// SPDX-License-Identifier: GPL-2.0 /* * ST Microelectronics * Flexible Static Memory Controller (FSMC) * Driver for NAND portions * * Copyright © 2010 ST Microelectronics * Vipin Kumar * Ashish Priyadarshi * * Based on drivers/mtd/nand/nomadik_nand.c (removed in v3.8) * Copyright © 2007 STMicroelectronics Pvt. Ltd. * Copyright © 2009 Alessandro Rubini */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* fsmc controller registers for NOR flash */ #define CTRL 0x0 /* ctrl register definitions */ #define BANK_ENABLE BIT(0) #define MUXED BIT(1) #define NOR_DEV (2 << 2) #define WIDTH_16 BIT(4) #define RSTPWRDWN BIT(6) #define WPROT BIT(7) #define WRT_ENABLE BIT(12) #define WAIT_ENB BIT(13) #define CTRL_TIM 0x4 /* ctrl_tim register definitions */ #define FSMC_NOR_BANK_SZ 0x8 #define FSMC_NOR_REG_SIZE 0x40 #define FSMC_NOR_REG(base, bank, reg) ((base) + \ (FSMC_NOR_BANK_SZ * (bank)) + \ (reg)) /* fsmc controller registers for NAND flash */ #define FSMC_PC 0x00 /* pc register definitions */ #define FSMC_RESET BIT(0) #define FSMC_WAITON BIT(1) #define FSMC_ENABLE BIT(2) #define FSMC_DEVTYPE_NAND BIT(3) #define FSMC_DEVWID_16 BIT(4) #define FSMC_ECCEN BIT(6) #define FSMC_ECCPLEN_256 BIT(7) #define FSMC_TCLR_SHIFT (9) #define FSMC_TCLR_MASK (0xF) #define FSMC_TAR_SHIFT (13) #define FSMC_TAR_MASK (0xF) #define STS 0x04 /* sts register definitions */ #define FSMC_CODE_RDY BIT(15) #define COMM 0x08 /* comm register definitions */ #define FSMC_TSET_SHIFT 0 #define FSMC_TSET_MASK 0xFF #define FSMC_TWAIT_SHIFT 8 #define FSMC_TWAIT_MASK 0xFF #define FSMC_THOLD_SHIFT 16 #define FSMC_THOLD_MASK 0xFF #define FSMC_THIZ_SHIFT 24 #define FSMC_THIZ_MASK 0xFF #define ATTRIB 0x0C #define IOATA 0x10 #define ECC1 0x14 #define ECC2 0x18 #define ECC3 0x1C #define FSMC_NAND_BANK_SZ 0x20 #define FSMC_BUSY_WAIT_TIMEOUT (1 * HZ) /* * According to SPEAr300 Reference Manual (RM0082) * TOUDEL = 7ns (Output delay from the flip-flops to the board) * TINDEL = 5ns (Input delay from the board to the flipflop) */ #define TOUTDEL 7000 #define TINDEL 5000 struct fsmc_nand_timings { u8 tclr; u8 tar; u8 thiz; u8 thold; u8 twait; u8 tset; }; enum access_mode { USE_DMA_ACCESS = 1, USE_WORD_ACCESS, }; /** * struct fsmc_nand_data - structure for FSMC NAND device state * * @base: Inherit from the nand_controller struct * @pid: Part ID on the AMBA PrimeCell format * @nand: Chip related info for a NAND flash. * * @bank: Bank number for probed device. * @dev: Parent device * @mode: Access mode * @clk: Clock structure for FSMC. * * @read_dma_chan: DMA channel for read access * @write_dma_chan: DMA channel for write access to NAND * @dma_access_complete: Completion structure * * @dev_timings: NAND timings * * @data_pa: NAND Physical port for Data. * @data_va: NAND port for Data. * @cmd_va: NAND port for Command. * @addr_va: NAND port for Address. * @regs_va: Registers base address for a given bank. */ struct fsmc_nand_data { struct nand_controller base; u32 pid; struct nand_chip nand; unsigned int bank; struct device *dev; enum access_mode mode; struct clk *clk; /* DMA related objects */ struct dma_chan *read_dma_chan; struct dma_chan *write_dma_chan; struct completion dma_access_complete; struct fsmc_nand_timings *dev_timings; dma_addr_t data_pa; void __iomem *data_va; void __iomem *cmd_va; void __iomem *addr_va; void __iomem *regs_va; }; static int fsmc_ecc1_ooblayout_ecc(struct mtd_info *mtd, int section, struct mtd_oob_region *oobregion) { struct nand_chip *chip = mtd_to_nand(mtd); if (section >= chip->ecc.steps) return -ERANGE; oobregion->offset = (section * 16) + 2; oobregion->length = 3; return 0; } static int fsmc_ecc1_ooblayout_free(struct mtd_info *mtd, int section, struct mtd_oob_region *oobregion) { struct nand_chip *chip = mtd_to_nand(mtd); if (section >= chip->ecc.steps) return -ERANGE; oobregion->offset = (section * 16) + 8; if (section < chip->ecc.steps - 1) oobregion->length = 8; else oobregion->length = mtd->oobsize - oobregion->offset; return 0; } static const struct mtd_ooblayout_ops fsmc_ecc1_ooblayout_ops = { .ecc = fsmc_ecc1_ooblayout_ecc, .free = fsmc_ecc1_ooblayout_free, }; /* * ECC placement definitions in oobfree type format. * There are 13 bytes of ecc for every 512 byte block and it has to be read * consecutively and immediately after the 512 byte data block for hardware to * generate the error bit offsets in 512 byte data. */ static int fsmc_ecc4_ooblayout_ecc(struct mtd_info *mtd, int section, struct mtd_oob_region *oobregion) { struct nand_chip *chip = mtd_to_nand(mtd); if (section >= chip->ecc.steps) return -ERANGE; oobregion->length = chip->ecc.bytes; if (!section && mtd->writesize <= 512) oobregion->offset = 0; else oobregion->offset = (section * 16) + 2; return 0; } static int fsmc_ecc4_ooblayout_free(struct mtd_info *mtd, int section, struct mtd_oob_region *oobregion) { struct nand_chip *chip = mtd_to_nand(mtd); if (section >= chip->ecc.steps) return -ERANGE; oobregion->offset = (section * 16) + 15; if (section < chip->ecc.steps - 1) oobregion->length = 3; else oobregion->length = mtd->oobsize - oobregion->offset; return 0; } static const struct mtd_ooblayout_ops fsmc_ecc4_ooblayout_ops = { .ecc = fsmc_ecc4_ooblayout_ecc, .free = fsmc_ecc4_ooblayout_free, }; static inline struct fsmc_nand_data *nand_to_fsmc(struct nand_chip *chip) { return container_of(chip, struct fsmc_nand_data, nand); } /* * fsmc_nand_setup - FSMC (Flexible Static Memory Controller) init routine * * This routine initializes timing parameters related to NAND memory access in * FSMC registers */ static void fsmc_nand_setup(struct fsmc_nand_data *host, struct fsmc_nand_timings *tims) { u32 value = FSMC_DEVTYPE_NAND | FSMC_ENABLE | FSMC_WAITON; u32 tclr, tar, thiz, thold, twait, tset; tclr = (tims->tclr & FSMC_TCLR_MASK) << FSMC_TCLR_SHIFT; tar = (tims->tar & FSMC_TAR_MASK) << FSMC_TAR_SHIFT; thiz = (tims->thiz & FSMC_THIZ_MASK) << FSMC_THIZ_SHIFT; thold = (tims->thold & FSMC_THOLD_MASK) << FSMC_THOLD_SHIFT; twait = (tims->twait & FSMC_TWAIT_MASK) << FSMC_TWAIT_SHIFT; tset = (tims->tset & FSMC_TSET_MASK) << FSMC_TSET_SHIFT; if (host->nand.options & NAND_BUSWIDTH_16) value |= FSMC_DEVWID_16; writel_relaxed(value | tclr | tar, host->regs_va + FSMC_PC); writel_relaxed(thiz | thold | twait | tset, host->regs_va + COMM); writel_relaxed(thiz | thold | twait | tset, host->regs_va + ATTRIB); } static int fsmc_calc_timings(struct fsmc_nand_data *host, const struct nand_sdr_timings *sdrt, struct fsmc_nand_timings *tims) { unsigned long hclk = clk_get_rate(host->clk); unsigned long hclkn = NSEC_PER_SEC / hclk; u32 thiz, thold, twait, tset, twait_min; if (sdrt->tRC_min < 30000) return -EOPNOTSUPP; tims->tar = DIV_ROUND_UP(sdrt->tAR_min / 1000, hclkn) - 1; if (tims->tar > FSMC_TAR_MASK) tims->tar = FSMC_TAR_MASK; tims->tclr = DIV_ROUND_UP(sdrt->tCLR_min / 1000, hclkn) - 1; if (tims->tclr > FSMC_TCLR_MASK) tims->tclr = FSMC_TCLR_MASK; thiz = sdrt->tCS_min - sdrt->tWP_min; tims->thiz = DIV_ROUND_UP(thiz / 1000, hclkn); thold = sdrt->tDH_min; if (thold < sdrt->tCH_min) thold = sdrt->tCH_min; if (thold < sdrt->tCLH_min) thold = sdrt->tCLH_min; if (thold < sdrt->tWH_min) thold = sdrt->tWH_min; if (thold < sdrt->tALH_min) thold = sdrt->tALH_min; if (thold < sdrt->tREH_min) thold = sdrt->tREH_min; tims->thold = DIV_ROUND_UP(thold / 1000, hclkn); if (tims->thold == 0) tims->thold = 1; else if (tims->thold > FSMC_THOLD_MASK) tims->thold = FSMC_THOLD_MASK; tset = max(sdrt->tCS_min - sdrt->tWP_min, sdrt->tCEA_max - sdrt->tREA_max); tims->tset = DIV_ROUND_UP(tset / 1000, hclkn) - 1; if (tims->tset == 0) tims->tset = 1; else if (tims->tset > FSMC_TSET_MASK) tims->tset = FSMC_TSET_MASK; /* * According to SPEAr300 Reference Manual (RM0082) which gives more * information related to FSMSC timings than the SPEAr600 one (RM0305), * twait >= tCEA - (tset * TCLK) + TOUTDEL + TINDEL */ twait_min = sdrt->tCEA_max - ((tims->tset + 1) * hclkn * 1000) + TOUTDEL + TINDEL; twait = max3(sdrt->tRP_min, sdrt->tWP_min, twait_min); tims->twait = DIV_ROUND_UP(twait / 1000, hclkn) - 1; if (tims->twait == 0) tims->twait = 1; else if (tims->twait > FSMC_TWAIT_MASK) tims->twait = FSMC_TWAIT_MASK; return 0; } static int fsmc_setup_interface(struct nand_chip *nand, int csline, const struct nand_interface_config *conf) { struct fsmc_nand_data *host = nand_to_fsmc(nand); struct fsmc_nand_timings tims; const struct nand_sdr_timings *sdrt; int ret; sdrt = nand_get_sdr_timings(conf); if (IS_ERR(sdrt)) return PTR_ERR(sdrt); ret = fsmc_calc_timings(host, sdrt, &tims); if (ret) return ret; if (csline == NAND_DATA_IFACE_CHECK_ONLY) return 0; fsmc_nand_setup(host, &tims); return 0; } /* * fsmc_enable_hwecc - Enables Hardware ECC through FSMC registers */ static void fsmc_enable_hwecc(struct nand_chip *chip, int mode) { struct fsmc_nand_data *host = nand_to_fsmc(chip); writel_relaxed(readl(host->regs_va + FSMC_PC) & ~FSMC_ECCPLEN_256, host->regs_va + FSMC_PC); writel_relaxed(readl(host->regs_va + FSMC_PC) & ~FSMC_ECCEN, host->regs_va + FSMC_PC); writel_relaxed(readl(host->regs_va + FSMC_PC) | FSMC_ECCEN, host->regs_va + FSMC_PC); } /* * fsmc_read_hwecc_ecc4 - Hardware ECC calculator for ecc4 option supported by * FSMC. ECC is 13 bytes for 512 bytes of data (supports error correction up to * max of 8-bits) */ static int fsmc_read_hwecc_ecc4(struct nand_chip *chip, const u8 *data, u8 *ecc) { struct fsmc_nand_data *host = nand_to_fsmc(chip); u32 ecc_tmp; unsigned long deadline = jiffies + FSMC_BUSY_WAIT_TIMEOUT; do { if (readl_relaxed(host->regs_va + STS) & FSMC_CODE_RDY) break; cond_resched(); } while (!time_after_eq(jiffies, deadline)); if (time_after_eq(jiffies, deadline)) { dev_err(host->dev, "calculate ecc timed out\n"); return -ETIMEDOUT; } ecc_tmp = readl_relaxed(host->regs_va + ECC1); ecc[0] = ecc_tmp; ecc[1] = ecc_tmp >> 8; ecc[2] = ecc_tmp >> 16; ecc[3] = ecc_tmp >> 24; ecc_tmp = readl_relaxed(host->regs_va + ECC2); ecc[4] = ecc_tmp; ecc[5] = ecc_tmp >> 8; ecc[6] = ecc_tmp >> 16; ecc[7] = ecc_tmp >> 24; ecc_tmp = readl_relaxed(host->regs_va + ECC3); ecc[8] = ecc_tmp; ecc[9] = ecc_tmp >> 8; ecc[10] = ecc_tmp >> 16; ecc[11] = ecc_tmp >> 24; ecc_tmp = readl_relaxed(host->regs_va + STS); ecc[12] = ecc_tmp >> 16; return 0; } /* * fsmc_read_hwecc_ecc1 - Hardware ECC calculator for ecc1 option supported by * FSMC. ECC is 3 bytes for 512 bytes of data (supports error correction up to * max of 1-bit) */ static int fsmc_read_hwecc_ecc1(struct nand_chip *chip, const u8 *data, u8 *ecc) { struct fsmc_nand_data *host = nand_to_fsmc(chip); u32 ecc_tmp; ecc_tmp = readl_relaxed(host->regs_va + ECC1); ecc[0] = ecc_tmp; ecc[1] = ecc_tmp >> 8; ecc[2] = ecc_tmp >> 16; return 0; } /* Count the number