/* * Copyright(c) 2015 - 2019 Intel Corporation. * * This file is provided under a dual BSD/GPLv2 license. When using or * redistributing this file, you may do so under either license. * * GPL LICENSE SUMMARY * * This program is free software; you can redistribute it and/or modify * it under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * BSD LICENSE * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * - Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ #include #include #include #include #include #include #include #include "hfi.h" #include "chip_registers.h" #include "aspm.h" /* * This file contains PCIe utility routines. */ /* * Do all the common PCIe setup and initialization. */ int hfi1_pcie_init(struct hfi1_devdata *dd) { int ret; struct pci_dev *pdev = dd->pcidev; ret = pci_enable_device(pdev); if (ret) { /* * This can happen (in theory) iff: * We did a chip reset, and then failed to reprogram the * BAR, or the chip reset due to an internal error. We then * unloaded the driver and reloaded it. * * Both reset cases set the BAR back to initial state. For * the latter case, the AER sticky error bit at offset 0x718 * should be set, but the Linux kernel doesn't yet know * about that, it appears. If the original BAR was retained * in the kernel data structures, this may be OK. */ dd_dev_err(dd, "pci enable failed: error %d\n", -ret); return ret; } ret = pci_request_regions(pdev, DRIVER_NAME); if (ret) { dd_dev_err(dd, "pci_request_regions fails: err %d\n", -ret); goto bail; } ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(64)); if (ret) { /* * If the 64 bit setup fails, try 32 bit. Some systems * do not setup 64 bit maps on systems with 2GB or less * memory installed. */ ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); if (ret) { dd_dev_err(dd, "Unable to set DMA mask: %d\n", ret); goto bail; } ret = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)); } else { ret = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)); } if (ret) { dd_dev_err(dd, "Unable to set DMA consistent mask: %d\n", ret); goto bail; } pci_set_master(pdev); (void)pci_enable_pcie_error_reporting(pdev); return 0; bail: hfi1_pcie_cleanup(pdev); return ret; } /* * Clean what was done in hfi1_pcie_init() */ void hfi1_pcie_cleanup(struct pci_dev *pdev) { pci_disable_device(pdev); /* * Release regions should be called after the disable. OK to * call if request regions has not been called or failed. */ pci_release_regions(pdev); } /* * Do remaining PCIe setup, once dd is allocated, and save away * fields required to re-initialize after a chip reset, or for * various other purposes */ int hfi1_pcie_ddinit(struct hfi1_devdata *dd, struct pci_dev *pdev) { unsigned long len; resource_size_t addr; int ret = 0; u32 rcv_array_count; addr = pci_resource_start(pdev, 0); len = pci_resource_len(pdev, 0); /* * The TXE PIO buffers are at the tail end of the chip space. * Cut them off and map them separately. */ /* sanity check vs expectations */ if (len != TXE_PIO_SEND + TXE_PIO_SIZE) { dd_dev_err(dd, "chip PIO range does not match\n"); return -EINVAL; } dd->kregbase1 = ioremap(addr, RCV_ARRAY); if (!dd->kregbase1) { dd_dev_err(dd, "UC mapping of kregbase1 failed\n"); return -ENOMEM; } dd_dev_info(dd, "UC base1: %p for %x\n", dd->kregbase1, RCV_ARRAY); /* verify that reads actually work, save revision for reset check */ dd->revision = readq(dd->kregbase1 + CCE_REVISION); if (dd->revision == ~(u64)0) { dd_dev_err(dd, "Cannot read chip CSRs\n"); goto nomem; } rcv_array_count = readq(dd->kregbase1 + RCV_ARRAY_CNT); dd_dev_info(dd, "RcvArray count: %u\n", rcv_array_count); dd->base2_start = RCV_ARRAY + rcv_array_count * 8; dd->kregbase2 = ioremap( addr + dd->base2_start, TXE_PIO_SEND - dd->base2_start); if (!dd->kregbase2) { dd_dev_err(dd, "UC mapping of kregbase2 failed\n"); goto nomem; } dd_dev_info(dd, "UC base2: %p for %x\n", dd->kregbase2, TXE_PIO_SEND - dd->base2_start); dd->piobase = ioremap_wc(addr + TXE_PIO_SEND, TXE_PIO_SIZE); if (!dd->piobase) { dd_dev_err(dd, "WC mapping of send buffers failed\n"); goto nomem; } dd_dev_info(dd, "WC piobase: %p for %x\n", dd->piobase, TXE_PIO_SIZE); dd->physaddr = addr; /* used for io_remap, etc. */ /* * Map the chip's RcvArray as write-combining to allow us * to write an entire cacheline worth of entries in one shot. */ dd->rcvarray_wc = ioremap_wc(addr + RCV_ARRAY, rcv_array_count * 8); if (!dd->rcvarray_wc) { dd_dev_err(dd, "WC mapping of receive array failed\n"); goto nomem; } dd_dev_info(dd, "WC RcvArray: %p for %x\n", dd->rcvarray_wc, rcv_array_count * 8); dd->flags |= HFI1_PRESENT; /* chip.c CSR routines now work */ return 0; nomem: ret = -ENOMEM; hfi1_pcie_ddcleanup(dd); return