/* * Linux ARCnet driver - device-independent routines * * Written 1997 by David Woodhouse. * Written 1994-1999 by Avery Pennarun. * Written 1999-2000 by Martin Mares . * Derived from skeleton.c by Donald Becker. * * Special thanks to Contemporary Controls, Inc. (www.ccontrols.com) * for sponsoring the further development of this driver. * * ********************** * * The original copyright was as follows: * * skeleton.c Written 1993 by Donald Becker. * Copyright 1993 United States Government as represented by the * Director, National Security Agency. This software may only be used * and distributed according to the terms of the GNU General Public License as * modified by SRC, incorporated herein by reference. * * ********************** * * The change log is now in a file called ChangeLog in this directory. * * Sources: * - Crynwr arcnet.com/arcether.com packet drivers. * - arcnet.c v0.00 dated 1/1/94 and apparently by * Donald Becker - it didn't work :) * - skeleton.c v0.05 dated 11/16/93 by Donald Becker * (from Linux Kernel 1.1.45) * - RFC's 1201 and 1051 - re: TCP/IP over ARCnet * - The official ARCnet COM9026 data sheets (!) thanks to * Ken Cornetet * - The official ARCnet COM20020 data sheets. * - Information on some more obscure ARCnet controller chips, thanks * to the nice people at SMSC. * - net/inet/eth.c (from kernel 1.1.50) for header-building info. * - Alternate Linux ARCnet source by V.Shergin * - Textual information and more alternate source from Joachim Koenig * */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include #include #include #include "arcdevice.h" #include "com9026.h" /* "do nothing" functions for protocol drivers */ static void null_rx(struct net_device *dev, int bufnum, struct archdr *pkthdr, int length); static int null_build_header(struct sk_buff *skb, struct net_device *dev, unsigned short type, uint8_t daddr); static int null_prepare_tx(struct net_device *dev, struct archdr *pkt, int length, int bufnum); static void arcnet_rx(struct net_device *dev, int bufnum); /* one ArcProto per possible proto ID. None of the elements of * arc_proto_map are allowed to be NULL; they will get set to * arc_proto_default instead. It also must not be NULL; if you would like * to set it to NULL, set it to &arc_proto_null instead. */ struct ArcProto *arc_proto_map[256]; EXPORT_SYMBOL(arc_proto_map); struct ArcProto *arc_proto_default; EXPORT_SYMBOL(arc_proto_default); struct ArcProto *arc_bcast_proto; EXPORT_SYMBOL(arc_bcast_proto); struct ArcProto *arc_raw_proto; EXPORT_SYMBOL(arc_raw_proto); static struct ArcProto arc_proto_null = { .suffix = '?', .mtu = XMTU, .is_ip = 0, .rx = null_rx, .build_header = null_build_header, .prepare_tx = null_prepare_tx, .continue_tx = NULL, .ack_tx = NULL }; /* Exported function prototypes */ int arcnet_debug = ARCNET_DEBUG; EXPORT_SYMBOL(arcnet_debug); /* Internal function prototypes */ static int arcnet_header(struct sk_buff *skb, struct net_device *dev, unsigned short type, const void *daddr, const void *saddr, unsigned len); static int go_tx(struct net_device *dev); static int debug = ARCNET_DEBUG; module_param(debug, int, 0); MODULE_LICENSE("GPL"); static int __init arcnet_init(void) { int count; arcnet_debug = debug; pr_info("arcnet loaded\n"); /* initialize the protocol map */ arc_raw_proto = arc_proto_default = arc_bcast_proto = &arc_proto_null; for (count = 0; count < 256; count++) arc_proto_map[count] = arc_proto_default; if (BUGLVL(D_DURING)) pr_info("struct sizes: %zd %zd %zd %zd %zd\n", sizeof(struct arc_hardware), sizeof(struct arc_rfc1201), sizeof(struct arc_rfc1051), sizeof(struct arc_eth_encap), sizeof(struct archdr)); return 0; } static void __exit arcnet_exit(void) { } module_init(arcnet_init); module_exit(arcnet_exit); /* Dump the contents of an sk_buff */ #if ARCNET_DEBUG_MAX & D_SKB void arcnet_dump_skb(struct net_device *dev, struct sk_buff *skb, char *desc) { char hdr[32]; /* dump the packet */ snprintf(hdr, sizeof(hdr), "%6s:%s skb->data:", dev->name, desc); print_hex_dump(KERN_DEBUG, hdr, DUMP_PREFIX_OFFSET, 16, 1, skb->data, skb->len, true); } EXPORT_SYMBOL(arcnet_dump_skb); #endif /* Dump the contents of an ARCnet buffer */ #if (ARCNET_DEBUG_MAX & (D_RX | D_TX)) static void arcnet_dump_packet(struct net_device *dev, int bufnum, char *desc, int take_arcnet_lock) { struct arcnet_local *lp = netdev_priv(dev); int i, length; unsigned long flags = 0; static uint8_t buf[512]; char hdr[32]; /* hw.copy_from_card expects IRQ context so take the IRQ lock * to keep it single threaded */ if (take_arcnet_lock) spin_lock_irqsave(&lp->lock, flags); lp->hw.copy_from_card(dev, bufnum, 0, buf, 512); if (take_arcnet_lock) spin_unlock_irqrestore(&lp->lock, flags); /* if the offset[0] byte is nonzero, this is a 256-byte packet */ length = (buf[2] ? 256 : 512); /* dump the packet */ snprintf(hdr, sizeof(hdr), "%6s:%s packet dump:", dev->name, desc); print_hex_dump(KERN_DEBUG, hdr, DUMP_PREFIX_OFFSET, 16, 1, buf, length, true); } #else #define arcnet_dump_packet(dev, bufnum, desc, take_arcnet_lock) do { } while (0) #endif /* Trigger a LED event in response to a ARCNET device event */ void arcnet_led_event(struct net_device *dev, enum arcnet_led_event event) { struct arcnet_local *lp = netdev_priv(dev); unsigned long led_delay = 350; unsigned long tx_delay = 50; switch (event) { case ARCNET_LED_EVENT_RECON: led_trigger_blink_oneshot(lp->recon_led_trig, &led_delay, &led_delay, 0); break; case ARCNET_LED_EVENT_OPEN: led_trigger_event(lp->tx_led_trig, LED_OFF); led_trigger_event(lp->recon_led_trig, LED_OFF); break; case ARCNET_LED_EVENT_STOP: led_trigger_event(lp->tx_led_trig, LED_OFF); led_trigger_event(lp->recon_led_trig, LED_OFF); break; case ARCNET_LED_EVENT_TX: led_trigger_blink_oneshot(lp->tx_led_trig, &tx_delay, &tx_delay, 0); break; } } EXPORT_SYMBOL_GPL(arcnet_led_event); static void arcnet_led_release(struct device *gendev, void *res) { struct arcnet_local *lp = netdev_priv(to_net_dev(gendev)); led_trigger_unregister_simple(lp->tx_led_trig); led_trigger_unregister_simple(lp->recon_led_trig); } /* Register ARCNET LED triggers for a arcnet device * * This is normally called from a driver's probe function */ void devm_arcnet_led_init(struct net_device *netdev, int index, int subid) { struct arcnet_local *lp = netdev_priv(netdev); void *res; res = devres_alloc(arcnet_led_release, 0, GFP_KERNEL); if (!res) { netdev_err(netdev, "cannot register LED triggers\n"); return; } snprintf(lp->tx_led_trig_name, sizeof(lp->tx_led_trig_name), "arc%d-%d-tx", index, subid); snprintf(lp->recon_led_trig_name, sizeof(lp->recon_led_trig_name), "arc%d-%d-recon", index, subid); led_trigger_register_simple(lp->tx_led_trig_name, &lp->tx_led_trig); led_trigger_register_simple(lp->recon_led_trig_name, &lp->recon_led_trig); devres_add(&netdev->dev, res); } EXPORT_SYMBOL_GPL(devm_arcnet_led_init); /* Unregister