of 0's in buff upto a max of max_bits */ static int count_written_bits(u8 *buff, int size, int max_bits) { int k, written_bits = 0; for (k = 0; k < size; k++) { written_bits += hweight8(~buff[k]); if (written_bits > max_bits) break; } return written_bits; } static void dma_complete(void *param) { struct fsmc_nand_data *host = param; complete(&host->dma_access_complete); } static int dma_xfer(struct fsmc_nand_data *host, void *buffer, int len, enum dma_data_direction direction) { struct dma_chan *chan; struct dma_device *dma_dev; struct dma_async_tx_descriptor *tx; dma_addr_t dma_dst, dma_src, dma_addr; dma_cookie_t cookie; unsigned long flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT; int ret; unsigned long time_left; if (direction == DMA_TO_DEVICE) chan = host->write_dma_chan; else if (direction == DMA_FROM_DEVICE) chan = host->read_dma_chan; else return -EINVAL; dma_dev = chan->device; dma_addr = dma_map_single(dma_dev->dev, buffer, len, direction); if (direction == DMA_TO_DEVICE) { dma_src = dma_addr; dma_dst = host->data_pa; } else { dma_src = host->data_pa; dma_dst = dma_addr; } tx = dma_dev->device_prep_dma_memcpy(chan, dma_dst, dma_src, len, flags); if (!tx) { dev_err(host->dev, "device_prep_dma_memcpy error\n"); ret = -EIO; goto unmap_dma; } tx->callback = dma_complete; tx->callback_param = host; cookie = tx->tx_submit(tx); ret = dma_submit_error(cookie); if (ret) { dev_err(host->dev, "dma_submit_error %d\n", cookie); goto unmap_dma; } dma_async_issue_pending(chan); time_left = wait_for_completion_timeout(&host->dma_access_complete, msecs_to_jiffies(3000)); if (time_left == 0) { dmaengine_terminate_all(chan); dev_err(host->dev, "wait_for_completion_timeout\n"); ret = -ETIMEDOUT; goto unmap_dma; } ret = 0; unmap_dma: dma_unmap_single(dma_dev->dev, dma_addr, len, direction); return ret; } /* * fsmc_write_buf - write buffer to chip * @host: FSMC NAND controller * @buf: data buffer * @len: number of bytes to write */ static void fsmc_write_buf(struct fsmc_nand_data *host, const u8 *buf, int len) { int i; if (IS_ALIGNED((uintptr_t)buf, sizeof(u32)) && IS_ALIGNED(len, sizeof(u32))) { u32 *p = (u32 *)buf; len = len >> 2; for (i = 0; i < len; i++) writel_relaxed(p[i], host->data_va); } else { for (i = 0; i < len; i++) writeb_relaxed(buf[i], host->data_va); } } /* * fsmc_read_buf - read chip data into buffer * @host: FSMC NAND controller * @buf: buffer to store date * @len: number of bytes to read */ static void fsmc_read_buf(struct fsmc_nand_data *host, u8 *buf, int len) { int i; if (IS_ALIGNED((uintptr_t)buf, sizeof(u32)) && IS_ALIGNED(len, sizeof(u32))) { u32 *p = (u32 *)buf; len = len >> 2; for (i = 0; i < len; i++) p[i] = readl_relaxed(host->data_va); } else { for (i = 0; i < len; i++) buf[i] = readb_relaxed(host->data_va); } } /* * fsmc_read_buf_dma - read chip data into buffer * @host: FSMC NAND controller * @buf: buffer to store date * @len: number of bytes to read */ static void fsmc_read_buf_dma(struct fsmc_nand_data *host, u8 *buf, int len) { dma_xfer(host, buf, len, DMA_FROM_DEVICE); } /* * fsmc_write_buf_dma - write buffer to chip * @host: FSMC NAND controller * @buf: data buffer * @len: number of bytes to write */ static void fsmc_write_buf_dma(struct fsmc_nand_data *host, const u8 *buf, int len) { dma_xfer(host, (void *)buf, len, DMA_TO_DEVICE); } /* * fsmc_exec_op - hook called by the core to execute NAND operations * * This controller is simple enough and thus does not need to use the parser * provided by the core, instead, handle every situation here. */ static int