// SPDX-License-Identifier: GPL-2.0 /* * bcache journalling code, for btree insertions * * Copyright 2012 Google, Inc. */ #include "bcache.h" #include "btree.h" #include "debug.h" #include "extents.h" #include /* * Journal replay/recovery: * * This code is all driven from run_cache_set(); we first read the journal * entries, do some other stuff, then we mark all the keys in the journal * entries (same as garbage collection would), then we replay them - reinserting * them into the cache in precisely the same order as they appear in the * journal. * * We only journal keys that go in leaf nodes, which simplifies things quite a * bit. */ static void journal_read_endio(struct bio *bio) { struct closure *cl = bio->bi_private; closure_put(cl); } static int journal_read_bucket(struct cache *ca, struct list_head *list, unsigned int bucket_index) { struct journal_device *ja = &ca->journal; struct bio *bio = &ja->bio; struct journal_replay *i; struct jset *j, *data = ca->set->journal.w[0].data; struct closure cl; unsigned int len, left, offset = 0; int ret = 0; sector_t bucket = bucket_to_sector(ca->set, ca->sb.d[bucket_index]); closure_init_stack(&cl); pr_debug("reading %u\n", bucket_index); while (offset < ca->sb.bucket_size) { reread: left = ca->sb.bucket_size - offset; len = min_t(unsigned int, left, PAGE_SECTORS << JSET_BITS); bio_reset(bio); bio->bi_iter.bi_sector = bucket + offset; bio_set_dev(bio, ca->bdev); bio->bi_iter.bi_size = len << 9; bio->bi_end_io = journal_read_endio; bio->bi_private = &cl; bio_set_op_attrs(bio, REQ_OP_READ, 0); bch_bio_map(bio, data); closure_bio_submit(ca->set, bio, &cl); closure_sync(&cl); /* This function could be simpler now since we no longer write * journal entries that overlap bucket boundaries; this means * the start of a bucket will always have a valid journal entry * if it has any journal entries at all. */ j = data; while (len) { struct list_head *where; size_t blocks, bytes = set_bytes(j); if (j->magic != jset_magic(&ca->sb)) { pr_debug("%u: bad magic\n", bucket_index); return ret; } if (bytes > left << 9 || bytes > PAGE_SIZE << JSET_BITS) { pr_info("%u: too big, %zu bytes, offset %u\n", bucket_index, bytes, offset); return ret; } if (bytes > len << 9) goto reread; if (j->csum != csum_set(j)) { pr_info("%u: bad csum, %zu bytes, offset %u\n", bucket_index, bytes, offset); return ret; } blocks = set_blocks(j, block_bytes(ca)); /* * Nodes in 'list' are in linear increasing order of * i->j.seq, the node on head has the smallest (oldest) * journal seq, the node on tail has the biggest * (latest) journal seq. */ /* * Check from the oldest jset for last_seq. If * i->j.seq < j->last_seq, it means the oldest jset * in list is expired and useless, remove it from * this list. Otherwise, j is a condidate jset for * further following checks. */ while (!list_empty(list)) { i = list_first_entry(list, struct journal_replay, list); if (i->j.seq >= j->last_seq) break; list_del(&i->list); kfree(i); } /* iterate list in reverse order (from latest jset) */ list_for_each_entry_reverse(i, list, list) { if (j->seq == i->j.seq) goto next_set; /* * if j->seq is less than any i->j.last_seq * in list, j is an expired and useless jset. */ if (j->seq < i->j.last_seq) goto next_set; /* * 'where' points to first jset in list which * is elder then j. */ if (j->seq > i->j.seq) { where = &i->list; goto add; } } where = list; add: i = kmalloc(offsetof(struct journal_replay, j) + bytes, GFP_KERNEL); if (!i) return -ENOMEM; memcpy(&i->j, j, bytes); /* Add to the location after 'where' points to */ list_add(&i->list, where); ret = 1; if (j->seq > ja->seq[bucket_index]) ja->seq[bucket_index] = j->seq; next_set: offset += blocks * ca->sb.block_size; len -= blocks * ca->sb.block_size; j = ((void *) j) + blocks * block_bytes(ca); } } return ret; } int bch_journal_read(struct cache_set *c, struct list_head *list) { #define read_bucket(b) \ ({ \ ret = journal_read_bucket(ca, list, b); \ __set_bit(b, bitmap); \ if (ret < 0) \ return ret; \ ret; \ }) struct cache *ca = c->cache; int ret = 0; struct journal_device *ja = &ca->journal; DECLARE_BITMAP(bitmap, SB_JOURNAL_BUCKETS); unsigned int i, l, r, m; uint64_t seq; bitmap_zero(bitmap, SB_JOURNAL_BUCKETS); pr_debug("%u journal buckets\n", ca->sb.njournal_buckets); /* * Read journal buckets ordered by golden ratio hash to quickly * find a sequence of buckets with valid journal entries */ for (i = 0; i < ca->sb.njournal_buckets; i++) { /* * We must try the index l with ZERO first for * correctness due to the scenario that the journal * bucket is circular buffer which might have wrapped */ l = (i * 2654435769U) % ca->sb.njournal_buckets; if (test_bit(l, bitmap)) break; if (read_bucket(l)) goto bsearch; } /* * If that fails, check all the buckets we haven't checked * already */ pr_debug("falling back to linear search\n"); for_each_clear_bit(l, bitmap, ca->sb.njournal_buckets) if (read_bucket(l)) goto bsearch; /* no journal entries on this device? */ if (l == ca->sb.njournal_buckets) goto out; bsearch: BUG_ON(list_empty(list)); /* Binary search */ m = l; r = find_next_bit(bitmap, ca->sb.njournal_buckets, l + 1); pr_debug("starting binary search, l %u r %u\n", l, r); while (l + 1 < r) { seq = list_entry(list->prev, struct journal_replay, list)->j.seq; m = (l + r) >> 1; read_bucket(m); if (seq != list_entry(list->prev, struct journal_replay, list)->j.seq) l = m; else r = m; } /* * Read buckets in reverse order until we stop finding more * journal entries */ pr_debug("finishing up: m %u njournal_buckets %u\n", m, ca->sb.njournal_buckets); l = m; while (1) { if (!l--) l = ca->sb.njournal_buckets - 1; if (l == m) break; if (test_bit(l, bitmap)) continue; if (!read_bucket(l)) break; } seq = 0; for (i = 0; i < ca->sb.njournal_buckets; i++) if (ja->seq[i] > seq) { seq = ja->seq[i]; /* * When journal_reclaim() goes to allocate for * the first time, it'll use the bucket after * ja->cur_idx */ ja->cur_idx = i; ja->last_idx = ja->discard_idx = (i + 1) % ca->sb.njournal_buckets; } out: if (!list_empty(list)) c->journal.seq = list_entry(list->prev, struct journal_replay, list)->j.seq; return 0; #undef read_bucket } void bch_journal_mark(struct cache_set *c, struct list_head *list) { atomic_t p = { 0 }; struct bkey *k; struct journal_replay *i; struct journal *j = &c->journal; uint64_t last = j->seq; /* * journal.pin should never fill up - we never write a journal * entry when it would fill up. But if for some reason it does, we * iterate over the list in reverse order so that we can just skip that * refcount instead of bugging. */ list_for_each_entry_reverse(i, list, list) { BUG_ON(last < i->j.seq); i->pin = NULL; while (last-- != i->j.seq) if (fifo_free(&j->pin) > 1) { fifo_push_front(&j->pin, p); atomic_set(&fifo_front(&j->pin), 0); } if (fifo_free(&j->pin) > 1) { fifo_push_front(&j->pin, p); i->pin = &fifo_front(&j->pin); atomic_set(i->pin, 1); } for (k = i->j.start; k < bset_bkey_last(&i->j); k = bkey_next(k)) if (!