a protocol driver from the arc_proto_map. Protocol drivers * are responsible for registering themselves, but the unregister routine * is pretty generic so we'll do it here. */ void arcnet_unregister_proto(struct ArcProto *proto) { int count; if (arc_proto_default == proto) arc_proto_default = &arc_proto_null; if (arc_bcast_proto == proto) arc_bcast_proto = arc_proto_default; if (arc_raw_proto == proto) arc_raw_proto = arc_proto_default; for (count = 0; count < 256; count++) { if (arc_proto_map[count] == proto) arc_proto_map[count] = arc_proto_default; } } EXPORT_SYMBOL(arcnet_unregister_proto); /* Add a buffer to the queue. Only the interrupt handler is allowed to do * this, unless interrupts are disabled. * * Note: we don't check for a full queue, since there aren't enough buffers * to more than fill it. */ static void release_arcbuf(struct net_device *dev, int bufnum) { struct arcnet_local *lp = netdev_priv(dev); int i; lp->buf_queue[lp->first_free_buf++] = bufnum; lp->first_free_buf %= 5; if (BUGLVL(D_DURING)) { arc_printk(D_DURING, dev, "release_arcbuf: freed #%d; buffer queue is now: ", bufnum); for (i = lp->next_buf; i != lp->first_free_buf; i = (i + 1) % 5) arc_cont(D_DURING, "#%d ", lp->buf_queue[i]); arc_cont(D_DURING, "\n"); } } /* Get a buffer from the queue. * If this returns -1, there are no buffers available. */ static int get_arcbuf(struct net_device *dev) { struct arcnet_local *lp = netdev_priv(dev); int buf = -1, i; if (!atomic_dec_and_test(&lp->buf_lock)) { /* already in this function */ arc_printk(D_NORMAL, dev, "get_arcbuf: overlap (%d)!\n", lp->buf_lock.counter); } else { /* we can continue */ if (lp->next_buf >= 5) lp->next_buf -= 5; if (lp->next_buf == lp->first_free_buf) { arc_printk(D_NORMAL, dev, "get_arcbuf: BUG: no buffers are available??\n"); } else { buf = lp->buf_queue[lp->next_buf++]; lp->next_buf %= 5; } } if (BUGLVL(D_DURING)) { arc_printk(D_DURING, dev, "get_arcbuf: got #%d; buffer queue is now: ", buf); for (i = lp->next_buf; i != lp->first_free_buf; i = (i + 1) % 5) arc_cont(D_DURING, "#%d ", lp->buf_queue[i]); arc_cont(D_DURING, "\n"); } atomic_inc(&lp->buf_lock); return buf; } static int choose_mtu(void) { int count, mtu = 65535; /* choose the smallest MTU of all available encaps */ for (count = 0; count < 256; count++) { if (arc_proto_map[count] != &arc_proto_null && arc_proto_map[count]->mtu < mtu) { mtu = arc_proto_map[count]->mtu; } } return mtu == 65535 ? XMTU : mtu; } static const struct header_ops arcnet_header_ops = { .create = arcnet_header, }; static const struct net_device_ops arcnet_netdev_ops = { .ndo_open = arcnet_open, .ndo_stop = arcnet_close, .ndo_start_xmit = arcnet_send_packet, .ndo_tx_timeout = arcnet_timeout, }; /* Setup a struct device for ARCnet. */ static void arcdev_setup(struct net_device *dev) { dev->type = ARPHRD_ARCNET; dev->netdev_ops = &arcnet_netdev_ops; dev->header_ops = &arcnet_header_ops; dev->hard_header_len = sizeof(struct arc_hardware); dev->mtu = choose_mtu(); dev->addr_len = ARCNET_ALEN; dev->tx_queue_len = 100; dev->broadcast[0] = 0x00; /* for us, broadcasts are address 0 */ dev->watchdog_timeo = TX_TIMEOUT; /* New-style flags. */ dev->flags = IFF_BROADCAST; } static void arcnet_timer(struct timer_list *t) { struct arcnet_local *lp = from_timer(lp, t, timer); struct