fsmc_exec_op(struct nand_chip *chip, const struct nand_operation *op, bool check_only) { struct fsmc_nand_data *host = nand_to_fsmc(chip); const struct nand_op_instr *instr = NULL; int ret = 0; unsigned int op_id; int i; if (check_only) return 0; pr_debug("Executing operation [%d instructions]:\n", op->ninstrs); for (op_id = 0; op_id < op->ninstrs; op_id++) { instr = &op->instrs[op_id]; nand_op_trace(" ", instr); switch (instr->type) { case NAND_OP_CMD_INSTR: writeb_relaxed(instr->ctx.cmd.opcode, host->cmd_va); break; case NAND_OP_ADDR_INSTR: for (i = 0; i < instr->ctx.addr.naddrs; i++) writeb_relaxed(instr->ctx.addr.addrs[i], host->addr_va); break; case NAND_OP_DATA_IN_INSTR: if (host->mode == USE_DMA_ACCESS) fsmc_read_buf_dma(host, instr->ctx.data.buf.in, instr->ctx.data.len); else fsmc_read_buf(host, instr->ctx.data.buf.in, instr->ctx.data.len); break; case NAND_OP_DATA_OUT_INSTR: if (host->mode == USE_DMA_ACCESS) fsmc_write_buf_dma(host, instr->ctx.data.buf.out, instr->ctx.data.len); else fsmc_write_buf(host, instr->ctx.data.buf.out, instr->ctx.data.len); break; case NAND_OP_WAITRDY_INSTR: ret = nand_soft_waitrdy(chip, instr->ctx.waitrdy.timeout_ms); break; } if (instr->delay_ns) ndelay(instr->delay_ns); } return ret; } /* * fsmc_read_page_hwecc * @chip: nand chip info structure * @buf: buffer to store read data * @oob_required: caller expects OOB data read to chip->oob_poi * @page: page number to read * * This routine is needed for fsmc version 8 as reading from NAND chip has to be * performed in a strict sequence as follows: * data(512 byte) -> ecc(13 byte) * After this read, fsmc hardware generates and reports error data bits(up to a * max of 8 bits) */ static int fsmc_read_page_hwecc(struct nand_chip *chip, u8 *buf, int oob_required, int page) { struct mtd_info *mtd = nand_to_mtd(chip); int i, j, s, stat, eccsize = chip->ecc.size; int eccbytes = chip->ecc.bytes; int eccsteps = chip->ecc.steps; u8 *p = buf; u8 *ecc_calc = chip->ecc.calc_buf; u8 *ecc_code = chip->ecc.code_buf; int off, len, ret, group = 0; /* * ecc_oob is intentionally taken as u16. In 16bit devices, we * end up reading 14 bytes (7 words) from oob. The local array is * to maintain word alignment */ u16 ecc_oob[7]; u8 *oob = (u8 *)&ecc_oob[0]; unsigned int max_bitflips = 0; for (i = 0, s = 0; s < eccsteps; s++, i += eccbytes, p += eccsize) { nand_read_page_op(chip, page, s * eccsize, NULL, 0); chip->ecc.hwctl(chip, NAND_ECC_READ); ret = nand_read_data_op(chip, p, eccsize, false, false); if (ret) return ret; for (j = 0; j < eccbytes;) { struct mtd_oob_region oobregion; ret = mtd_ooblayout_ecc(mtd, group++, &oobregion); if (ret) return ret; off = oobregion.offset; len = oobregion.length; /* * length is intentionally kept a higher multiple of 2 * to read at least 13 bytes even in case of 16 bit NAND * devices */ if (chip->options & NAND_BUSWIDTH_16) len = roundup(len, 2); nand_read_oob_op(chip, page, off, oob + j, len); j += len; } memcpy(&ecc_code[i], oob, chip->ecc.bytes); chip->ecc.calculate(chip, p, &ecc_calc[i]); stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]); if (stat < 0) { mtd->ecc_stats.failed++; } else { mtd->ecc_stats.corrected += stat; max_bitflips = max_t(unsigned int, max_bitflips, stat); } } return max_bitflips; } /* * fsmc_bch8_correct_data * @mtd: mtd info structure * @dat: buffer of read data * @read_ecc: ecc read from device spare area * @calc_ecc: ecc calculated from read data * * calc_ecc is a 104 bit information containing maximum of 8 error * offset information of 13 bits each in 512 bytes of