__bch_extent_invalid(c, k)) { unsigned int j; for (j = 0; j < KEY_PTRS(k); j++) if (ptr_available(c, k, j)) atomic_inc(&PTR_BUCKET(c, k, j)->pin); bch_initial_mark_key(c, 0, k); } } } static bool is_discard_enabled(struct cache_set *s) { struct cache *ca = s->cache; if (ca->discard) return true; return false; } int bch_journal_replay(struct cache_set *s, struct list_head *list) { int ret = 0, keys = 0, entries = 0; struct bkey *k; struct journal_replay *i = list_entry(list->prev, struct journal_replay, list); uint64_t start = i->j.last_seq, end = i->j.seq, n = start; struct keylist keylist; list_for_each_entry(i, list, list) { BUG_ON(i->pin && atomic_read(i->pin) != 1); if (n != i->j.seq) { if (n == start && is_discard_enabled(s)) pr_info("journal entries %llu-%llu may be discarded! (replaying %llu-%llu)\n", n, i->j.seq - 1, start, end); else { pr_err("journal entries %llu-%llu missing! (replaying %llu-%llu)\n", n, i->j.seq - 1, start, end); ret = -EIO; goto err; } } for (k = i->j.start; k < bset_bkey_last(&i->j); k = bkey_next(k)) { trace_bcache_journal_replay_key(k); bch_keylist_init_single(&keylist, k); ret = bch_btree_insert(s, &keylist, i->pin, NULL); if (ret) goto err; BUG_ON(!bch_keylist_empty(&keylist)); keys++; cond_resched(); } if (i->pin) atomic_dec(i->pin); n = i->j.seq + 1; entries++; } pr_info("journal replay done, %i keys in %i entries, seq %llu\n", keys, entries, end); err: while (!list_empty(list)) { i = list_first_entry(list, struct journal_replay, list); list_del(&i->list); kfree(i); } return ret; } void bch_journal_space_reserve(struct journal *j) { j->do_reserve = true; } /* Journalling */ static void btree_flush_write(struct cache_set *c) { struct btree *b, *t, *btree_nodes[BTREE_FLUSH_NR]; unsigned int i, nr; int ref_nr; atomic_t *fifo_front_p, *now_fifo_front_p; size_t mask; if (c->journal.btree_flushing) return; spin_lock(&c->journal.flush_write_lock); if (c->journal.btree_flushing) { spin_unlock(&c->journal.flush_write_lock); return; } c->journal.btree_flushing = true; spin_unlock(&c->journal.flush_write_lock); /* get the oldest journal entry and check its refcount */ spin_lock(&c->journal.lock); fifo_front_p = &fifo_front(&c->journal.pin); ref_nr = atomic_read(fifo_front_p); if (ref_nr <= 0) { /* * do nothing if no btree node references * the oldest journal entry */ spin_unlock(&c->journal.lock); goto out; } spin_unlock(&c->journal.lock); mask = c->journal.pin.mask; nr = 0; atomic_long_inc(&c->flush_write); memset(btree_nodes, 0, sizeof(btree_nodes)); mutex_lock(&c->bucket_lock); list_for_each_entry_safe_reverse(b, t, &c->btree_cache, list) { /* * It is safe to get now_fifo_front_p without holding * c->journal.lock here, because we don't need to know * the exactly accurate value, just check whether the * front pointer of c->journal.pin is changed. */ now_fifo_front_p = &fifo_front(&c->journal.pin); /* * If the oldest journal entry is reclaimed and front * pointer of c->journal.pin changes, it is unnecessary * to scan c->btree_cache anymore, just quit the loop and * flush out what we have already. */ if (now_fifo_front_p != fifo_front_p) break; /* * quit this loop if all matching btree nodes are * scanned and record in btree_nodes[] already. */ ref_nr = atomic_read(fifo_front_p); if (nr >= ref_nr) break; if (btree_node_journal_flush(b)) pr_err("BUG: flush_write bit should not be set here!\n"); mutex_lock(&b->write_lock); if (!btree_node_dirty(b)) { mutex_unlock(&b->write_lock); continue; } if (!btree_current_write(b)->journal) { mutex_unlock(&b->write_lock); continue; } /* * Only select the btree node which exactly references * the oldest journal entry. * * If the journal entry pointed by fifo_front_p is * reclaimed in parallel, don't worry: * - the list_for_each_xxx loop will quit when checking * next now_fifo_front_p. * - If there are matched nodes recorded in btree_nodes[], * they are clean now (this is why and how the oldest * journal entry can be reclaimed). These selected nodes * will be ignored and skipped in the folowing for-loop. */ if (((btree_current_write(b)->journal - fifo_front_p) & mask) != 0) { mutex_unlock(&b->write_lock); continue; } set_btree_node_journal_flush(b); mutex_unlock(&b->write_lock); btree_nodes[nr++] = b; /* * To