net_device *dev = lp->dev; spin_lock_irq(&lp->lock); if (!lp->reset_in_progress && !netif_carrier_ok(dev)) { netif_carrier_on(dev); netdev_info(dev, "link up\n"); } spin_unlock_irq(&lp->lock); } static void reset_device_work(struct work_struct *work) { struct arcnet_local *lp; struct net_device *dev; lp = container_of(work, struct arcnet_local, reset_work); dev = lp->dev; /* Do not bring the network interface back up if an ifdown * was already done. */ if (!netif_running(dev) || !lp->reset_in_progress) return; rtnl_lock(); /* Do another check, in case of an ifdown that was triggered in * the small race window between the exit condition above and * acquiring RTNL. */ if (!netif_running(dev) || !lp->reset_in_progress) goto out; dev_close(dev); dev_open(dev, NULL); out: rtnl_unlock(); } static void arcnet_reply_tasklet(unsigned long data) { struct arcnet_local *lp = (struct arcnet_local *)data; struct sk_buff *ackskb, *skb; struct sock_exterr_skb *serr; struct sock *sk; int ret; local_irq_disable(); skb = lp->outgoing.skb; if (!skb || !skb->sk) { local_irq_enable(); return; } sock_hold(skb->sk); sk = skb->sk; ackskb = skb_clone_sk(skb); sock_put(skb->sk); if (!ackskb) { local_irq_enable(); return; } serr = SKB_EXT_ERR(ackskb); memset(serr, 0, sizeof(*serr)); serr->ee.ee_errno = ENOMSG; serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS; serr->ee.ee_data = skb_shinfo(skb)->tskey; serr->ee.ee_info = lp->reply_status; /* finally erasing outgoing skb */ dev_kfree_skb(lp->outgoing.skb); lp->outgoing.skb = NULL; ackskb->dev = lp->dev; ret = sock_queue_err_skb(sk, ackskb); if (ret) dev_kfree_skb_irq(ackskb); local_irq_enable(); }; struct net_device *alloc_arcdev(const char *name) { struct net_device *dev; dev = alloc_netdev(sizeof(struct arcnet_local), name && *name ? name : "arc%d", NET_NAME_UNKNOWN, arcdev_setup); if (dev) { struct arcnet_local *lp = netdev_priv(dev); lp->dev = dev; spin_lock_init(&lp->lock); timer_setup(&lp->timer, arcnet_timer, 0); INIT_WORK(&lp->reset_work, reset_device_work); } return dev; } EXPORT_SYMBOL(alloc_arcdev); void free_arcdev(struct net_device *dev) { struct arcnet_local *lp = netdev_priv(dev); /* Do not cancel this at ->ndo_close(), as the workqueue itself * indirectly calls the ifdown path through dev_close(). */ cancel_work_sync(&lp->reset_work); free_netdev(dev); } EXPORT_SYMBOL(free_arcdev); /* Open/initialize the board. This is called sometime after booting when * the 'ifconfig' program is run. * * This routine should set everything up anew at each open, even registers * that "should" only need to be set once at boot, so that there is * non-reboot way to recover if something goes wrong. */ int arcnet_open(struct net_device *dev) { struct arcnet_local *lp = netdev_priv(dev); int count, newmtu, error; arc_printk(D_INIT, dev, "opened."); if (!try_module_get(lp->hw.owner)) return -ENODEV; if (BUGLVL(D_PROTO)) { arc_printk(D_PROTO, dev, "protocol map (default is '%c'): ", arc_proto_default->suffix); for (count = 0; count < 256; count++) arc_cont(D_PROTO, "%c", arc_proto_map[count]->suffix); arc_cont(D_PROTO, "\n"); } tasklet_init(&lp->reply_tasklet, arcnet_reply_tasklet, (unsigned long)lp); arc_printk(D_INIT, dev, "arcnet_open: resetting card.