enum port port = dig_port->base.port; enum transcoder cpu_transcoder = hdcp->cpu_transcoder; u32 repeater_ctl; int ret; drm_dbg_kms(&dev_priv->drm, "[%s:%d] HDCP is being disabled...\n", connector->base.name, connector->base.base.id); /* * If there are other connectors on this port using HDCP, don't disable * it. Instead, toggle the HDCP signalling off on that particular * connector/pipe and exit. */ if (dig_port->num_hdcp_streams > 0) { ret = hdcp->shim->toggle_signalling(dig_port, cpu_transcoder, false); if (ret) DRM_ERROR("Failed to disable HDCP signalling\n"); return ret; } hdcp->hdcp_encrypted = false; intel_de_write(dev_priv, HDCP_CONF(dev_priv, cpu_transcoder, port), 0); if (intel_de_wait_for_clear(dev_priv, HDCP_STATUS(dev_priv, cpu_transcoder, port), ~0, ENCRYPT_STATUS_CHANGE_TIMEOUT_MS)) { drm_err(&dev_priv->drm, "Failed to disable HDCP, timeout clearing status\n"); return -ETIMEDOUT; } repeater_ctl = intel_hdcp_get_repeater_ctl(dev_priv, cpu_transcoder, port); intel_de_write(dev_priv, HDCP_REP_CTL, intel_de_read(dev_priv, HDCP_REP_CTL) & ~repeater_ctl); ret = hdcp->shim->toggle_signalling(dig_port, cpu_transcoder, false); if (ret) { drm_err(&dev_priv->drm, "Failed to disable HDCP signalling\n"); return ret; } drm_dbg_kms(&dev_priv->drm, "HDCP is disabled\n"); return 0; } static int _intel_hdcp_enable(struct intel_connector *connector) { struct drm_i915_private *dev_priv = to_i915(connector->base.dev); struct intel_hdcp *hdcp = &connector->hdcp; int i, ret, tries = 3; drm_dbg_kms(&dev_priv->drm, "[%s:%d] HDCP is being enabled...\n", connector->base.name, connector->base.base.id); if (!hdcp_key_loadable(dev_priv)) { drm_err(&dev_priv->drm, "HDCP key Load is not possible\n"); return -ENXIO; } for (i = 0; i < KEY_LOAD_TRIES; i++) { ret = intel_hdcp_load_keys(dev_priv); if (!ret) break; intel_hdcp_clear_keys(dev_priv); } if (ret) { drm_err(&dev_priv->drm, "Could not load HDCP keys, (%d)\n", ret); return ret; } /* Incase of authentication failures, HDCP spec expects reauth. */ for (i = 0; i < tries; i++) { ret = intel_hdcp_auth(connector); if (!ret) { hdcp->hdcp_encrypted = true; return 0; } drm_dbg_kms(&dev_priv->drm, "HDCP Auth failure (%d)\n", ret); /* Ensuring HDCP encryption and signalling are stopped. */ _intel_hdcp_disable(connector); } drm_dbg_kms(&dev_priv->drm, "HDCP authentication failed (%d tries/%d)\n", tries, ret); return ret; } static struct intel_connector *intel_hdcp_to_connector(struct intel_hdcp *hdcp) { return container_of(hdcp, struct intel_connector, hdcp); } static void intel_hdcp_update_value(struct intel_connector *connector, u64 value, bool update_property) { struct drm_device *dev = connector->base.dev; struct intel_digital_port *dig_port = intel_attached_dig_port(connector); struct intel_hdcp *hdcp = &connector->hdcp; drm_WARN_ON(connector->base.dev, !mutex_is_locked(&hdcp->mutex)); if (hdcp->value == value) return; drm_WARN_ON(dev, !mutex_is_locked(&dig_port->hdcp_mutex)); if (hdcp->value == DRM_MODE_CONTENT_PROTECTION_ENABLED) { if (!drm_WARN_ON(dev, dig_port->num_hdcp_streams == 0)) dig_port->num_hdcp_streams--; } else if (value == DRM_MODE_CONTENT_PROTECTION_ENABLED) { dig_port->num_hdcp_streams++; } hdcp->value = value; if (update_property) { drm_connector_get(&connector->base); schedule_work(&hdcp->prop_work); } } /* Implements Part 3 of the HDCP authorization procedure */ static int intel_hdcp_check_link(struct intel_connector *connector) { struct intel_digital_port *dig_port = intel_attached_dig_port(connector); struct drm_i915_private *dev_priv = to_i915(connector->base.dev); struct intel_hdcp *hdcp = &connector->hdcp; enum port port = dig_port->base.port; enum transcoder cpu_transcoder; int ret = 0; mutex_lock(&hdcp->mutex); mutex_lock(&dig_port->hdcp_mutex); cpu_transcoder = hdcp->cpu_transcoder; /* Check_link valid only when HDCP1.4 is enabled */ if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_ENABLED || !hdcp->hdcp_encrypted) { ret = -EINVAL; goto out; } if (drm_WARN_ON(&dev_priv->drm, !intel_hdcp_in_use(dev_priv, cpu_transcoder, port))) { drm_err(&dev_priv->drm, "%s:%d HDCP link stopped encryption,%x\n", connector->base.name, connector->base.base.id, intel_de_read(dev_priv, HDCP_STATUS(dev_priv, cpu_transcoder, port))); ret = -ENXIO; intel_hdcp_update_value(connector, DRM_MODE_CONTENT_PROTECTION_DESIRED, true); goto out; } if (hdcp->shim->check_link(dig_port, connector)) { if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) { intel_hdcp_update_value(connector, DRM_MODE_CONTENT_PROTECTION_ENABLED, true); } goto out; } drm_dbg_kms(&dev_priv->drm, "[%s:%d] HDCP link failed, retrying authentication\n", connector->base.name, connector->base.base.id); ret = _intel_hdcp_disable(connector); if (ret) { drm_err(&dev_priv->drm, "Failed to disable hdcp (%d)\n", ret); intel_hdcp_update_value(connector, DRM_MODE_CONTENT_PROTECTION_DESIRED, true); goto out; } ret = _intel_hdcp_enable(connector); if (ret) { drm_err(&dev_priv->drm, "Failed to enable hdcp (%d)\n", ret); intel_hdcp_update_value(connector, DRM_MODE_CONTENT_PROTECTION_DESIRED, true); goto out; } out: mutex_unlock(&dig_port->hdcp_mutex); mutex_unlock(&hdcp->mutex); return ret; } static void intel_hdcp_prop_work(struct work_struct *work) { struct intel_hdcp *hdcp = container_of(work, struct intel_hdcp, prop_work); struct intel_connector *connector = intel_hdcp_to_connector(hdcp); struct drm_i915_private *dev_priv = to_i915(connector->base.dev); drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex, NULL); mutex_lock(&hdcp->mutex); /* * This worker is only used to flip between ENABLED/DESIRED. Either of * those to UNDESIRED is handled by core. If value == UNDESIRED, * we're running just after hdcp has been disabled, so just exit */ if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) drm_hdcp_update_content_protection(&connector->base, hdcp->value); mutex_unlock(&hdcp->mutex); drm_modeset_unlock(&dev_priv->drm.mode_config.connection_mutex); drm_connector_put(&connector->base); } bool is_hdcp_supported(struct drm_i915_private *dev_priv, enum port port) { return INTEL_INFO(dev_priv)->display.has_hdcp && (INTEL_GEN(dev_priv) >= 12 || port < PORT_E); } static int hdcp2_prepare_ake_init(struct intel_connector *connector, struct hdcp2_ake_init *ake_data) { struct hdcp_port_data *data = &connector->hdcp.port_data; struct drm_i915_private *dev_priv = to_i915(connector->base.dev); struct i915_hdcp_comp_master *comp; int ret; mutex_lock(&dev_priv->hdcp_comp_mutex); comp = dev_priv->hdcp_master; if (!comp || !comp->ops) { mutex_unlock(&dev_priv->hdcp_comp_mutex); return -EINVAL; } ret = comp->ops->initiate_hdcp2_session(comp->mei_dev, data, ake_data); if (ret) drm_dbg_kms(&dev_priv->drm, "Prepare_ake_init failed. %d\n", ret); mutex_unlock(&dev_priv->hdcp_comp_mutex); return ret; } static int hdcp2_verify_rx_cert_prepare_km(struct intel_connector *connector, struct hdcp2_ake_send_cert *rx_cert, bool *paired, struct hdcp2_ake_no_stored_km *ek_pub_km, size_t *msg_sz) { struct hdcp_port_data *data = &connector->hdcp.port_data; struct drm_i915_private *dev_priv = to_i915(connector->base.dev); struct i915_hdcp_comp_master *comp; int ret; mutex_lock(&dev_priv->hdcp_comp_mutex); comp = dev_priv->hdcp_master; if (!comp || !comp->ops) { mutex_unlock(&dev_priv->hdcp_comp_mutex); return -EINVAL; } ret = comp->ops->verify_receiver_cert_prepare_km(comp->mei_dev, data, rx_cert, paired, ek_pub_km, msg_sz); if (ret < 0) drm_dbg_kms(&dev_priv->drm, "Verify rx_cert failed. %d\n", ret); mutex_unlock(&dev_priv->hdcp_comp_mutex); return ret; } static int hdcp2_verify_hprime(struct intel_connector *connector, struct hdcp2_ake_send_hprime *rx_hprime) { struct hdcp_port_data *data = &connector->hdcp.port_data; struct drm_i915_private *dev_priv = to_i915(connector->base.dev); struct i915_hdcp_comp_master *comp; int ret; mutex_lock(&dev_priv->hdcp_comp_mutex); comp = dev_priv->hdcp_master; if (!comp || !comp->ops) { mutex_unlock(&dev_priv->hdcp_comp_mutex); return -EINVAL; } ret = comp->ops->verify_hprime(comp->mei_dev, data, rx_hprime); if (ret < 0) drm_dbg_kms(&dev_priv->drm, "Verify hprime failed. %d\n", ret); mutex_unlock(&dev_priv->hdcp_comp_mutex); return ret; } static int hdcp2_store_pairing_info(struct intel_connector *connector, struct hdcp2_ake_send_pairing_info *pairing_info) { struct hdcp_port_data *data = &connector->hdcp.port_data; struct drm_i915_private *dev_priv = to_i915(connector->base.dev); struct i915_hdcp_comp_master *comp; int ret; mutex_lock(&dev_priv->hdcp_comp_mutex); comp = dev_priv->hdcp_master; if (!comp || !comp->ops) { mutex_unlock(&dev_priv->hdcp_comp_mutex); return -EINVAL; } ret = comp->ops->store_pairing_info(comp->mei_dev, data, pairing_info); if (ret < 0) drm_dbg_kms(&dev_priv->drm, "Store pairing info failed. %d\n", ret); mutex_unlock(&dev_priv->hdcp_comp_mutex); return ret; } static int hdcp2_prepare_lc_init(struct intel_connector *connector, struct hdcp2_lc_init *lc_init) { struct hdcp_port_data *data = &connector->hdcp.port_data; struct drm_i915_private *dev_priv = to_i915(connector->base.dev); struct i915_hdcp_comp_master *comp; int ret; mutex_lock(&dev_priv->hdcp_comp_mutex); comp = dev_priv->hdcp_master; if (!comp || !comp->ops) { mutex_unlock(&dev_priv->hdcp_comp_mutex); return -EINVAL; } ret = comp->ops->initiate_locality_check(comp->mei_dev, data, lc_init); if (ret < 0) drm_dbg_kms(&dev_priv->drm, "Prepare lc_init failed. %d\n", ret); mutex_unlock(&dev_priv->hdcp_comp_mutex); return ret; } static int hdcp2_verify_lprime(struct intel_connector *connector, struct hdcp2_lc_send_lprime *rx_lprime) { struct hdcp_port_data *data = &connector->hdcp.port_data; struct drm_i915_private *dev_priv = to_i915(connector->base.dev); struct i915_hdcp_comp_master *comp; int ret; mutex_lock(&dev_priv->hdcp_comp_mutex); comp = dev_priv->hdcp_master; if (!comp || !comp->ops) { mutex_unlock(&dev_priv->hdcp_comp_mutex); return -EINVAL; } ret = comp->ops->verify_lprime(comp->mei_dev, data, rx_lprime); if (ret < 0) drm_dbg_kms(&dev_priv->drm, "Verify L_Prime