avoid holding c->bucket_lock too long time, * only scan for BTREE_FLUSH_NR matched btree nodes * at most. If there are more btree nodes reference * the oldest journal entry, try to flush them next * time when btree_flush_write() is called. */ if (nr == BTREE_FLUSH_NR) break; } mutex_unlock(&c->bucket_lock); for (i = 0; i < nr; i++) { b = btree_nodes[i]; if (!b) { pr_err("BUG: btree_nodes[%d] is NULL\n", i); continue; } /* safe to check without holding b->write_lock */ if (!btree_node_journal_flush(b)) { pr_err("BUG: bnode %p: journal_flush bit cleaned\n", b); continue; } mutex_lock(&b->write_lock); if (!btree_current_write(b)->journal) { clear_bit(BTREE_NODE_journal_flush, &b->flags); mutex_unlock(&b->write_lock); pr_debug("bnode %p: written by others\n", b); continue; } if (!btree_node_dirty(b)) { clear_bit(BTREE_NODE_journal_flush, &b->flags); mutex_unlock(&b->write_lock); pr_debug("bnode %p: dirty bit cleaned by others\n", b); continue; } __bch_btree_node_write(b, NULL); clear_bit(BTREE_NODE_journal_flush, &b->flags); mutex_unlock(&b->write_lock); } out: spin_lock(&c->journal.flush_write_lock); c->journal.btree_flushing = false; spin_unlock(&c->journal.flush_write_lock); } #define last_seq(j) ((j)->seq - fifo_used(&(j)->pin) + 1) static void journal_discard_endio(struct bio *bio) { struct journal_device *ja = container_of(bio, struct journal_device, discard_bio); struct cache *ca = container_of(ja, struct cache, journal); atomic_set(&ja->discard_in_flight, DISCARD_DONE); closure_wake_up(&ca->set->journal.wait); closure_put(&ca->set->cl); } static void journal_discard_work(struct work_struct *work) { struct journal_device *ja = container_of(work, struct journal_device, discard_work); submit_bio(&ja->discard_bio); } static void do_journal_discard(struct cache *ca) { struct journal_device *ja = &ca->journal; struct bio *bio = &ja->discard_bio; if (!ca->discard) { ja->discard_idx = ja->last_idx; return; } switch (atomic_read(&ja->discard_in_flight)) { case DISCARD_IN_FLIGHT: return; case DISCARD_DONE: ja->discard_idx = (ja->discard_idx + 1) % ca->sb.njournal_buckets; atomic_set(&ja->discard_in_flight, DISCARD_READY); fallthrough; case DISCARD_READY: if (ja->discard_idx == ja->last_idx) return; atomic_set(&ja->discard_in_flight, DISCARD_IN_FLIGHT); bio_init(bio, bio->bi_inline_vecs, 1); bio_set_op_attrs(bio, REQ_OP_DISCARD, 0); bio->bi_iter.bi_sector = bucket_to_sector(ca->set, ca->sb.d[ja->discard_idx]); bio_set_dev(bio, ca->bdev); bio->bi_iter.bi_size = bucket_bytes(ca); bio->bi_end_io = journal_discard_endio; closure_get(&ca->set->cl); INIT_WORK(&ja->discard_work, journal_discard_work); queue_work(bch_journal_wq, &ja->discard_work); } } static unsigned int free_journal_buckets(struct cache_set *c) { struct journal *j = &c->journal; struct cache *ca = c->cache; struct journal_device *ja = &c->cache->journal; unsigned int n; /* In case njournal_buckets is not power of 2 */ if (ja->cur_idx >= ja->discard_idx) n = ca->sb.njournal_buckets + ja->discard_idx - ja->cur_idx; else n = ja->discard_idx - ja->cur_idx; if (n > (1 + j->do_reserve)) return n - (1 + j->do_reserve); return 0; } static void journal_reclaim(struct cache_set *c) { struct bkey *k = &c->journal.key; struct cache *ca = c->cache; uint64_t last_seq; struct journal_device *ja = &ca->journal; atomic_t p __maybe_unused; atomic_long_inc(&c->reclaim); while (!atomic_read(&fifo_front(&c->journal.pin))) fifo_pop(&c->journal.pin, p); last_seq = last_seq(&c->journal); /* Update last_idx */ while (ja->last_idx != ja->cur_idx && ja->seq[ja->last_idx] < last_seq) ja->last_idx = (ja->last_idx + 1) % ca->sb.njournal_buckets; do_journal_discard(ca); if (c->journal.blocks_free) goto out; if (!free_journal_buckets(c)) goto out; ja->cur_idx = (ja->cur_idx + 1) % ca->sb.njournal_buckets; k->ptr[0] = MAKE_PTR(0, bucket_to_sector(c, ca->sb.d[ja->cur_idx]), ca->sb.nr_this_dev); atomic_long_inc(&c->reclaimed_journal_buckets); bkey_init(k); SET_KEY_PTRS(k, 1); c->journal.blocks_free = ca->sb.bucket_size >> c->block_bits; out: if (!journal_full(&c->journal)) __closure_wake_up(&c->journal.wait); } void bch_journal_next(struct journal *j) { atomic_t p = { 1 }; j->cur = (j->cur == j->w) ? &j->w[1] : &j->w[0]; /* * The fifo_push() needs to happen at the same time as j->seq is * incremented for last_seq() to be calculated correctly */ BUG_ON(!fifo_push(&j->pin, p)); atomic_set(&fifo_back(&j->pin), 1); j->cur->data->seq = ++j->seq; j->cur->dirty = false; j->cur->need_write = false; j->cur->data->keys = 0; if (fifo_full(&j->pin)) pr_debug("journal_pin full (%zu)\n", fifo_used(&j->pin)); } static void journal_write_endio(struct bio *bio) { struct journal_write *w = bio->bi_private; cache_set_err_on(bio->bi_status, w->c, "journal io error"); closure_put(&w->c->journal.io); } static void journal_write(struct closure *cl); static void journal_write_done(struct closure *cl) { struct journal *j = container_of(cl, struct journal, io); struct journal_write *w = (j->cur == j->w) ? &j->w[1] : &j->w[0]; __closure_wake_up(&w->wait); continue_at_nobarrier(cl, journal_write, bch_journal_wq); } static void journal_write_unlock(struct closure *cl) __releases(&c->journal.lock) { struct cache_set *c = container_of(cl, struct cache_set, journal.io); c->journal.io_in_flight = 0; spin_unlock(&c->journal.lock); } static void journal_write_unlocked(struct closure *cl) __releases(c->journal.lock) { struct cache_set *c = container_of(cl, struct cache_set, journal.io); struct cache *ca = c->cache; struct journal_write *w = c->journal.cur; struct bkey *k = &c->journal.key; unsigned int i, sectors = set_blocks(w->data, block_bytes(ca)) * ca->sb.block_size; struct bio *bio; struct bio_list list; bio_list_init(&list); if (!w->need_write) { closure_return_with_destructor(cl, journal_write_unlock); return; } else if (journal_full(&c->journal)) { journal_reclaim(c); spin_unlock(&c->journal.lock); btree_flush_write(c); continue_at(cl, journal_write, bch_journal_wq); return; } c->journal.blocks_free -= set_blocks(w->data, block_bytes(ca)); w->data->btree_level = c->root->level; bkey_copy(&w->data->btree_root, &c->root->key); bkey_copy(&w->data->uuid_bucket, &c->uuid_bucket); w->data->prio_bucket[ca->sb.nr_this_dev] = ca->prio_buckets[0]; w->data->magic = jset_magic(&ca->sb); w->data->version = BCACHE_JSET_VERSION; w->data->last_seq = last_seq(&c->journal); w->data->csum = csum_set(w->data); for (i = 0; i < KEY_PTRS(k); i++) { ca = PTR_CACHE(c, k, i); bio = &ca->journal.bio; atomic_long_add(sectors, &ca->meta_sectors_written); bio_reset(bio); bio->bi_iter.bi_sector = PTR_OFFSET(k, i); bio_set_dev(bio, ca->bdev); bio->bi_iter.bi_size = sectors << 9; bio->bi_end_io = journal_write_endio; bio->bi_private = w; bio_set_op_attrs(bio, REQ_OP_WRITE, REQ_SYNC|REQ_META|REQ_PREFLUSH|REQ_FUA); bch_bio_map(bio, w->data); trace_bcache_journal_write(bio, w->data->keys); bio_list_add(&list, bio); SET_PTR_OFFSET(k, i, PTR_OFFSET(k, i) + sectors); ca->journal.seq[ca->journal.cur_idx] = w->data->seq; } /* If KEY_PTRS(k) == 0, this jset gets lost in air */ BUG_ON(i == 0); atomic_dec_bug(&fifo_back(&c->journal.pin)); bch_journal_next(&c->journal); journal_reclaim(c); spin_unlock(&c->journal.lock); while ((bio = bio_list_pop(&list))) closure_bio_submit(c, bio, cl); continue_at(cl, journal_write_done, NULL); } static void journal_write(struct closure *cl) { struct