\n"); /* try to put the card in a defined state - if it fails the first * time, actually reset it. */ error = -ENODEV; if (lp->hw.reset(dev, 0) && lp->hw.reset(dev, 1)) goto out_module_put; newmtu = choose_mtu(); if (newmtu < dev->mtu) dev->mtu = newmtu; arc_printk(D_INIT, dev, "arcnet_open: mtu: %d.\n", dev->mtu); /* autodetect the encapsulation for each host. */ memset(lp->default_proto, 0, sizeof(lp->default_proto)); /* the broadcast address is special - use the 'bcast' protocol */ for (count = 0; count < 256; count++) { if (arc_proto_map[count] == arc_bcast_proto) { lp->default_proto[0] = count; break; } } /* initialize buffers */ atomic_set(&lp->buf_lock, 1); lp->next_buf = lp->first_free_buf = 0; release_arcbuf(dev, 0); release_arcbuf(dev, 1); release_arcbuf(dev, 2); release_arcbuf(dev, 3); lp->cur_tx = lp->next_tx = -1; lp->cur_rx = -1; lp->rfc1201.sequence = 1; /* bring up the hardware driver */ if (lp->hw.open) lp->hw.open(dev); if (dev->dev_addr[0] == 0) arc_printk(D_NORMAL, dev, "WARNING! Station address 00 is reserved for broadcasts!\n"); else if (dev->dev_addr[0] == 255) arc_printk(D_NORMAL, dev, "WARNING! Station address FF may confuse DOS networking programs!\n"); arc_printk(D_DEBUG, dev, "%s: %d: %s\n", __FILE__, __LINE__, __func__); if (lp->hw.status(dev) & RESETflag) { arc_printk(D_DEBUG, dev, "%s: %d: %s\n", __FILE__, __LINE__, __func__); lp->hw.command(dev, CFLAGScmd | RESETclear); } arc_printk(D_DEBUG, dev, "%s: %d: %s\n", __FILE__, __LINE__, __func__); /* make sure we're ready to receive IRQ's. */ lp->hw.intmask(dev, 0); udelay(1); /* give it time to set the mask before * we reset it again. (may not even be * necessary) */ arc_printk(D_DEBUG, dev, "%s: %d: %s\n", __FILE__, __LINE__, __func__); lp->intmask = NORXflag | RECONflag; lp->hw.intmask(dev, lp->intmask); arc_printk(D_DEBUG, dev, "%s: %d: %s\n", __FILE__, __LINE__, __func__); netif_carrier_off(dev); netif_start_queue(dev); mod_timer(&lp->timer, jiffies + msecs_to_jiffies(1000)); arcnet_led_event(dev, ARCNET_LED_EVENT_OPEN); return 0; out_module_put: module_put(lp->hw.owner); return error; } EXPORT_SYMBOL(arcnet_open); /* The inverse routine to arcnet_open - shuts down the card. */ int arcnet_close(struct net_device *dev) { struct arcnet_local *lp = netdev_priv(dev); arcnet_led_event(dev, ARCNET_LED_EVENT_STOP); del_timer_sync(&lp->timer); netif_stop_queue(dev); netif_carrier_off(dev); tasklet_kill(&lp->reply_tasklet); /* flush TX and disable RX */ lp->hw.intmask(dev, 0); lp->hw.command(dev, NOTXcmd); /* stop transmit */ lp->hw.command(dev, NORXcmd); /* disable receive */ mdelay(1); /* shut down the card */ lp->hw.close(dev); /* reset counters */ lp->reset_in_progress = 0; module_put(lp->hw.owner); return 0; } EXPORT_SYMBOL(arcnet_close); static int arcnet_header(struct sk_buff *skb, struct net_device *dev, unsigned short type, const void *daddr, const void *saddr, unsigned len) { const struct arcnet_local *lp = netdev_priv(dev); uint8_t _daddr, proto_num; struct ArcProto *proto; arc_printk(D_DURING, dev, "create header from %d to %d; protocol %d (%Xh); size %u.\n", saddr ? *(uint8_t *)saddr : -1, daddr ? *(uint8_t *)daddr : -1, type, type, len); if (skb->len != 0 && len != skb->len) arc_printk(D_NORMAL, dev, "arcnet_header: Yikes! skb->len(%d) != len(%d)!