failed. %d\n", ret); mutex_unlock(&dev_priv->hdcp_comp_mutex); return ret; } static int hdcp2_prepare_skey(struct intel_connector *connector, struct hdcp2_ske_send_eks *ske_data) { struct hdcp_port_data *data = &connector->hdcp.port_data; struct drm_i915_private *dev_priv = to_i915(connector->base.dev); struct i915_hdcp_comp_master *comp; int ret; mutex_lock(&dev_priv->hdcp_comp_mutex); comp = dev_priv->hdcp_master; if (!comp || !comp->ops) { mutex_unlock(&dev_priv->hdcp_comp_mutex); return -EINVAL; } ret = comp->ops->get_session_key(comp->mei_dev, data, ske_data); if (ret < 0) drm_dbg_kms(&dev_priv->drm, "Get session key failed. %d\n", ret); mutex_unlock(&dev_priv->hdcp_comp_mutex); return ret; } static int hdcp2_verify_rep_topology_prepare_ack(struct intel_connector *connector, struct hdcp2_rep_send_receiverid_list *rep_topology, struct hdcp2_rep_send_ack *rep_send_ack) { struct hdcp_port_data *data = &connector->hdcp.port_data; struct drm_i915_private *dev_priv = to_i915(connector->base.dev); struct i915_hdcp_comp_master *comp; int ret; mutex_lock(&dev_priv->hdcp_comp_mutex); comp = dev_priv->hdcp_master; if (!comp || !comp->ops) { mutex_unlock(&dev_priv->hdcp_comp_mutex); return -EINVAL; } ret = comp->ops->repeater_check_flow_prepare_ack(comp->mei_dev, data, rep_topology, rep_send_ack); if (ret < 0) drm_dbg_kms(&dev_priv->drm, "Verify rep topology failed. %d\n", ret); mutex_unlock(&dev_priv->hdcp_comp_mutex); return ret; } static int hdcp2_verify_mprime(struct intel_connector *connector, struct hdcp2_rep_stream_ready *stream_ready) { struct hdcp_port_data *data = &connector->hdcp.port_data; struct drm_i915_private *dev_priv = to_i915(connector->base.dev); struct i915_hdcp_comp_master *comp; int ret; mutex_lock(&dev_priv->hdcp_comp_mutex); comp = dev_priv->hdcp_master; if (!comp || !comp->ops) { mutex_unlock(&dev_priv->hdcp_comp_mutex); return -EINVAL; } ret = comp->ops->verify_mprime(comp->mei_dev, data, stream_ready); if (ret < 0) drm_dbg_kms(&dev_priv->drm, "Verify mprime failed. %d\n", ret); mutex_unlock(&dev_priv->hdcp_comp_mutex); return ret; } static int hdcp2_authenticate_port(struct intel_connector *connector) { struct hdcp_port_data *data = &connector->hdcp.port_data; struct drm_i915_private *dev_priv = to_i915(connector->base.dev); struct i915_hdcp_comp_master *comp; int ret; mutex_lock(&dev_priv->hdcp_comp_mutex); comp = dev_priv->hdcp_master; if (!comp || !comp->ops) { mutex_unlock(&dev_priv->hdcp_comp_mutex); return -EINVAL; } ret = comp->ops->enable_hdcp_authentication(comp->mei_dev, data); if (ret < 0) drm_dbg_kms(&dev_priv->drm, "Enable hdcp auth failed. %d\n", ret); mutex_unlock(&dev_priv->hdcp_comp_mutex); return ret; } static int hdcp2_close_mei_session(struct intel_connector *connector) { struct drm_i915_private *dev_priv = to_i915(connector->base.dev); struct i915_hdcp_comp_master *comp; int ret; mutex_lock(&dev_priv->hdcp_comp_mutex); comp = dev_priv->hdcp_master; if (!comp || !comp->ops) { mutex_unlock(&dev_priv->hdcp_comp_mutex); return -EINVAL; } ret = comp->ops->close_hdcp_session(comp->mei_dev, &connector->hdcp.port_data); mutex_unlock(&dev_priv->hdcp_comp_mutex); return ret; } static int hdcp2_deauthenticate_port(struct intel_connector *connector) { return hdcp2_close_mei_session(connector); } /* Authentication flow starts from here */ static int hdcp2_authentication_key_exchange(struct intel_connector *connector) { struct intel_digital_port *dig_port = intel_attached_dig_port(connector); struct drm_i915_private *dev_priv = to_i915(connector->base.dev); struct intel_hdcp *hdcp = &connector->hdcp; union { struct hdcp2_ake_init ake_init; struct hdcp2_ake_send_cert send_cert; struct hdcp2_ake_no_stored_km no_stored_km; struct hdcp2_ake_send_hprime send_hprime; struct hdcp2_ake_send_pairing_info pairing_info; } msgs; const struct intel_hdcp_shim *shim = hdcp->shim; size_t size; int ret; /* Init for seq_num */ hdcp->seq_num_v = 0; hdcp->seq_num_m = 0; ret = hdcp2_prepare_ake_init(connector, &msgs.ake_init); if (ret < 0) return ret; ret = shim->write_2_2_msg(dig_port, &msgs.ake_init, sizeof(msgs.ake_init)); if (ret < 0) return ret; ret = shim->read_2_2_msg(dig_port, HDCP_2_2_AKE_SEND_CERT, &msgs.send_cert, sizeof(msgs.send_cert)); if (ret < 0) return ret; if (msgs.send_cert.rx_caps[0] != HDCP_2_2_RX_CAPS_VERSION_VAL) { drm_dbg_kms(&dev_priv->drm, "cert.rx_caps dont claim HDCP2.2\n"); return -EINVAL; } hdcp->is_repeater = HDCP_2_2_RX_REPEATER(msgs.send_cert.rx_caps[2]); if (drm_hdcp_check_ksvs_revoked(&dev_priv->drm, msgs.send_cert.cert_rx.receiver_id, 1) > 0) { drm_err(&dev_priv->drm, "Receiver ID is revoked\n"); return -EPERM; } /* * Here msgs.no_stored_km will hold msgs corresponding to the km * stored also. */ ret = hdcp2_verify_rx_cert_prepare_km(connector, &msgs.send_cert, &hdcp->is_paired, &msgs.no_stored_km, &size); if (ret < 0) return ret; ret = shim->write_2_2_msg(dig_port, &msgs.no_stored_km, size); if (ret < 0) return ret; ret = shim->read_2_2_msg(dig_port, HDCP_2_2_AKE_SEND_HPRIME, &msgs.send_hprime, sizeof(msgs.send_hprime)); if (ret < 0) return ret; ret = hdcp2_verify_hprime(connector, &msgs.send_hprime); if (ret < 0) return ret; if (!hdcp->is_paired) { /* Pairing is required */ ret = shim->read_2_2_msg(dig_port, HDCP_2_2_AKE_SEND_PAIRING_INFO, &msgs.pairing_info, sizeof(msgs.pairing_info)); if (ret < 0) return ret; ret = hdcp2_store_pairing_info(connector, &msgs.pairing_info); if (ret < 0) return ret; hdcp->is_paired = true; } return 0; } static int hdcp2_locality_check(struct intel_connector *connector) { struct intel_digital_port *dig_port = intel_attached_dig_port(connector); struct intel_hdcp *hdcp = &connector->hdcp; union { struct hdcp2_lc_init lc_init; struct hdcp2_lc_send_lprime send_lprime; } msgs; const struct intel_hdcp_shim *shim = hdcp->shim; int tries = HDCP2_LC_RETRY_CNT, ret, i; for (i = 0; i < tries; i++) { ret = hdcp2_prepare_lc_init(connector, &msgs.lc_init); if (ret < 0) continue; ret = shim->write_2_2_msg(dig_port, &msgs.lc_init, sizeof(msgs.lc_init)); if (ret < 0) continue; ret = shim->read_2_2_msg(dig_port, HDCP_2_2_LC_SEND_LPRIME, &msgs.send_lprime, sizeof(msgs.send_lprime)); if (ret < 0) continue; ret = hdcp2_verify_lprime(connector, &msgs.send_lprime); if (!ret) break; } return ret; } static int hdcp2_session_key_exchange(struct intel_connector *connector) { struct intel_digital_port *dig_port = intel_attached_dig_port(connector); struct intel_hdcp *hdcp = &connector->hdcp; struct hdcp2_ske_send_eks send_eks; int ret; ret = hdcp2_prepare_skey(connector, &send_eks); if (ret < 0) return ret; ret = hdcp->shim->write_2_2_msg(dig_port, &send_eks, sizeof(send_eks)); if (ret < 0) return ret; return 0; } static int hdcp2_propagate_stream_management_info(struct intel_connector *connector) { struct intel_digital_port *dig_port = intel_attached_dig_port(connector); struct drm_i915_private *i915 = to_i915(connector->base.dev); struct intel_hdcp *hdcp = &connector->hdcp; union { struct hdcp2_rep_stream_manage stream_manage; struct hdcp2_rep_stream_ready stream_ready; } msgs; const struct intel_hdcp_shim *shim = hdcp->shim; int ret; /* Prepare RepeaterAuth_Stream_Manage msg */ msgs.stream_manage.msg_id = HDCP_2_2_REP_STREAM_MANAGE; drm_hdcp_cpu_to_be24(msgs.stream_manage.seq_num_m, hdcp->seq_num_m); /* K no of streams is fixed as 1. Stored as big-endian. */ msgs.stream_manage.k = cpu_to_be16(1); /* For HDMI this is forced to be 0x0. For DP SST also this is 0x0. */ msgs.stream_manage.streams[0].stream_id = 0; msgs.stream_manage.streams[0].stream_type = hdcp->content_type; /* Send it to Repeater */ ret = shim->write_2_2_msg(dig_port, &msgs.stream_manage, sizeof(msgs.stream_manage)); if (ret < 0) return ret; ret = shim->read_2_2_msg(dig_port, HDCP_2_2_REP_STREAM_READY, &msgs.stream_ready, sizeof(msgs.stream_ready)); if (ret < 0) return ret; hdcp->port_data.seq_num_m = hdcp->seq_num_m; hdcp->port_data.streams[0].stream_type = hdcp->content_type; ret = hdcp2_verify_mprime(connector, &msgs.stream_ready); if (ret < 0) return ret; hdcp->seq_num_m++; if (hdcp->seq_num_m > HDCP_2_2_SEQ_NUM_MAX) { drm_dbg_kms(&i915->drm, "seq_num_m roll over.\n"); return -1; } return 0; } static int hdcp2_authenticate_repeater_topology(struct intel_connector *connector) { struct intel_digital_port *dig_port = intel_attached_dig_port(connector); struct drm_i915_private *dev_priv = to_i915(connector->base.dev); struct intel_hdcp *hdcp = &connector->hdcp; union { struct hdcp2_rep_send_receiverid_list recvid_list; struct hdcp2_rep_send_ack rep_ack; } msgs; const struct intel_hdcp_shim *shim = hdcp->shim; u32 seq_num_v, device_cnt; u8 *rx_info; int ret; ret = shim->read_2_2_msg(dig_port, HDCP_2_2_REP_SEND_RECVID_LIST, &msgs.recvid_list, sizeof(msgs.recvid_list)); if (ret < 0) return ret; rx_info = msgs.recvid_list.rx_info; if (HDCP_2_2_MAX_CASCADE_EXCEEDED(rx_info[1]) || HDCP_2_2_MAX_DEVS_EXCEEDED(rx_info[1])) { drm_dbg_kms(&dev_priv->drm, "Topology Max Size Exceeded\n"); return -EINVAL; } /* Converting and Storing the seq_num_v to local variable as DWORD */ seq_num_v = drm_hdcp_be24_to_cpu((const u8 *)msgs.recvid_list.seq_num_v); if (!hdcp->hdcp2_encrypted && seq_num_v) { drm_dbg_kms(&dev_priv->drm, "Non zero Seq_num_v at first RecvId_List msg\n"); return -EINVAL; } if (seq_num_v < hdcp->seq_num_v) { /* Roll over of the seq_num_v from repeater. Reauthenticate. */ drm_dbg_kms(&dev_priv->drm, "Seq_num_v roll over.