ret; } /* * Do PCIe cleanup related to dd, after chip-specific cleanup, etc. Just prior * to releasing the dd memory. * Void because all of the core pcie cleanup functions are void. */ void hfi1_pcie_ddcleanup(struct hfi1_devdata *dd) { dd->flags &= ~HFI1_PRESENT; if (dd->kregbase1) iounmap(dd->kregbase1); dd->kregbase1 = NULL; if (dd->kregbase2) iounmap(dd->kregbase2); dd->kregbase2 = NULL; if (dd->rcvarray_wc) iounmap(dd->rcvarray_wc); dd->rcvarray_wc = NULL; if (dd->piobase) iounmap(dd->piobase); dd->piobase = NULL; } /* return the PCIe link speed from the given link status */ static u32 extract_speed(u16 linkstat) { u32 speed; switch (linkstat & PCI_EXP_LNKSTA_CLS) { default: /* not defined, assume Gen1 */ case PCI_EXP_LNKSTA_CLS_2_5GB: speed = 2500; /* Gen 1, 2.5GHz */ break; case PCI_EXP_LNKSTA_CLS_5_0GB: speed = 5000; /* Gen 2, 5GHz */ break; case PCI_EXP_LNKSTA_CLS_8_0GB: speed = 8000; /* Gen 3, 8GHz */ break; } return speed; } /* read the link status and set dd->{lbus_width,lbus_speed,lbus_info} */ static void update_lbus_info(struct hfi1_devdata *dd) { u16 linkstat; int ret; ret = pcie_capability_read_word(dd->pcidev, PCI_EXP_LNKSTA, &linkstat); if (ret) { dd_dev_err(dd, "Unable to read from PCI config\n"); return; } dd->lbus_width = FIELD_GET(PCI_EXP_LNKSTA_NLW, linkstat); dd->lbus_speed = extract_speed(linkstat); snprintf(dd->lbus_info, sizeof(dd->lbus_info), "PCIe,%uMHz,x%u", dd->lbus_speed, dd->lbus_width); } /* * Read in the current PCIe link width and speed. Find if the link is * Gen3 capable. */ int pcie_speeds(struct hfi1_devdata *dd) { u32 linkcap; struct pci_dev *parent = dd->pcidev->bus->self; int ret; if (!pci_is_pcie(dd->pcidev)) { dd_dev_err(dd, "Can't find PCI Express capability!\n"); return -EINVAL; } /* find if our max speed is Gen3 and parent supports Gen3 speeds */ dd->link_gen3_capable = 1; ret = pcie_capability_read_dword(dd->pcidev, PCI_EXP_LNKCAP, &linkcap); if (ret) { dd_dev_err(dd, "Unable to read from PCI config\n"); return pcibios_err_to_errno(ret); } if ((linkcap & PCI_EXP_LNKCAP_SLS) != PCI_EXP_LNKCAP_SLS_8_0GB) { dd_dev_info(dd, "This HFI is not Gen3 capable, max speed 0x%x, need 0x3\n", linkcap & PCI_EXP_LNKCAP_SLS); dd->link_gen3_capable = 0; } /* * bus->max_bus_speed is set from the bridge's linkcap Max Link Speed */ if (parent && (dd->pcidev->bus->max_bus_speed == PCIE_SPEED_2_5GT || dd->pcidev->bus->max_bus_speed == PCIE_SPEED_5_0GT)) { dd_dev_info(dd, "Parent PCIe bridge does not support Gen3\n"); dd->link_gen3_capable = 0; } /* obtain the link width and current speed */ update_lbus_info(dd); dd_dev_info(dd, "%s\n", dd->lbus_info); return 0; } /** * Restore command and BARs after a reset has wiped them out * * Returns 0 on success, otherwise a negative error value */ int restore_pci_variables(struct hfi1_devdata *dd) { int ret; ret = pci_write_config_word(dd->pcidev, PCI_COMMAND, dd->pci_command); if (ret) goto error; ret = pci_write_config_dword(dd->pcidev, PCI_BASE_ADDRESS_0, dd->pcibar0); if (ret) goto error; ret = pci_write_config_dword(dd->pcidev, PCI_BASE_ADDRESS_1, dd->pcibar1); if (ret) goto error; ret = pci_write_config_dword(dd->pcidev, PCI_ROM_ADDRESS, dd->pci_rom); if (ret) goto error; ret = pcie_capability_write_word(dd->pcidev, PCI_EXP_DEVCTL, dd->pcie_devctl); if (ret) goto error; ret = pcie_capability_write_word(dd->pcidev, PCI_EXP_LNKCTL, dd->pcie_lnkctl); if (ret) goto error; ret = pcie_capability_write_word(dd->pcidev, PCI_EXP_DEVCTL2, dd->pcie_devctl2); if (ret) goto error; ret = pci_write_config_dword(dd->pcidev, PCI_CFG_MSIX0, dd->pci_msix0); if (ret) goto error; if (pci_find_ext_capability(dd->pcidev, PCI_EXT_CAP_ID_TPH)) { ret = pci_write_config_dword(dd->pcidev, PCIE_CFG_TPH2, dd->pci_tph2); if (ret) goto error; } return 0; error: dd_dev_err(dd, "Unable to write to PCI config\n"); return pcibios_err_to_errno(ret); } /** * Save BARs and command to rewrite after device reset * * Returns 0 on success, otherwise a negative error value */ int save_pci_variables(struct hfi1_devdata *dd) { int ret; ret = pci_read_config_dword(dd->pcidev, PCI_BASE_ADDRESS_0, &dd->pcibar0); if (ret) goto error; ret = pci_read_config_dword(dd->pcidev, PCI_BASE_ADDRESS_1, &dd->pcibar1); if (ret) goto error; ret = pci_read_config_dword(dd->pcidev, PCI_ROM_ADDRESS, &dd->pci_rom); if (ret) goto error; ret = pci_read_config_word(dd->pcidev, PCI_COMMAND, &dd->pci_command); if (ret) goto error; ret = pcie_capability_read_word(dd->pcidev, PCI_EXP_DEVCTL, &dd->pcie_devctl); if (ret) goto error; ret = pcie_capability_read_word(dd->pcidev, PCI_EXP_LNKCTL, &dd->pcie_lnkctl); if (ret) goto error; ret = pcie_capability_read_word(dd->pcidev, PCI_EXP_DEVCTL2, &dd->pcie_devctl2); if (ret) goto error; ret = pci_read_config_dword(dd->pcidev, PCI_CFG_MSIX0, &dd->pci_msix0); if (ret) goto error; if (pci_find_ext_capability(dd->pcidev, PCI_EXT_CAP_ID_TPH)) { ret = pci_read_config_dword(dd->pcidev, PCIE_CFG_TPH2, &dd->pci_tph2); if (ret) goto error; } return 0; error: dd_dev_err(dd, "Unable to read from PCI config\n"); return pcibios_err_to_errno(ret); } /* * BIOS may not set PCIe bus-utilization parameters for best performance. * Check and optionally adjust them to maximize our throughput. */ static int hfi1_pcie_caps; module_param_named(pcie_caps, hfi1_pcie_caps, int, 0444); MODULE_PARM_DESC(pcie_caps, "Max PCIe tuning: Payload (0..3), ReadReq (4..7)"); /** * tune_pcie_caps() - Code to adjust PCIe capabilities. * @dd: Valid device data structure * */ void tune_pcie_caps(struct hfi1_devdata *dd) { struct pci_dev *parent; u16 rc_mpss, rc_mps, ep_mpss, ep_mps; u16 rc_mrrs, ep_mrrs, max_mrrs, ectl; int ret; /* * Turn on extended tags in DevCtl in case the BIOS has turned it off * to improve WFR SDMA bandwidth */ ret = pcie_capability_read_word(dd->pcidev, PCI_EXP_DEVCTL, &ectl); if ((!ret) && !(ectl & PCI_EXP_DEVCTL_EXT_TAG)) { dd_dev_info(dd, "Enabling PCIe extended tags\n"); ectl |= PCI_EXP_DEVCTL_EXT_TAG; ret = pcie_capability_write_word(dd->pcidev, PCI_EXP_DEVCTL, ectl); if (ret) dd_dev_info(dd, "Unable to write to PCI config\n"); } /* Find out supported and configured values for parent (root) */ parent = dd->pcidev->bus->self; /* * The driver cannot perform the tuning if it does not have * access to the upstream component. */ if (!parent) { dd_dev_info(dd, "Parent not found\n"); return; } if (!pci_is_root_bus(parent->bus)) { dd_dev_info(dd, "Parent not root\n"); return; } if (!pci_is_pcie(parent)) { dd_dev_info(dd, "Parent is not PCI Express capable\n"); return; } if (!pci_is_pcie(dd->pcidev)) { dd_dev_info(dd, "PCI device is not PCI Express capable\n"); return; } rc_mpss = parent->pcie_mpss; rc_mps = ffs(pcie_get_mps(parent)) - 8; /* Find out supported and configured values for endpoint (us) */ ep_mpss = dd->pcidev->pcie_mpss; ep_mps = ffs(pcie_get_mps(dd->pcidev)) - 8; /* Find max payload supported by root, endpoint */ if (rc_mpss > ep_mpss) rc_mpss = ep_mpss; /* If Supported greater than limit in module param, limit it */ if (rc_mpss > (hfi1_pcie_caps & 7)) rc_mpss = hfi1_pcie_caps & 7; /* If less than (allowed, supported), bump root payload */ if (rc_mpss > rc_mps) { rc_mps = rc_mpss; pcie_set_mps(parent, 128 << rc_mps); } /* If less than (allowed, supported), bump endpoint payload */ if (rc_mpss > ep_mps) { ep_mps = rc_mpss; pcie_set_mps(dd->pcidev, 128 << ep_mps); } /* * Now the Read Request size. * No field for max supported, but PCIe spec limits it to 4096, * which is code '5' (log2(4096) - 7) */ max_mrrs = 5; if (max_mrrs > ((hfi1_pcie_caps >> 4) & 7)) max_mrrs = (hfi1_pcie_caps >> 4) & 7; max_mrrs = 128 << max_mrrs; rc_mrrs = pcie_get_readrq(parent); ep_mrrs = pcie_get_readrq(dd->pcidev); if (max_mrrs > rc_mrrs) { rc_mrrs = max_mrrs; pcie_set_readrq(parent, rc_mrrs); } if (max_mrrs > ep_mrrs) { ep_mrrs = max_mrrs; pcie_set_readrq(dd->pcidev, ep_mrrs); } } /* End of PCIe capability tuning */ /* * From here through hfi1_pci_err_handler definition is invoked via * PCI error infrastructure, registered via pci */ static pci_ers_result_t pci_error_detected(struct pci_dev *pdev, pci_channel_state_t state) { struct hfi1_devdata *dd = pci_get_drvdata(pdev); pci_ers_result_t ret = PCI_ERS_RESULT_RECOVERED; switch (state) { case pci_channel_io_normal: dd_dev_info(dd, "State Normal, ignoring\n"); break; case pci_channel_io_frozen: dd_dev_info(dd, "State Frozen, requesting reset\n"); pci_disable_device(pdev); ret = PCI_ERS_RESULT_NEED_RESET; break; case pci_channel_io_perm_failure: if (dd) { dd_dev_info(dd, "State Permanent Failure, disabling\n"); /* no more register accesses! */ dd->flags &= ~HFI1_PRESENT; hfi1_disable_after_error(dd); } /* else early, or other problem */ ret = PCI_ERS_RESULT_DISCONNECT; break; default: /* shouldn't happen */ dd_dev_info(dd, "HFI1 PCI errors detected (state %d)\n", state); break; } return ret; } static pci_ers_result_t pci_mmio_enabled(struct pci_dev *pdev) { u64 words = 0U; struct hfi1_devdata *dd = pci_get_drvdata(pdev); pci_ers_result_t ret = PCI_ERS_RESULT_RECOVERED; if (dd && dd->pport) { words = read_port_cntr(dd->pport, C_RX_WORDS, CNTR_INVALID_VL); if (words == ~0ULL) ret = PCI_ERS_RESULT_NEED_RESET; dd_dev_info(dd, "HFI1 mmio_enabled function called, read wordscntr %llx, returning %d\n", words, ret); } return ret; } static pci_ers_result_t pci_slot_reset(struct pci_dev *pdev) { struct hfi1_devdata *dd = pci_get_drvdata(pdev); dd_dev_info(dd, "HFI1 slot_reset function called, ignored\n"); return PCI_ERS_RESULT_CAN_RECOVER; } static void pci_resume(struct pci_dev *pdev) { struct hfi1_devdata *dd = pci_get_drvdata(pdev); dd_dev_info(dd, "HFI1 resume function called\n"); /* * Running jobs will fail, since it's asynchronous * unlike sysfs-requested reset. Better than * doing nothing. */ hfi1_init(dd, 1); /* same as re-init after reset */ } const struct pci_error_handlers hfi1_pci_err_handler = { .error_detected = pci_error_detected, .mmio_enabled = pci_mmio_enabled, .slot_reset = pci_slot_reset, .resume = pci_resume, }; /*============================================================================*/ /* PCIe Gen3 support */ /* * This code is separated out because it is expected to be removed in the * final shipping product. If not, then it will be revisited and items * will be moved to more standard locations. */ /* ASIC_PCI_SD_HOST_STATUS.FW_DNLD_STS field values */ #define DL_STATUS_HFI0 0x1 /* hfi0 firmware download complete */ #define DL_STATUS_HFI1 0x2 /* hfi1 firmware download complete */ #define DL_STATUS_BOTH 0x3 /* hfi0 and hfi1 firmware download complete */ /* ASIC_PCI_SD_HOST_STATUS.FW_DNLD_ERR field values */ #define DL_ERR_NONE 0x0 /* no error */ #define DL_ERR_SWAP_PARITY 0x1 /* parity error in SerDes interrupt */ /* or response data */ #define DL_ERR_DISABLED 0x2 /* hfi disabled */ #define DL_ERR_SECURITY 0x3 /* security check failed */ #define DL_ERR_SBUS 0x4 /* SBus status error */ #define DL_ERR_XFR_PARITY 0x5 /* parity error during ROM transfer*/ /* gasket block secondary bus reset delay */ #define SBR_DELAY_US 200000 /* 200ms */ static uint pcie_target = 3; module_param(pcie_target, uint, S_IRUGO); MODULE_PARM_DESC(pcie_target, "PCIe target speed (0 skip, 1-3 Gen1-3)"); static uint pcie_force; module_param(pcie_force, uint, S_IRUGO); MODULE_PARM_DESC(pcie_force, "Force driver to do a PCIe firmware download even if already at target speed"); static uint pcie_retry = 5; module_param(pcie_retry, uint, S_IRUGO); MODULE_PARM_DESC(pcie_retry, "Driver will try this many times to reach requested speed"); #define UNSET_PSET 255 #define DEFAULT_DISCRETE_PSET 2 /* discrete HFI */ #define DEFAULT_MCP_PSET 6 /* MCP HFI */ static uint pcie_pset = UNSET_PSET; module_param(pcie_pset, uint, S_IRUGO); MODULE_PARM_DESC(pcie_pset, "PCIe Eq Pset value to use, range is 0-10"); static uint pcie_ctle = 3; /* discrete on, integrated on */ module_param(pcie_ctle, uint, S_IRUGO); MODULE_PARM_DESC(pcie_ctle, "PCIe static CTLE mode, bit 0 - discrete on/off, bit 1 - integrated on/off"); /* equalization columns */ #define PREC 0 #define ATTN 1 #define POST 2 /* discrete silicon preliminary equalization values */ static const u8 discrete_preliminary_eq[11][3] = { /* prec attn post */ { 0x00, 0x00, 0x12 }, /* p0 */ { 0x00, 0x00, 0x0c }, /* p1 */ { 0x00, 0x00, 0x0f }, /* p2 */ { 0x00, 0x00, 0x09 }, /* p3 */ { 0x00, 0x00, 0x00 }, /* p4 */ { 0x06, 0x00, 0x00 }, /* p5 */ { 0x09, 0x00, 0x00 }, /* p6 */ { 0x06, 0x00, 0x0f }, /* p7 */ { 0x09, 0x00, 0x09 }, /* p8 */ { 0x0c, 0x00, 0x00 }, /* p9 */ { 0x00, 0x00, 0x18 }, /* p10 */ }; /* integrated silicon preliminary equalization values */ static const u8 integrated_preliminary_eq[11][3] = { /* prec attn post */ { 0x00, 0x1e, 0x07 }, /* p0 */ { 0x00, 0x1e, 0x05 }, /* p1 */ { 0x00, 0x1e, 0x06 }, /* p2 */ { 0x00, 0x1e, 0x04 }, /* p3 */ { 0x00, 0x1e, 0x00 }, /* p4 */ { 0x03, 0x1e, 0x00 }, /* p5 */ { 0x04, 0x1e, 0x00 }, /* p6 */ { 0x03, 0x1e, 0x06 }, /* p7 */ { 0x03, 0x1e, 0x04 }, /* p8 */ { 0x05, 0x1e, 0x00 }, /* p9 */ { 0x00, 0x1e, 0x0a }, /* p10 */ }; static const u8 discrete_ctle_tunings[11][4] = { /* DC LF HF BW */ { 0x48, 0x0b, 0x04, 0x04 }, /* p0 */ { 0x60, 0x05, 0x0f, 0x0a }, /* p1 */ { 0x50, 0x09, 0x06, 0x06 }, /* p2 */ { 0x68, 0x05, 0x0f, 0x0a }, /* p3 */ { 0x80, 0x05, 0x0f, 0x0a }, /* p4 */ { 0x70, 0x05, 0x0f, 0x0a }, /* p5 */ { 0x68, 0x05, 0x0f, 0x0a }, /* p6 */ { 0x38, 0x0f, 0x00, 0x00 }, /* p7 */ { 0x48, 0x09, 0x06, 0x06 }, /* p8 */ { 0x60, 0x05, 0x0f, 0x0a }, /* p9 */ { 0x38, 0x0f, 0x00, 0x00 }, /* p10 */ }; static const u8 integrated_ctle_tunings[11][4] = { /* DC LF HF BW */ { 0x38, 0x0f, 0x00, 0x00 }, /* p0 */ { 0x38, 0x0f, 0x00, 0x00 }, /* p1 */ { 0x38, 0x0f, 0x00, 0x00 }, /* p2 */ { 0x38, 0x0f, 0x00, 0x00 }, /* p3 */ { 0x58, 0x0a, 0x05, 0x05 }, /* p4 */ { 0x48, 0x0a, 0x05, 0x05 }, /* p5 */ { 0x40, 0x0a, 0x05, 0x05 }, /* p6 */ { 0x38, 0x0f, 0x00, 0x00 }, /* p7 */ { 0x38, 0x0f, 0x00, 0x00 }, /* p8 */ { 0x38, 0x09, 0x06, 0x06 }, /* p9 */ { 0x38, 0x0e, 0x01, 0x01 }, /* p10 */ }; /* helper to format the value to write to hardware */ #define eq_value(pre, curr, post) \ ((((u32)(pre)) << \ PCIE_CFG_REG_PL102_GEN3_EQ_PRE_CURSOR_PSET_SHIFT) \ | (((u32)(curr)) << PCIE_CFG_REG_PL102_GEN3_EQ_CURSOR_PSET_SHIFT) \ | (((u32)(post)) << \ PCIE_CFG_REG_PL102_GEN3_EQ_POST_CURSOR_PSET_SHIFT)) /* * Load the given EQ preset table into the PCIe hardware. */ static int load_eq_table(struct hfi1_devdata *dd, const u8 eq[11][3], u8 fs, u8 div) { struct pci_dev *pdev = dd->pcidev; u32 hit_error = 0; u32 violation; u32 i; u8 c_minus1, c0, c_plus1; int ret; for (i = 0; i < 11; i++) { /* set index */ pci_write_config_dword(pdev, PCIE_CFG_REG_PL103, i); /* write the value */ c_minus1 = eq[i][PREC] / div; c0 = fs - (eq[i][PREC] / div) - (eq[i][POST] / div); c_plus1 = eq[i][POST] / div; pci_write_config_dword(pdev, PCIE_CFG_REG_PL102, eq_value(c_minus1, c0, c_plus1)); /* check if these coefficients violate EQ rules */ ret = pci_read_config_dword(dd->pcidev, PCIE_CFG_REG_PL105, &violation); if (ret) { dd_dev_err(dd, "Unable to read from PCI config\n"); hit_error = 1; break; } if (violation & PCIE_CFG_REG_PL105_GEN3_EQ_VIOLATE_COEF_RULES_SMASK){ if (hit_error == 0) { dd_dev_err(dd, "Gen3 EQ Table Coefficient rule violations\n"); dd_dev_err(dd, " prec attn post\n"); } dd_dev_err(dd, " p%02d: %02x %02x %02x\n", i, (u32)eq[i][0], (u32)eq[i][1], (u32)eq[i][2]); dd_dev_err(dd, " %02x %02x %02x\n", (u32)c_minus1, (u32)c0, (u32)c_plus1); hit_error = 1; } } if (hit_error) return -EINVAL; return 0; } /* * Steps to be done after the PCIe firmware is downloaded and * before the SBR for the Pcie Gen3. * The SBus resource is already being held. */ static void pcie_post_steps(struct hfi1_devdata *dd) { int i; set_sbus_fast_mode(dd); /* * Write to the PCIe PCSes to set the G3_LOCKED_NEXT bits to 1. * This avoids a spurious framing error that can otherwise be * generated by the MAC layer. * * Use individual addresses since no broadcast is set up. */ for (i = 0; i < NUM_PCIE_SERDES; i++) { sbus_request(dd, pcie_pcs_addrs[dd->hfi1_id][i], 0x03, WRITE_SBUS_RECEIVER, 0x00022132); } clear_sbus_fast_mode(dd); } /* * Trigger a secondary bus reset (SBR) on ourselves using our parent. * * Based on pci_parent_bus_reset() which is not exported by the * kernel core. */ static int trigger_sbr(struct hfi1_devdata *dd) { struct pci_dev *dev = dd->pcidev; struct pci_dev *pdev; /* need a parent */ if (!dev->bus->self) { dd_dev_err(dd, "%s: no parent device\n", __func__); return -ENOTTY; } /* should not be anyone else on the bus */ list_for_each_entry(pdev, &dev->bus->devices, bus_list) if (pdev != dev) { dd_dev_err(dd, "%s: another device is on the same bus\n", __func__); return -ENOTTY; } /* * This is an end around to do an SBR during probe time. A new API needs * to be implemented to have cleaner interface but this fixes the * current brokenness */ return pci_bridge_secondary_bus_reset(dev->bus->self); } /* * Write the given gasket interrupt register. */ static void write_gasket_interrupt(struct hfi1_devdata *dd, int index, u16 code, u16 data) { write_csr(dd, ASIC_PCIE_SD_INTRPT_LIST + (index * 8), (((u64)code << ASIC_PCIE_SD_INTRPT_LIST_INTRPT_CODE_SHIFT) | ((u64)data << ASIC_PCIE_SD_INTRPT_LIST_INTRPT_DATA_SHIFT))); } /* * Tell the gasket logic how to react to the reset. */ static void arm_gasket_logic(struct hfi1_devdata *dd) { u64 reg; reg = (((u64)1 << dd->hfi1_id) << ASIC_PCIE_SD_HOST_CMD_INTRPT_CMD_SHIFT) | ((u64)pcie_serdes_broadcast[dd->hfi1_id] << ASIC_PCIE_SD_HOST_CMD_SBUS_RCVR_ADDR_SHIFT | ASIC_PCIE_SD_HOST_CMD_SBR_MODE_SMASK | ((u64)SBR_DELAY_US & ASIC_PCIE_SD_HOST_CMD_TIMER_MASK) << ASIC_PCIE_SD_HOST_CMD_TIMER_SHIFT); write_csr(dd, ASIC_PCIE_SD_HOST_CMD, reg); /* read back to push the write */ read_csr(dd, ASIC_PCIE_SD_HOST_CMD); } /* * CCE_PCIE_CTRL long name helpers * We redefine these shorter macros to use in the code while leaving * chip_registers.h to be autogenerated from the hardware spec. */ #define LANE_BUNDLE_MASK CCE_PCIE_CTRL_PCIE_LANE_BUNDLE_MASK #define LANE_BUNDLE_SHIFT CCE_PCIE_CTRL_PCIE_LANE_BUNDLE_SHIFT #define LANE_DELAY_MASK CCE_PCIE_CTRL_PCIE_LANE_DELAY_MASK #define LANE_DELAY_SHIFT CCE_PCIE_CTRL_PCIE_LANE_DELAY_SHIFT #define MARGIN_OVERWRITE_ENABLE_SHIFT CCE_PCIE_CTRL_XMT_MARGIN_OVERWRITE_ENABLE_SHIFT #define MARGIN_SHIFT CCE_PCIE_CTRL_XMT_MARGIN_SHIFT #define MARGIN_G1_G2_OVERWRITE_MASK CCE_PCIE_CTRL_XMT_MARGIN_GEN1_GEN2_OVERWRITE_ENABLE_MASK #define MARGIN_G1_G2_OVERWRITE_SHIFT CCE_PCIE_CTRL_XMT_MARGIN_GEN1_GEN2_OVERWRITE_ENABLE_SHIFT #define MARGIN_GEN1_GEN2_MASK CCE_PCIE_CTRL_XMT_MARGIN_GEN1_GEN2_MASK #define MARGIN_GEN1_GEN2_SHIFT CCE_PCIE_CTRL_XMT_MARGIN_GEN1_GEN2_SHIFT /* * Write xmt_margin for full-swing (WFR-B) or half-swing (WFR-C). */ static void write_xmt_margin(struct