read data. */ static int fsmc_bch8_correct_data(struct nand_chip *chip, u8 *dat, u8 *read_ecc, u8 *calc_ecc) { struct fsmc_nand_data *host = nand_to_fsmc(chip); u32 err_idx[8]; u32 num_err, i; u32 ecc1, ecc2, ecc3, ecc4; num_err = (readl_relaxed(host->regs_va + STS) >> 10) & 0xF; /* no bit flipping */ if (likely(num_err == 0)) return 0; /* too many errors */ if (unlikely(num_err > 8)) { /* * This is a temporary erase check. A newly erased page read * would result in an ecc error because the oob data is also * erased to FF and the calculated ecc for an FF data is not * FF..FF. * This is a workaround to skip performing correction in case * data is FF..FF * * Logic: * For every page, each bit written as 0 is counted until these * number of bits are greater than 8 (the maximum correction * capability of FSMC for each 512 + 13 bytes) */ int bits_ecc = count_written_bits(read_ecc, chip->ecc.bytes, 8); int bits_data = count_written_bits(dat, chip->ecc.size, 8); if ((bits_ecc + bits_data) <= 8) { if (bits_data) memset(dat, 0xff, chip->ecc.size); return bits_data; } return -EBADMSG; } /* * ------------------- calc_ecc[] bit wise -----------|--13 bits--| * |---idx[7]--|--.....-----|---idx[2]--||---idx[1]--||---idx[0]--| * * calc_ecc is a 104 bit information containing maximum of 8 error * offset information of 13 bits each. calc_ecc is copied into a * u64 array and error offset indexes are populated in err_idx * array */ ecc1 = readl_relaxed(host->regs_va + ECC1); ecc2 = readl_relaxed(host->regs_va + ECC2); ecc3 = readl_relaxed(host->regs_va + ECC3); ecc4 = readl_relaxed(host->regs_va + STS); err_idx[0] = (ecc1 >> 0) & 0x1FFF; err_idx[1] = (ecc1 >> 13) & 0x1FFF; err_idx[2] = (((ecc2 >> 0) & 0x7F) << 6) | ((ecc1 >> 26) & 0x3F); err_idx[3] = (ecc2 >> 7) & 0x1FFF; err_idx[4] = (((ecc3 >> 0) & 0x1) << 12) | ((ecc2 >> 20) & 0xFFF); err_idx[5] = (ecc3 >> 1) & 0x1FFF; err_idx[6] = (ecc3 >> 14) & 0x1FFF; err_idx[7] = (((ecc4 >> 16) & 0xFF) << 5) | ((ecc3 >> 27) & 0x1F); i = 0; while (num_err--) { err_idx[i] ^= 3; if (err_idx[i] < chip->ecc.size * 8) { int err = err_idx[i]; dat[err >> 3] ^= BIT(err & 7); i++; } } return i; } static bool filter(struct dma_chan *chan, void *slave) { chan->private = slave; return true; } static int fsmc_nand_probe_config_dt(struct platform_device *pdev, struct fsmc_nand_data *host, struct nand_chip *nand) { struct device_node *np = pdev->dev.of_node; u32 val; int ret; nand->options = 0; if (!of_property_read_u32(np, "bank-width", &val)) { if (val == 2) { nand->options |= NAND_BUSWIDTH_16; } else if (val != 1) { dev_err(&pdev->dev, "invalid bank-width %u\n", val); return -EINVAL; } } if (of_get_property(np, "nand-skip-bbtscan", NULL)) nand->options |= NAND_SKIP_BBTSCAN; host->dev_timings = devm_kzalloc(&pdev->dev, sizeof(*host->dev_timings), GFP_KERNEL); if (!host->dev_timings) return -ENOMEM; ret = of_property_read_u8_array(np, "timings", (u8 *)host->dev_timings, sizeof(*host->dev_timings)); if (ret) host->dev_timings = NULL; /* Set default NAND bank to 0 */ host->bank = 0; if (!of_property_read_u32(np, "bank", &val)) { if (val > 3) { dev_err(&pdev->dev, "invalid bank %u\n", val); return -EINVAL; } host->bank = val; } return 0; } static int fsmc_nand_attach_chip(struct nand_chip *nand) { struct mtd_info *mtd = nand_to_mtd(nand); struct fsmc_nand_data *host = nand_to_fsmc(nand); if (nand->ecc.engine_type == NAND_ECC_ENGINE_TYPE_INVALID) nand->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; if (!nand->ecc.size) nand->ecc.size = 512; if (AMBA_REV_BITS(host->pid) >= 8) { nand->ecc.read_page = fsmc_read_page_hwecc; nand->ecc.calculate = fsmc_read_hwecc_ecc4; nand->ecc.correct = fsmc_bch8_correct_data; nand->ecc.bytes = 13; nand->ecc.strength = 8; } if (AMBA_REV_BITS(host->pid) >= 8) { switch (mtd->oobsize) { case 16: case 64: case 128: case 224: case 256: break; default: dev_warn(host->dev, "No oob scheme defined for oobsize %d\n", mtd->oobsize); return -EINVAL; } mtd_set_ooblayout(mtd, &fsmc_ecc4_ooblayout_ops); return 0; } switch (nand->ecc.engine_type) { case NAND_ECC_ENGINE_TYPE_ON_HOST: dev_info(host->dev, "Using 1-bit HW ECC scheme\n"); nand->ecc.calculate = fsmc_read_hwecc_ecc1; nand->ecc.correct = nand_correct_data; nand->ecc.hwctl = fsmc_enable_hwecc; nand->ecc.bytes = 3; nand->ecc.strength = 1; nand->ecc.options |= NAND_ECC_SOFT_HAMMING_SM_ORDER; break; case NAND_ECC_ENGINE_TYPE_SOFT: if (nand->ecc.algo == NAND_ECC_ALGO_BCH) { dev_info(host->dev, "Using 4-bit SW BCH ECC scheme\n"); break; } case NAND_ECC_ENGINE_TYPE_ON_DIE: break; default: dev_err(host->dev, "Unsupported ECC mode!\n"); return -ENOTSUPP; } /* * Don't set layout for BCH4 SW ECC. This will be * generated later in nand_bch_init() later. */ if (nand->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST) { switch (mtd->oobsize) { case 16: case 64: case 128: mtd_set_ooblayout(mtd, &fsmc_ecc1_ooblayout_ops); break; default: dev_warn(host->dev, "No oob scheme defined for oobsize %d\n", mtd->oobsize); return -EINVAL; } } return 0; } static const struct nand_controller_ops fsmc_nand_controller_ops = { .attach_chip = fsmc_nand_attach_chip, .exec_op = fsmc_exec_op, .setup_interface = fsmc_setup_interface, }; /** * fsmc_nand_disable() - Disables the NAND bank * @host: The instance to disable */ static void fsmc_nand_disable(struct fsmc_nand_data *host) { u32 val; val = readl(host->regs_va + FSMC_PC); val &= ~FSMC_ENABLE; writel(val, host->regs_va + FSMC_PC); } /* * fsmc_nand_probe - Probe function * @pdev: platform device structure */ static int __init fsmc_nand_probe(struct platform_device *pdev) { struct fsmc_nand_data *host; struct mtd_info *mtd; struct nand_chip *nand; struct resource *res; void __iomem *base; dma_cap_mask_t mask; int ret = 0; u32 pid; int i; /* Allocate memory for the device structure (and zero it) */ host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL); if (!host) return -ENOMEM; nand = &host->nand; ret = fsmc_nand_probe_config_dt(pdev, host, nand); if (ret) return ret; res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_data"); host->data_va = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(host->data_va)) return PTR_ERR(host->data_va); host->data_pa = (dma_addr_t)res->start; res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_addr"); host->addr_va = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(host->addr_va)) return PTR_ERR(host->addr_va); res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_cmd"); host->cmd_va = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(host->cmd_va)) return PTR_ERR(host->cmd_va); res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fsmc_regs"); base = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(base)) return PTR_ERR(base); host->regs_va = base + FSMC_NOR_REG_SIZE + (host->bank * FSMC_NAND_BANK_SZ); host->clk = devm_clk_get(&pdev->dev, NULL); if (IS_ERR(host->clk)) { dev_err(&pdev->dev, "failed to fetch block clock\n"); return PTR_ERR(host->clk); } ret = clk_prepare_enable(host->clk); if (ret) return ret; /* * This device ID is actually a common AMBA ID as used on the * AMBA PrimeCell bus. However it is not