\n"); return -EINVAL; } device_cnt = (HDCP_2_2_DEV_COUNT_HI(rx_info[0]) << 4 | HDCP_2_2_DEV_COUNT_LO(rx_info[1])); if (drm_hdcp_check_ksvs_revoked(&dev_priv->drm, msgs.recvid_list.receiver_ids, device_cnt) > 0) { drm_err(&dev_priv->drm, "Revoked receiver ID(s) is in list\n"); return -EPERM; } ret = hdcp2_verify_rep_topology_prepare_ack(connector, &msgs.recvid_list, &msgs.rep_ack); if (ret < 0) return ret; hdcp->seq_num_v = seq_num_v; ret = shim->write_2_2_msg(dig_port, &msgs.rep_ack, sizeof(msgs.rep_ack)); if (ret < 0) return ret; return 0; } static int hdcp2_authenticate_repeater(struct intel_connector *connector) { int ret; ret = hdcp2_authenticate_repeater_topology(connector); if (ret < 0) return ret; return hdcp2_propagate_stream_management_info(connector); } static int hdcp2_authenticate_sink(struct intel_connector *connector) { struct intel_digital_port *dig_port = intel_attached_dig_port(connector); struct drm_i915_private *i915 = to_i915(connector->base.dev); struct intel_hdcp *hdcp = &connector->hdcp; const struct intel_hdcp_shim *shim = hdcp->shim; int ret; ret = hdcp2_authentication_key_exchange(connector); if (ret < 0) { drm_dbg_kms(&i915->drm, "AKE Failed. Err : %d\n", ret); return ret; } ret = hdcp2_locality_check(connector); if (ret < 0) { drm_dbg_kms(&i915->drm, "Locality Check failed. Err : %d\n", ret); return ret; } ret = hdcp2_session_key_exchange(connector); if (ret < 0) { drm_dbg_kms(&i915->drm, "SKE Failed. Err : %d\n", ret); return ret; } if (shim->config_stream_type) { ret = shim->config_stream_type(dig_port, hdcp->is_repeater, hdcp->content_type); if (ret < 0) return ret; } if (hdcp->is_repeater) { ret = hdcp2_authenticate_repeater(connector); if (ret < 0) { drm_dbg_kms(&i915->drm, "Repeater Auth Failed. Err: %d\n", ret); return ret; } } hdcp->port_data.streams[0].stream_type = hdcp->content_type; ret = hdcp2_authenticate_port(connector); if (ret < 0) return ret; return ret; } static int hdcp2_enable_encryption(struct intel_connector *connector) { struct intel_digital_port *dig_port = intel_attached_dig_port(connector); struct drm_i915_private *dev_priv = to_i915(connector->base.dev); struct intel_hdcp *hdcp = &connector->hdcp; enum port port = dig_port->base.port; enum transcoder cpu_transcoder = hdcp->cpu_transcoder; int ret; drm_WARN_ON(&dev_priv->drm, intel_de_read(dev_priv, HDCP2_STATUS(dev_priv, cpu_transcoder, port)) & LINK_ENCRYPTION_STATUS); if (hdcp->shim->toggle_signalling) { ret = hdcp->shim->toggle_signalling(dig_port, cpu_transcoder, true); if (ret) { drm_err(&dev_priv->drm, "Failed to enable HDCP signalling. %d\n", ret); return ret; } } if (intel_de_read(dev_priv, HDCP2_STATUS(dev_priv, cpu_transcoder, port)) & LINK_AUTH_STATUS) { /* Link is Authenticated. Now set for Encryption */ intel_de_write(dev_priv, HDCP2_CTL(dev_priv, cpu_transcoder, port), intel_de_read(dev_priv, HDCP2_CTL(dev_priv, cpu_transcoder, port)) | CTL_LINK_ENCRYPTION_REQ); } ret = intel_de_wait_for_set(dev_priv, HDCP2_STATUS(dev_priv, cpu_transcoder, port), LINK_ENCRYPTION_STATUS, ENCRYPT_STATUS_CHANGE_TIMEOUT_MS); return ret; } static int hdcp2_disable_encryption(struct intel_connector *connector) { struct intel_digital_port *dig_port = intel_attached_dig_port(connector); struct drm_i915_private *dev_priv = to_i915(connector->base.dev); struct intel_hdcp *hdcp = &connector->hdcp; enum port port = dig_port->base.port; enum transcoder cpu_transcoder = hdcp->cpu_transcoder; int ret; drm_WARN_ON(&dev_priv->drm, !(intel_de_read(dev_priv, HDCP2_STATUS(dev_priv, cpu_transcoder, port)) & LINK_ENCRYPTION_STATUS)); intel_de_write(dev_priv, HDCP2_CTL(dev_priv, cpu_transcoder, port), intel_de_read(dev_priv, HDCP2_CTL(dev_priv, cpu_transcoder, port)) & ~CTL_LINK_ENCRYPTION_REQ); ret = intel_de_wait_for_clear(dev_priv, HDCP2_STATUS(dev_priv, cpu_transcoder, port), LINK_ENCRYPTION_STATUS, ENCRYPT_STATUS_CHANGE_TIMEOUT_MS); if (ret == -ETIMEDOUT) drm_dbg_kms(&dev_priv->drm, "Disable Encryption Timedout"); if (hdcp->shim->toggle_signalling) { ret = hdcp->shim->toggle_signalling(dig_port, cpu_transcoder, false); if (ret) { drm_err(&dev_priv->drm, "Failed to disable HDCP signalling. %d\n", ret); return ret; } } return ret; } static int hdcp2_authenticate_and_encrypt(struct intel_connector *connector) { struct drm_i915_private *i915 = to_i915(connector->base.dev); int ret, i, tries = 3; for (i = 0; i < tries; i++) { ret = hdcp2_authenticate_sink(connector); if (!ret) break; /* Clearing the mei hdcp session */ drm_dbg_kms(&i915->drm, "HDCP2.2 Auth %d of %d Failed.(%d)\n", i + 1, tries, ret); if (hdcp2_deauthenticate_port(connector) < 0) drm_dbg_kms(&i915->drm, "Port deauth failed.\n"); } if (i != tries) { /* * Ensuring the required 200mSec min time interval between * Session Key Exchange and encryption. */ msleep(HDCP_2_2_DELAY_BEFORE_ENCRYPTION_EN); ret = hdcp2_enable_encryption(connector); if (ret < 0) { drm_dbg_kms(&i915->drm, "Encryption Enable Failed.(%d)\n", ret); if (hdcp2_deauthenticate_port(connector) < 0) drm_dbg_kms(&i915->drm, "Port deauth failed.\n"); } } return ret; } static int _intel_hdcp2_enable(struct intel_connector *connector) { struct drm_i915_private *i915 = to_i915(connector->base.dev); struct intel_hdcp *hdcp = &connector->hdcp; int ret; drm_dbg_kms(&i915->drm, "[%s:%d] HDCP2.2 is being enabled. Type: %d\n", connector->base.name, connector->base.base.id, hdcp->content_type); ret = hdcp2_authenticate_and_encrypt(connector); if (ret) { drm_dbg_kms(&i915->drm, "HDCP2 Type%d Enabling Failed. (%d)\n", hdcp->content_type, ret); return ret; } drm_dbg_kms(&i915->drm, "[%s:%d] HDCP2.2 is enabled. Type %d\n", connector->base.name, connector->base.base.id, hdcp->content_type); hdcp->hdcp2_encrypted = true; return 0; } static int _intel_hdcp2_disable(struct intel_connector *connector) { struct drm_i915_private *i915 = to_i915(connector->base.dev); int ret; drm_dbg_kms(&i915->drm, "[%s:%d] HDCP2.2 is being Disabled\n", connector->base.name, connector->base.base.id); ret = hdcp2_disable_encryption(connector); if (hdcp2_deauthenticate_port(connector) < 0) drm_dbg_kms(&i915->drm, "Port deauth failed.