hfi1_devdata *dd, const char *fname) { u64 pcie_ctrl; u64 xmt_margin; u64 xmt_margin_oe; u64 lane_delay; u64 lane_bundle; pcie_ctrl = read_csr(dd, CCE_PCIE_CTRL); /* * For Discrete, use full-swing. * - PCIe TX defaults to full-swing. * Leave this register as default. * For Integrated, use half-swing * - Copy xmt_margin and xmt_margin_oe * from Gen1/Gen2 to Gen3. */ if (dd->pcidev->device == PCI_DEVICE_ID_INTEL1) { /* integrated */ /* extract initial fields */ xmt_margin = (pcie_ctrl >> MARGIN_GEN1_GEN2_SHIFT) & MARGIN_GEN1_GEN2_MASK; xmt_margin_oe = (pcie_ctrl >> MARGIN_G1_G2_OVERWRITE_SHIFT) & MARGIN_G1_G2_OVERWRITE_MASK; lane_delay = (pcie_ctrl >> LANE_DELAY_SHIFT) & LANE_DELAY_MASK; lane_bundle = (pcie_ctrl >> LANE_BUNDLE_SHIFT) & LANE_BUNDLE_MASK; /* * For A0, EFUSE values are not set. Override with the * correct values. */ if (is_ax(dd)) { /* * xmt_margin and OverwiteEnabel should be the * same for Gen1/Gen2 and Gen3 */ xmt_margin = 0x5; xmt_margin_oe = 0x1; lane_delay = 0xF; /* Delay 240ns. */ lane_bundle = 0x0; /* Set to 1 lane. */ } /* overwrite existing values */ pcie_ctrl = (xmt_margin << MARGIN_GEN1_GEN2_SHIFT) | (xmt_margin_oe << MARGIN_G1_G2_OVERWRITE_SHIFT) | (xmt_margin << MARGIN_SHIFT) | (xmt_margin_oe << MARGIN_OVERWRITE_ENABLE_SHIFT) | (lane_delay << LANE_DELAY_SHIFT) | (lane_bundle << LANE_BUNDLE_SHIFT); write_csr(dd, CCE_PCIE_CTRL, pcie_ctrl); } dd_dev_dbg(dd, "%s: program XMT margin, CcePcieCtrl 0x%llx\n", fname, pcie_ctrl); } /* * Do all the steps needed to transition the PCIe link to Gen3 speed. */ int do_pcie_gen3_transition(struct hfi1_devdata *dd) { struct pci_dev *parent = dd->pcidev->bus->self; u64 fw_ctrl; u64 reg, therm; u32 reg32, fs, lf; u32 status, err; int ret; int do_retry, retry_count = 0; int intnum = 0; uint default_pset; uint pset = pcie_pset; u16 target_vector, target_speed; u16 lnkctl2, vendor; u8 div; const u8 (*eq)[3]; const u8 (*ctle_tunings)[4]; uint static_ctle_mode; int return_error = 0; u32 target_width; /* PCIe Gen3 is for the ASIC only */ if (dd->icode != ICODE_RTL_SILICON) return 0; if (pcie_target == 1) { /* target Gen1 */ target_vector = PCI_EXP_LNKCTL2_TLS_2_5GT; target_speed = 2500; } else if (pcie_target == 2) { /* target Gen2 */ target_vector = PCI_EXP_LNKCTL2_TLS_5_0GT; target_speed = 5000; } else if (pcie_target == 3) { /* target Gen3 */ target_vector = PCI_EXP_LNKCTL2_TLS_8_0GT; target_speed = 8000; } else { /* off or invalid target - skip */ dd_dev_info(dd, "%s: Skipping PCIe transition\n", __func__); return 0; } /* if already at target speed, done (unless forced) */ if (dd->lbus_speed == target_speed) { dd_dev_info(dd, "%s: PCIe already at gen%d, %s\n", __func__, pcie_target, pcie_force ? "re-doing anyway" : "skipping"); if (!pcie_force) return 0; } /* * The driver cannot do the transition if it has no access to the * upstream component */ if (!parent) { dd_dev_info(dd, "%s: No upstream, Can't do gen3 transition\n", __func__); return 0; } /* Previous Gen1/Gen2 bus width */ target_width = dd->lbus_width; /* * Do the Gen3 transition. Steps are those of the PCIe Gen3 * recipe. */ /* step 1: pcie link working in gen1/gen2 */ /* step 2: if either side is not capable of Gen3, done */ if (pcie_target == 3 && !dd->link_gen3_capable) { dd_dev_err(dd, "The PCIe link is not Gen3 capable\n"); ret = -ENOSYS; goto done_no_mutex; } /* hold the SBus resource across the firmware download and SBR */ ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT); if (ret) { dd_dev_err(dd, "%s: unable to acquire SBus resource\n", __func__); return ret; } /* make sure thermal polling is not causing interrupts */ therm = read_csr(dd, ASIC_CFG_THERM_POLL_EN); if (therm) { write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x0); msleep(100); dd_dev_info(dd, "%s: Disabled therm polling\n", __func__); } retry: /* the SBus download will reset the spico for thermal */ /* step 3: download SBus Master firmware */ /* step 4: download PCIe Gen3 SerDes firmware */ dd_dev_info(dd, "%s: downloading firmware\n", __func__); ret = load_pcie_firmware(dd); if (ret) { /* do not proceed if the firmware cannot be downloaded */ return_error = 1; goto done; } /* step 5: set up device parameter settings */ dd_dev_info(dd, "%s: setting PCIe registers\n", __func__); /* * PcieCfgSpcie1 - Link Control 3 * Leave at reset value. No need to set PerfEq - link equalization * will be performed automatically after the SBR when the target * speed is 8GT/s. */ /* clear all 16 per-lane error bits (PCIe: Lane Error Status) */ pci_write_config_dword(dd->pcidev, PCIE_CFG_SPCIE2, 0xffff); /* step 5a: Set Synopsys Port Logic registers */ /* * PcieCfgRegPl2 - Port Force Link * * Set the low power field