cache_set *c = container_of(cl, struct cache_set, journal.io); spin_lock(&c->journal.lock); journal_write_unlocked(cl); } static void journal_try_write(struct cache_set *c) __releases(c->journal.lock) { struct closure *cl = &c->journal.io; struct journal_write *w = c->journal.cur; w->need_write = true; if (!c->journal.io_in_flight) { c->journal.io_in_flight = 1; closure_call(cl, journal_write_unlocked, NULL, &c->cl); } else { spin_unlock(&c->journal.lock); } } static struct journal_write *journal_wait_for_write(struct cache_set *c, unsigned int nkeys) __acquires(&c->journal.lock) { size_t sectors; struct closure cl; bool wait = false; struct cache *ca = c->cache; closure_init_stack(&cl); spin_lock(&c->journal.lock); while (1) { struct journal_write *w = c->journal.cur; sectors = __set_blocks(w->data, w->data->keys + nkeys, block_bytes(ca)) * ca->sb.block_size; if (sectors <= min_t(size_t, c->journal.blocks_free * ca->sb.block_size, PAGE_SECTORS << JSET_BITS)) return w; if (wait) closure_wait(&c->journal.wait, &cl); if (!journal_full(&c->journal)) { if (wait) trace_bcache_journal_entry_full(c); /* * XXX: If we were inserting so many keys that they * won't fit in an _empty_ journal write, we'll * deadlock. For now, handle this in * bch_keylist_realloc() - but something to think about. */ BUG_ON(!w->data->keys); journal_try_write(c); /* unlocks */ } else { if (wait) trace_bcache_journal_full(c); journal_reclaim(c); spin_unlock(&c->journal.lock); btree_flush_write(c); } closure_sync(&cl); spin_lock(&c->journal.lock); wait = true; } } static void journal_write_work(struct work_struct *work) { struct cache_set *c = container_of(to_delayed_work(work), struct cache_set, journal.work); spin_lock(&c->journal.lock); if (c->journal.cur->dirty) journal_try_write(c); else spin_unlock(&c->journal.lock); } /* * Entry point to the journalling code - bio_insert() and btree_invalidate() * pass bch_journal() a list of keys to be journalled, and then * bch_journal() hands those same keys off to btree_insert_async() */ atomic_t *bch_journal(struct cache_set *c, struct keylist *keys, struct closure *parent) { struct journal_write *w; atomic_t *ret; /* No journaling if CACHE_SET_IO_DISABLE set already */ if (unlikely(test_bit(CACHE_SET_IO_DISABLE, &c->flags))) return NULL; if (!CACHE_SYNC(&c->cache->sb)) return NULL; w = journal_wait_for_write(c, bch_keylist_nkeys(keys)); memcpy(bset_bkey_last(w->data), keys->keys, bch_keylist_bytes(keys)); w->data->keys += bch_keylist_nkeys(keys); ret = &fifo_back(&c->journal.pin); atomic_inc(ret); if (parent) { closure_wait(&w->wait, parent); journal_try_write(c); } else if (!w->dirty) { w->dirty = true; queue_delayed_work(bch_flush_wq, &c->journal.work, msecs_to_jiffies(c->journal_delay_ms)); spin_unlock(&c->journal.lock); } else { spin_unlock(&c->journal.lock); } return ret; } void bch_journal_meta(struct cache_set *c, struct closure *cl) { struct keylist keys; atomic_t *ref; bch_keylist_init(&keys); ref = bch_journal(c, &keys, cl); if (ref) atomic_dec_bug(ref); } void bch_journal_free(struct cache_set *c) { free_pages((unsigned long) c->journal.w[1].data, JSET_BITS); free_pages((unsigned long) c->journal.w[0].data, JSET_BITS); free_fifo(&c->journal.pin); } int bch_journal_alloc(struct cache_set *c) { struct journal *j = &c->journal; spin_lock_init(&j->lock); spin_lock_init(&j->flush_write_lock); INIT_DELAYED_WORK(&j->work, journal_write_work); c->journal_delay_ms = 100; j->w[0].c = c; j->w[1].c = c; if (!(init_fifo(&j->pin, JOURNAL_PIN, GFP_KERNEL)) || !(j->w[0].data = (void *) __get_free_pages(GFP_KERNEL|__GFP_COMP, JSET_BITS)) || !(j->w[1].data = (void *) __get_free_pages(GFP_KERNEL|__GFP_COMP, JSET_BITS))) return -ENOMEM; return 0; }