a PrimeCell. */ for (pid = 0, i = 0; i < 4; i++) pid |= (readl(base + resource_size(res) - 0x20 + 4 * i) & 255) << (i * 8); host->pid = pid; dev_info(&pdev->dev, "FSMC device partno %03x, manufacturer %02x, revision %02x, config %02x\n", AMBA_PART_BITS(pid), AMBA_MANF_BITS(pid), AMBA_REV_BITS(pid), AMBA_CONFIG_BITS(pid)); host->dev = &pdev->dev; if (host->mode == USE_DMA_ACCESS) init_completion(&host->dma_access_complete); /* Link all private pointers */ mtd = nand_to_mtd(&host->nand); nand_set_flash_node(nand, pdev->dev.of_node); mtd->dev.parent = &pdev->dev; nand->badblockbits = 7; if (host->mode == USE_DMA_ACCESS) { dma_cap_zero(mask); dma_cap_set(DMA_MEMCPY, mask); host->read_dma_chan = dma_request_channel(mask, filter, NULL); if (!host->read_dma_chan) { dev_err(&pdev->dev, "Unable to get read dma channel\n"); ret = -ENODEV; goto disable_clk; } host->write_dma_chan = dma_request_channel(mask, filter, NULL); if (!host->write_dma_chan) { dev_err(&pdev->dev, "Unable to get write dma channel\n"); ret = -ENODEV; goto release_dma_read_chan; } } if (host->dev_timings) { fsmc_nand_setup(host, host->dev_timings); nand->options |= NAND_KEEP_TIMINGS; } nand_controller_init(&host->base); host->base.ops = &fsmc_nand_controller_ops; nand->controller = &host->base; /* * Scan to find existence of the device */ ret = nand_scan(nand, 1); if (ret) goto release_dma_write_chan; mtd->name = "nand"; ret = mtd_device_register(mtd, NULL, 0); if (ret) goto cleanup_nand; platform_set_drvdata(pdev, host); dev_info(&pdev->dev, "FSMC NAND driver registration successful\n"); return 0; cleanup_nand: nand_cleanup(nand); release_dma_write_chan: if (host->mode == USE_DMA_ACCESS) dma_release_channel(host->write_dma_chan); release_dma_read_chan: if (host->mode == USE_DMA_ACCESS) dma_release_channel(host->read_dma_chan); disable_clk: fsmc_nand_disable(host); clk_disable_unprepare(host->clk); return ret; } /* * Clean up routine */ static int fsmc_nand_remove(struct platform_device *pdev) { struct fsmc_nand_data *host = platform_get_drvdata(pdev); if (host) { struct nand_chip *chip = &host->nand; int ret; ret = mtd_device_unregister(nand_to_mtd(chip)); WARN_ON(ret); nand_cleanup(chip); fsmc_nand_disable(host); if (host->mode == USE_DMA_ACCESS) { dma_release_channel(host->write_dma_chan); dma_release_channel(host->read_dma_chan); } clk_disable_unprepare(host->clk); } return 0; } #ifdef CONFIG_PM_SLEEP static int fsmc_nand_suspend(struct device *dev) { struct fsmc_nand_data *host = dev_get_drvdata(dev); if (host) clk_disable_unprepare(host->clk); return 0; } static int fsmc_nand_resume(struct device *dev) { struct fsmc_nand_data *host = dev_get_drvdata(dev); int ret; if (host) { ret = clk_prepare_enable(host->clk); if (ret) { dev_err(dev, "failed to enable clk\n"); return ret; } if (host->dev_timings) fsmc_nand_setup(host, host->dev_timings); nand_reset(&host->nand, 0); } return 0; } #endif static SIMPLE_DEV_PM_OPS(fsmc_nand_pm_ops, fsmc_nand_suspend, fsmc_nand_resume); static const struct of_device_id fsmc_nand_id_table[] = { { .compatible = "st,spear600-fsmc-nand" }, { .compatible = "stericsson,fsmc-nand" }, {} }; MODULE_DEVICE_TABLE(of, fsmc_nand_id_table); static struct platform_driver fsmc_nand_driver = { .remove = fsmc_nand_remove, .driver = { .name = "fsmc-nand", .of_match_table = fsmc_nand_id_table, .pm = &fsmc_nand_pm_ops, }, }; module_platform_driver_probe(fsmc_nand_driver, fsmc_nand_probe); MODULE_LICENSE("GPL v2"); MODULE_AUTHOR("Vipin Kumar , Ashish Priyadarshi"); MODULE_DESCRIPTION("NAND driver for SPEAr Platforms");