\n"); connector->hdcp.hdcp2_encrypted = false; return ret; } /* Implements the Link Integrity Check for HDCP2.2 */ static int intel_hdcp2_check_link(struct intel_connector *connector) { struct intel_digital_port *dig_port = intel_attached_dig_port(connector); struct drm_i915_private *dev_priv = to_i915(connector->base.dev); struct intel_hdcp *hdcp = &connector->hdcp; enum port port = dig_port->base.port; enum transcoder cpu_transcoder; int ret = 0; mutex_lock(&hdcp->mutex); cpu_transcoder = hdcp->cpu_transcoder; /* hdcp2_check_link is expected only when HDCP2.2 is Enabled */ if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_ENABLED || !hdcp->hdcp2_encrypted) { ret = -EINVAL; goto out; } if (drm_WARN_ON(&dev_priv->drm, !intel_hdcp2_in_use(dev_priv, cpu_transcoder, port))) { drm_err(&dev_priv->drm, "HDCP2.2 link stopped the encryption, %x\n", intel_de_read(dev_priv, HDCP2_STATUS(dev_priv, cpu_transcoder, port))); ret = -ENXIO; intel_hdcp_update_value(connector, DRM_MODE_CONTENT_PROTECTION_DESIRED, true); goto out; } ret = hdcp->shim->check_2_2_link(dig_port); if (ret == HDCP_LINK_PROTECTED) { if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) { intel_hdcp_update_value(connector, DRM_MODE_CONTENT_PROTECTION_ENABLED, true); } goto out; } if (ret == HDCP_TOPOLOGY_CHANGE) { if (hdcp->value == DRM_MODE_CONTENT_PROTECTION_UNDESIRED) goto out; drm_dbg_kms(&dev_priv->drm, "HDCP2.2 Downstream topology change\n"); ret = hdcp2_authenticate_repeater_topology(connector); if (!ret) { intel_hdcp_update_value(connector, DRM_MODE_CONTENT_PROTECTION_ENABLED, true); goto out; } drm_dbg_kms(&dev_priv->drm, "[%s:%d] Repeater topology auth failed.(%d)\n", connector->base.name, connector->base.base.id, ret); } else { drm_dbg_kms(&dev_priv->drm, "[%s:%d] HDCP2.2 link failed, retrying auth\n", connector->base.name, connector->base.base.id); } ret = _intel_hdcp2_disable(connector); if (ret) { drm_err(&dev_priv->drm, "[%s:%d] Failed to disable hdcp2.2 (%d)\n", connector->base.name, connector->base.base.id, ret); intel_hdcp_update_value(connector, DRM_MODE_CONTENT_PROTECTION_DESIRED, true); goto out; } ret = _intel_hdcp2_enable(connector); if (ret) { drm_dbg_kms(&dev_priv->drm, "[%s:%d] Failed to enable hdcp2.2 (%d)\n", connector->base.name, connector->base.base.id, ret); intel_hdcp_update_value(connector, DRM_MODE_CONTENT_PROTECTION_DESIRED, true); goto out; } out: mutex_unlock(&hdcp->mutex); return ret; } static void intel_hdcp_check_work(struct work_struct *work) { struct intel_hdcp *hdcp = container_of(to_delayed_work(work), struct intel_hdcp, check_work); struct intel_connector *connector = intel_hdcp_to_connector(hdcp); if (drm_connector_is_unregistered(&connector->base)) return; if (!intel_hdcp2_check_link(connector)) schedule_delayed_work(&hdcp->check_work, DRM_HDCP2_CHECK_PERIOD_MS); else if (!intel_hdcp_check_link(connector)) schedule_delayed_work(&hdcp->check_work, DRM_HDCP_CHECK_PERIOD_MS); } static int i915_hdcp_component_bind(struct device *i915_kdev, struct device *mei_kdev, void *data) { struct drm_i915_private *dev_priv = kdev_to_i915(i915_kdev); drm_dbg(&dev_priv->drm, "I915 HDCP comp bind\n"); mutex_lock(&dev_priv->hdcp_comp_mutex); dev_priv->hdcp_master = (struct i915_hdcp_comp_master *)data; dev_priv->hdcp_master->mei_dev = mei_kdev; mutex_unlock(&dev_priv->hdcp_comp_mutex); return 0; } static void i915_hdcp_component_unbind(struct device *i915_kdev, struct device *mei_kdev, void *data) { struct drm_i915_private *dev_priv = kdev_to_i915(i915_kdev); drm_dbg(&dev_priv->drm, "I915 HDCP comp unbind\n"); mutex_lock(&dev_priv->hdcp_comp_mutex); dev_priv->hdcp_master = NULL; mutex_unlock(&dev_priv->hdcp_comp_mutex); } static const struct component_ops i915_hdcp_component_ops = { .bind = i915_hdcp_component_bind, .unbind = i915_hdcp_component_unbind, }; static enum mei_fw_ddi intel_get_mei_fw_ddi_index(enum port port) { switch (port) { case PORT_A: return MEI_DDI_A; case PORT_B ... PORT_F: return (enum mei_fw_ddi)port; default: return MEI_DDI_INVALID_PORT; } } static enum mei_fw_tc intel_get_mei_fw_tc(enum transcoder cpu_transcoder) { switch (cpu_transcoder) { case TRANSCODER_A ... TRANSCODER_D: return (enum mei_fw_tc)(cpu_transcoder | 0x10); default: /* eDP, DSI TRANSCODERS are non HDCP capable */ return MEI_INVALID_TRANSCODER; } } static int initialize_hdcp_port_data(struct intel_connector *connector, enum port port, const struct intel_hdcp_shim *shim) { struct drm_i915_private *dev_priv = to_i915(connector->base.dev); struct intel_hdcp *hdcp = &connector->hdcp; struct hdcp_port_data *data = &hdcp->port_data; if (INTEL_GEN(dev_priv) < 12) data->fw_ddi = intel_get_mei_fw_ddi_index(port); else /* * As per ME FW API expectation, for GEN 12+, fw_ddi is filled * with zero(INVALID PORT index). */ data->fw_ddi = MEI_DDI_INVALID_PORT; /* * As associated transcoder is set and modified at modeset, here fw_tc * is initialized to zero (invalid transcoder index). This will be * retained for fw_tc = MEI_INVALID_TRANSCODER; data->port_type = (u8)HDCP_PORT_TYPE_INTEGRATED; data->protocol = (u8)shim->protocol; data->k = 1; if (!data->streams) data->streams = kcalloc(data->k, sizeof(struct hdcp2_streamid_type), GFP_KERNEL); if (!data->streams) { drm_err(&dev_priv->drm, "Out of Memory\n"); return -ENOMEM; } data->streams[0].stream_id = 0; data->streams[0].stream_type = hdcp->content_type; return 0; } static bool is_hdcp2_supported(struct drm_i915_private *dev_priv) { if (!IS_ENABLED(CONFIG_INTEL_MEI_HDCP)) return false; return (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv) || IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv) || IS_COMETLAKE(dev_priv)); } void intel_hdcp_component_init(struct drm_i915_private *dev_priv) { int ret; if (!is_hdcp2_supported(dev_priv)) return; mutex_lock(&dev_priv->hdcp_comp_mutex); drm_WARN_ON(&dev_priv->drm, dev_priv->hdcp_comp_added); dev_priv->hdcp_comp_added = true; mutex_unlock(&dev_priv->hdcp_comp_mutex); ret = component_add_typed(dev_priv->drm.dev, &i915_hdcp_component_ops, I915_COMPONENT_HDCP); if (ret < 0) { drm_dbg_kms(&dev_priv->drm, "Failed at component add(%d)\n", ret); mutex_lock(&dev_priv->hdcp_comp_mutex); dev_priv->hdcp_comp_added = false; mutex_unlock(&dev_priv->hdcp_comp_mutex); return; } } static void intel_hdcp2_init(struct intel_connector *connector, enum port port, const struct intel_hdcp_shim *shim) { struct drm_i915_private *i915 = to_i915(connector->base.dev); struct intel_hdcp *hdcp = &connector->hdcp; int ret; ret = initialize_hdcp_port_data(connector, port, shim); if (ret) { drm_dbg_kms(&i915->drm, "Mei hdcp data init failed\n"); return; } hdcp->hdcp2_supported = true; } int intel_hdcp_init(struct intel_connector *connector, enum port port, const struct intel_hdcp_shim *shim) { struct drm_i915_private *dev_priv = to_i915(connector->base.dev); struct intel_hdcp *hdcp = &connector->hdcp; int ret; if (!shim) return -EINVAL; if (is_hdcp2_supported(dev_priv) && !connector->mst_port) intel_hdcp2_init(connector, port, shim); ret = drm_connector_attach_content_protection_property(&connector->base, hdcp->hdcp2_supported); if (ret) { hdcp->hdcp2_supported = false; kfree(hdcp->port_data.streams); return ret; } hdcp->shim = shim; mutex_init(&hdcp->mutex); INIT_DELAYED_WORK(&hdcp->check_work, intel_hdcp_check_work); INIT_WORK(&hdcp->prop_work, intel_hdcp_prop_work); init_waitqueue_head(&hdcp->cp_irq_queue); return 0; } int intel_hdcp_enable(struct intel_connector *connector, enum transcoder cpu_transcoder, u8 content_type) { struct drm_i915_private *dev_priv = to_i915(connector->base.dev); struct intel_digital_port *dig_port = intel_attached_dig_port(connector); struct intel_hdcp *hdcp = &connector->hdcp; unsigned long check_link_interval = DRM_HDCP_CHECK_PERIOD_MS; int ret = -EINVAL; if (!hdcp->shim) return -ENOENT; mutex_lock(&hdcp->mutex); mutex_lock(&dig_port->hdcp_mutex); drm_WARN_ON(&dev_priv->drm, hdcp->value == DRM_MODE_CONTENT_PROTECTION_ENABLED); hdcp->content_type = content_type; hdcp->cpu_transcoder = cpu_transcoder; if (INTEL_GEN(dev_priv) >= 12) hdcp->port_data.fw_tc = intel_get_mei_fw_tc(cpu_transcoder); /* * Considering that HDCP2.2 is more secure than HDCP1.4, If the setup * is capable of HDCP2.2, it is preferred to use HDCP2.2. */ if (intel_hdcp2_capable(connector)) { ret = _intel_hdcp2_enable(connector); if (!ret) check_link_interval = DRM_HDCP2_CHECK_PERIOD_MS; } /* * When HDCP2.2 fails and Content Type is not Type1, HDCP1.4 will * be attempted. */ if (ret && intel_hdcp_capable(connector) && hdcp->content_type != DRM_MODE_HDCP_CONTENT_TYPE1) { ret = _intel_hdcp_enable(connector); } if (!ret) { schedule_delayed_work(&hdcp->check_work, check_link_interval); intel_hdcp_update_value(connector, DRM_MODE_CONTENT_PROTECTION_ENABLED, true); } mutex_unlock(&dig_port->hdcp_mutex); mutex_unlock(&hdcp->mutex); return ret; } int intel_hdcp_disable(struct intel_connector *connector) { struct intel_digital_port *dig_port = intel_attached_dig_port(connector); struct intel_hdcp *hdcp = &connector->hdcp; int ret = 0; if (!hdcp->shim) return -ENOENT; mutex_lock(&hdcp->mutex); mutex_lock(&dig_port->hdcp_mutex); if (hdcp->value == DRM_MODE_CONTENT_PROTECTION_UNDESIRED) goto out; intel_hdcp_update_value(connector, DRM_MODE_CONTENT_PROTECTION_UNDESIRED, false); if (hdcp->hdcp2_encrypted) ret = _intel_hdcp2_disable(connector); else if (hdcp->hdcp_encrypted) ret = _intel_hdcp_disable(connector); out: mutex_unlock(&dig_port->hdcp_mutex); mutex_unlock(&hdcp->mutex); cancel_delayed_work_sync(&hdcp->check_work); return ret; } void intel_hdcp_update_pipe(struct intel_atomic_state *state, struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state, const struct drm_connector_state *conn_state) { struct intel_connector *connector = to_intel_connector(conn_state->connector); struct intel_hdcp *hdcp = &connector->hdcp; bool content_protection_type_changed, desired_and_not_enabled = false; if (!connector->hdcp.shim) return; content_protection_type_changed = (conn_state->hdcp_content_type != hdcp->content_type && conn_state->content_protection != DRM_MODE_CONTENT_PROTECTION_UNDESIRED); /* * During the HDCP encryption session if Type change is requested, * disable the HDCP and reenable it with new TYPE value. */ if (conn_state->content_protection == DRM_MODE_CONTENT_PROTECTION_UNDESIRED || content_protection_type_changed) intel_hdcp_disable(connector); /* * Mark the hdcp state as DESIRED after the hdcp disable of type * change procedure. */ if (content_protection_type_changed) { mutex_lock(&hdcp->mutex); hdcp->value = DRM_MODE_CONTENT_PROTECTION_DESIRED; drm_connector_get(&connector->base); schedule_work(&hdcp->prop_work); mutex_unlock(&hdcp->mutex); } if (conn_state->content_protection == DRM_MODE_CONTENT_PROTECTION_DESIRED) { mutex_lock(&hdcp->mutex); /* Avoid enabling hdcp, if it already ENABLED */ desired_and_not_enabled = hdcp->value != DRM_MODE_CONTENT_PROTECTION_ENABLED; mutex_unlock(&hdcp->mutex); /* * If HDCP already ENABLED and CP property is DESIRED, schedule * prop_work to update correct CP property to user space. */ if (!desired_and_not_enabled && !content_protection_type_changed) { drm_connector_get(&connector->base); schedule_work(&hdcp->prop_work); } } if (desired_and_not_enabled || content_protection_type_changed) intel_hdcp_enable(connector, crtc_state->cpu_transcoder, (u8)conn_state->hdcp_content_type); } void intel_hdcp_component_fini(struct drm_i915_private *dev_priv) { mutex_lock(&dev_priv->hdcp_comp_mutex); if (!dev_priv->hdcp_comp_added) { mutex_unlock(&dev_priv->hdcp_comp_mutex); return; } dev_priv->hdcp_comp_added = false; mutex_unlock(&dev_priv->hdcp_comp_mutex); component_del(dev_priv->drm.dev, &i915_hdcp_component_ops); } void intel_hdcp_cleanup(struct intel_connector *connector) { struct intel_hdcp *hdcp = &connector->hdcp; if (!hdcp->shim) return; /* * If the connector is registered, it's possible userspace could kick * off another HDCP enable, which would re-spawn the workers. */ drm_WARN_ON(connector->base.dev, connector->base.registration_state == DRM_CONNECTOR_REGISTERED); /* * Now that the connector is not registered, check_work won't be run, * but cancel any outstanding instances of it */ cancel_delayed_work_sync(&hdcp->check_work); /* * We don't cancel prop_work in the same way as check_work since it * requires connection_mutex which could be held while calling this * function. Instead, we rely on the connector references grabbed before * scheduling prop_work to ensure the connector is alive when prop_work * is run. So if we're in the destroy path (which is where this * function should be called), we're "guaranteed" that prop_work is not * active (tl;dr This Should Never Happen). */ drm_WARN_ON(connector->base.dev, work_pending(&hdcp->prop_work)); mutex_lock(&hdcp->mutex); kfree(hdcp->port_data.streams); hdcp->shim = NULL; mutex_unlock(&hdcp->mutex); } void intel_hdcp_atomic_check(struct drm_connector *connector, struct drm_connector_state *old_state, struct drm_connector_state *new_state) { u64 old_cp = old_state->content_protection; u64 new_cp = new_state->content_protection; struct drm_crtc_state *crtc_state; if (!new_state->crtc) { /* * If the connector is being disabled with CP enabled, mark it * desired so it's re-enabled when the connector is brought back */ if (old_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED) new_state->content_protection = DRM_MODE_CONTENT_PROTECTION_DESIRED; return; } crtc_state = drm_atomic_get_new_crtc_state(new_state->state, new_state->crtc); /* * Fix the HDCP uapi content protection state in case of modeset. * FIXME: As per HDCP content protection property uapi doc, an uevent() * need to be sent if there is transition from ENABLED->DESIRED. */ if (drm_atomic_crtc_needs_modeset(crtc_state) && (old_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED && new_cp != DRM_MODE_CONTENT_PROTECTION_UNDESIRED)) new_state->content_protection = DRM_MODE_CONTENT_PROTECTION_DESIRED; /* * Nothing to do if the state didn't change, or HDCP was activated since * the last commit. And also no change in hdcp content type. */ if (old_cp == new_cp || (old_cp == DRM_MODE_CONTENT_PROTECTION_DESIRED && new_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED)) { if (old_state->hdcp_content_type == new_state->hdcp_content_type) return; } crtc_state->mode_changed = true; } /* Handles the CP_IRQ raised from the DP HDCP sink */ void intel_hdcp_handle_cp_irq(struct intel_connector *connector) { struct intel_hdcp *hdcp = &connector->hdcp; if (!hdcp->shim) return; atomic_inc(&connector->hdcp.cp_irq_count); wake_up_all(&connector->hdcp.cp_irq_queue); schedule_delayed_work(&hdcp->check_work, 0); }