to 0x10 to avoid unnecessary power * management messages. All other fields are zero. */ reg32 = 0x10ul << PCIE_CFG_REG_PL2_LOW_PWR_ENT_CNT_SHIFT; pci_write_config_dword(dd->pcidev, PCIE_CFG_REG_PL2, reg32); /* * PcieCfgRegPl100 - Gen3 Control * * turn off PcieCfgRegPl100.Gen3ZRxDcNonCompl * turn on PcieCfgRegPl100.EqEieosCnt * Everything else zero. */ reg32 = PCIE_CFG_REG_PL100_EQ_EIEOS_CNT_SMASK; pci_write_config_dword(dd->pcidev, PCIE_CFG_REG_PL100, reg32); /* * PcieCfgRegPl101 - Gen3 EQ FS and LF * PcieCfgRegPl102 - Gen3 EQ Presets to Coefficients Mapping * PcieCfgRegPl103 - Gen3 EQ Preset Index * PcieCfgRegPl105 - Gen3 EQ Status * * Give initial EQ settings. */ if (dd->pcidev->device == PCI_DEVICE_ID_INTEL0) { /* discrete */ /* 1000mV, FS=24, LF = 8 */ fs = 24; lf = 8; div = 3; eq = discrete_preliminary_eq; default_pset = DEFAULT_DISCRETE_PSET; ctle_tunings = discrete_ctle_tunings; /* bit 0 - discrete on/off */ static_ctle_mode = pcie_ctle & 0x1; } else { /* 400mV, FS=29, LF = 9 */ fs = 29; lf = 9; div = 1; eq = integrated_preliminary_eq; default_pset = DEFAULT_MCP_PSET; ctle_tunings = integrated_ctle_tunings; /* bit 1 - integrated on/off */ static_ctle_mode = (pcie_ctle >> 1) & 0x1; } pci_write_config_dword(dd->pcidev, PCIE_CFG_REG_PL101, (fs << PCIE_CFG_REG_PL101_GEN3_EQ_LOCAL_FS_SHIFT) | (lf << PCIE_CFG_REG_PL101_GEN3_EQ_LOCAL_LF_SHIFT)); ret = load_eq_table(dd, eq, fs, div); if (ret) goto done; /* * PcieCfgRegPl106 - Gen3 EQ Control * * Set Gen3EqPsetReqVec, leave other fields 0. */ if (pset == UNSET_PSET) pset = default_pset; if (pset > 10) { /* valid range is 0-10, inclusive */ dd_dev_err(dd, "%s: Invalid Eq Pset %u, setting to %d\n", __func__, pset, default_pset); pset = default_pset; } dd_dev_info(dd, "%s: using EQ Pset %u\n", __func__, pset); pci_write_config_dword(dd->pcidev, PCIE_CFG_REG_PL106, ((1 << pset) << PCIE_CFG_REG_PL106_GEN3_EQ_PSET_REQ_VEC_SHIFT) | PCIE_CFG_REG_PL106_GEN3_EQ_EVAL2MS_DISABLE_SMASK | PCIE_CFG_REG_PL106_GEN3_EQ_PHASE23_EXIT_MODE_SMASK); /* * step 5b: Do post firmware download steps via SBus */ dd_dev_info(dd, "%s: doing pcie post steps\n", __func__); pcie_post_steps(dd); /* * step 5c: Program gasket interrupts */ /* set the Rx Bit Rate to REFCLK ratio */ write_gasket_interrupt(dd, intnum++, 0x0006, 0x0050); /* disable pCal for PCIe Gen3 RX equalization */ /* select adaptive or static CTLE */ write_gasket_interrupt(dd, intnum++, 0x0026, 0x5b01 | (static_ctle_mode << 3)); /* * Enable iCal for PCIe Gen3 RX equalization, and set which * evaluation of RX_EQ_EVAL will launch the iCal procedure. */ write_gasket_interrupt(dd, intnum++, 0x0026, 0x5202); if (static_ctle_mode) { /* apply static CTLE tunings */ u8 pcie_dc, pcie_lf, pcie_hf, pcie_bw; pcie_dc = ctle_tunings[pset][0]; pcie_lf = ctle_tunings[pset][1]; pcie_hf = ctle_tunings[pset][2]; pcie_bw = ctle_tunings[pset][3]; write_gasket_interrupt(dd, intnum++, 0x0026, 0x0200 | pcie_dc); write_gasket_interrupt(dd, intnum++, 0x0026, 0x0100 | pcie_lf); write_gasket_interrupt(dd, intnum++, 0x0026, 0x0000 | pcie_hf); write_gasket_interrupt(dd, intnum++, 0x0026, 0x5500 | pcie_bw); } /* terminate list */ write_gasket_interrupt(dd, intnum++, 0x0000, 0x0000); /* * step 5d: program XMT margin */ write_xmt_margin(dd, __func__); /* * step 5e: disable active state power management (ASPM). It * will be enabled if required later */ dd_dev_info(dd, "%s: clearing ASPM\n", __func__); aspm_hw_disable_l1(dd); /* * step 5f: clear DirectSpeedChange * PcieCfgRegPl67.DirectSpeedChange must be zero to prevent the * change in the speed target from starting before we are ready. * This field defaults to 0 and we are not changing it, so nothing * needs to be done. */ /* step 5g: Set target link speed */ /* * Set target link speed to be target on both device and parent. * On setting the parent: Some system BIOSs "helpfully" set the * parent target speed to Gen2 to match the ASIC's initial speed. * We can set the target Gen3 because we have already checked * that it is Gen3 capable earlier. */ dd_dev_info(dd, "%s: setting parent target link speed\n", __func__); ret = pcie_capability_read_word(parent, PCI_EXP_LNKCTL2, &lnkctl2); if (ret) { dd_dev_err(dd, "Unable to read from PCI config\n"); return_error = 1; goto done; } dd_dev_info(dd, "%s: ..old link control2: 0x%x\n", __func__, (u32)lnkctl2); /* only write to parent if target is not as high as ours */ if ((lnkctl2 & PCI_EXP_LNKCTL2_TLS) < target_vector) { lnkctl2 &= ~PCI_EXP_LNKCTL2_TLS; lnkctl2 |= target_vector; dd_dev_info(dd, "%s: ..new link control2: 0x%x\n", __func__, (u32)lnkctl2); ret = pcie_capability_write_word(parent, PCI_EXP_LNKCTL2, lnkctl2); if (ret) { dd_dev_err(dd, "Unable to write to PCI config\n"); return_error = 1; goto done; } } else { dd_dev_info(dd, "%s: ..target speed is OK\n", __func__); } dd_dev_info(dd, "%s: setting target link speed\n", __func__); ret = pcie_capability_read_word(dd->pcidev, PCI_EXP_LNKCTL2, &lnkctl2); if (ret) { dd_dev_err(dd, "Unable to read from PCI config\n"); return_error = 1; goto done; } dd_dev_info(dd, "%s: ..old link control2: 0x%x\n", __func__, (u32)lnkctl2); lnkctl2 &= ~PCI_EXP_LNKCTL2_TLS; lnkctl2 |= target_vector; dd_dev_info(dd, "%s: ..new link control2: 0x%x\n", __func__, (u32)lnkctl2); ret = pcie_capability_write_word(dd->pcidev, PCI_EXP_LNKCTL2, lnkctl2); if (ret) { dd_dev_err(dd, "Unable to write to PCI config\n"); return_error = 1; goto done; } /* step 5h: arm gasket logic */ /* hold DC in reset across the SBR */ write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_DC_RESET_SMASK); (void)read_csr(dd, CCE_DC_CTRL); /* DC reset hold */ /* save firmware control across the SBR */ fw_ctrl = read_csr(dd, MISC_CFG_FW_CTRL); dd_dev_info(dd, "%s: arming gasket logic\n", __func__); arm_gasket_logic(dd); /* * step 6: quiesce PCIe link * The chip has already been reset, so there will be no traffic * from the chip. Linux has no easy way to enforce that it will * not try to access the device, so we just need to hope it doesn't * do it while we are doing the reset. */ /* * step 7: initiate the secondary bus reset (SBR) * step 8: hardware brings the links back up * step 9: wait for link speed transition to be complete */ dd_dev_info(dd, "%s: calling trigger_sbr\n", __func__); ret = trigger_sbr(dd); if (ret) goto done; /* step 10: decide what to do next */ /* check if we can read PCI space */ ret = pci_read_config_word(dd->pcidev, PCI_VENDOR_ID, &vendor); if (ret) { dd_dev_info(dd, "%s: read of VendorID failed after SBR, err %d\n", __func__, ret); return_error = 1; goto done; } if (vendor == 0xffff) { dd_dev_info(dd, "%s: VendorID is all 1s after SBR\n", __func__); return_error = 1; ret = -EIO; goto done; } /* restore PCI space registers we know were reset */ dd_dev_info(dd, "%s: calling restore_pci_variables\n", __func__); ret = restore_pci_variables(dd); if (ret) { dd_dev_err(dd, "%s: Could not restore PCI variables\n", __func__); return_error = 1; goto done; } /* restore firmware control */ write_csr(dd, MISC_CFG_FW_CTRL, fw_ctrl); /* * Check the gasket block status. * * This is the first CSR read after the SBR. If the read returns * all 1s (fails), the link did not make it back. * * Once we're sure we can read and write, clear the DC reset after * the SBR. Then check for any per-lane errors. Then look over * the status. */ reg = read_csr(dd, ASIC_PCIE_SD_HOST_STATUS); dd_dev_info(dd, "%s: gasket block status: 0x%llx\n", __func__, reg); if (reg == ~0ull) { /* PCIe read failed/timeout */ dd_dev_err(dd, "SBR failed - unable to read from device\n"); return_error = 1; ret = -ENOSYS; goto done; } /* clear the DC reset */ write_csr(dd, CCE_DC_CTRL, 0); /* Set the LED off */ setextled(dd, 0); /* check for any per-lane errors */ ret = pci_read_config_dword(dd->pcidev, PCIE_CFG_SPCIE2, ®32); if (ret) { dd_dev_err(dd, "Unable to read from PCI config\n"); return_error = 1; goto done; } dd_dev_info(dd, "%s: per-lane errors: 0x%x\n", __func__, reg32); /* extract status, look for our HFI */ status = (reg >> ASIC_PCIE_SD_HOST_STATUS_FW_DNLD_STS_SHIFT) & ASIC_PCIE_SD_HOST_STATUS_FW_DNLD_STS_MASK; if ((status & (1 << dd->hfi1_id)) == 0) { dd_dev_err(dd, "%s: gasket status 0x%x, expecting 0x%x\n", __func__, status, 1 << dd->hfi1_id); ret = -EIO; goto done; } /* extract error */ err = (reg >> ASIC_PCIE_SD_HOST_STATUS_FW_DNLD_ERR_SHIFT) & ASIC_PCIE_SD_HOST_STATUS_FW_DNLD_ERR_MASK; if (err) { dd_dev_err(dd, "%s: gasket error %d\n", __func__, err); ret = -EIO; goto done; } /* update our link information cache */ update_lbus_info(dd); dd_dev_info(dd, "%s: new speed and width: %s\n", __func__, dd->lbus_info); if (dd->lbus_speed != target_speed || dd->lbus_width < target_width) { /* not target */ /* maybe retry */ do_retry = retry_count < pcie_retry; dd_dev_err(dd, "PCIe link speed or width did not match target%s\n", do_retry ? ", retrying" : ""); retry_count++; if (do_retry) { msleep(100); /* allow time to settle */ goto retry; } ret = -EIO; } done: if (therm) { write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x1); msleep(100); dd_dev_info(dd, "%s: Re-enable therm polling\n", __func__); } release_chip_resource(dd, CR_SBUS); done_no_mutex: /* return no error if it is OK to be at current speed */ if (ret && !return_error) { dd_dev_err(dd, "Proceeding at current speed PCIe speed\n"); ret = 0; } dd_dev_info(dd, "%s: done\n", __func__); return ret; }