\n", skb->len, len); /* Type is host order - ? */ if (type == ETH_P_ARCNET) { proto = arc_raw_proto; arc_printk(D_DEBUG, dev, "arc_raw_proto used. proto='%c'\n", proto->suffix); _daddr = daddr ? *(uint8_t *)daddr : 0; } else if (!daddr) { /* if the dest addr isn't provided, we can't choose an * encapsulation! Store the packet type (eg. ETH_P_IP) * for now, and we'll push on a real header when we do * rebuild_header. */ *(uint16_t *)skb_push(skb, 2) = type; /* XXX: Why not use skb->mac_len? */ if (skb->network_header - skb->mac_header != 2) arc_printk(D_NORMAL, dev, "arcnet_header: Yikes! diff (%u) is not 2!\n", skb->network_header - skb->mac_header); return -2; /* return error -- can't transmit yet! */ } else { /* otherwise, we can just add the header as usual. */ _daddr = *(uint8_t *)daddr; proto_num = lp->default_proto[_daddr]; proto = arc_proto_map[proto_num]; arc_printk(D_DURING, dev, "building header for %02Xh using protocol '%c'\n", proto_num, proto->suffix); if (proto == &arc_proto_null && arc_bcast_proto != proto) { arc_printk(D_DURING, dev, "actually, let's use '%c' instead.\n", arc_bcast_proto->suffix); proto = arc_bcast_proto; } } return proto->build_header(skb, dev, type, _daddr); } /* Called by the kernel in order to transmit a packet. */ netdev_tx_t arcnet_send_packet(struct sk_buff *skb, struct net_device *dev) { struct arcnet_local *lp = netdev_priv(dev); struct archdr *pkt; struct arc_rfc1201 *soft; struct ArcProto *proto; int txbuf; unsigned long flags; int retval; arc_printk(D_DURING, dev, "transmit requested (status=%Xh, txbufs=%d/%d, len=%d, protocol %x)\n", lp->hw.status(dev), lp->cur_tx, lp->next_tx, skb->len, skb->protocol); pkt = (struct archdr *)skb->data; soft = &pkt->soft.rfc1201; proto = arc_proto_map[soft->proto]; arc_printk(D_SKB_SIZE, dev, "skb: transmitting %d bytes to %02X\n", skb->len, pkt->hard.dest); if (BUGLVL(D_SKB)) arcnet_dump_skb(dev, skb, "tx"); /* fits in one packet? */ if (skb->len - ARC_HDR_SIZE > XMTU && !proto->continue_tx) { arc_printk(D_NORMAL, dev, "fixme: packet too large: compensating badly!\n"); dev_kfree_skb(skb); return NETDEV_TX_OK; /* don't try again */ } /* We're busy transmitting a packet... */ netif_stop_queue(dev); spin_lock_irqsave(&lp->lock, flags); lp->hw.intmask(dev, 0); if (lp->next_tx == -1) txbuf = get_arcbuf(dev); else txbuf = -1; if (txbuf != -1) { lp->outgoing.skb = skb; if (proto->prepare_tx(dev, pkt, skb->len, txbuf) && !proto->ack_tx) { /* done right away and we don't want to acknowledge * the package later - forget about it now */ dev->stats.tx_bytes += skb->len; } else { /* do it the 'split' way */ lp->outgoing.proto = proto; lp->outgoing.skb = skb; lp->outgoing.pkt = pkt; if (proto->continue_tx && proto->continue_tx(dev, txbuf)) { arc_printk(D_NORMAL, dev, "bug! continue_tx finished the first time! (proto='%c')\n", proto->suffix); } } retval = NETDEV_TX_OK; lp->next_tx = txbuf; } else { retval = NETDEV_TX_BUSY; } arc_printk(D_DEBUG, dev, "%s: %d: %s, status: %x\n", __FILE__, __LINE__, __func__, lp->hw.status(dev)); /* make sure we didn't ignore a TX IRQ while we were in here */ lp->hw.intmask(dev, 0); arc_printk(D_DEBUG, dev, "%s: %d: %s\n", __FILE__, __LINE__, __func__); lp->intmask |= TXFREEflag | EXCNAKflag; lp->hw.intmask(dev, lp->intmask); arc_printk(D_DEBUG, dev, "%s: %d: %s, status: %x\n", __FILE__, __LINE__, __func__, lp->hw.status(dev)); arcnet_led_event(dev, ARCNET_LED_EVENT_TX); spin_unlock_irqrestore(&lp->lock, flags); return retval; /* no need to try again */ } EXPORT_SYMBOL(arcnet_send_packet); /* Actually start transmitting a packet that was loaded into a buffer * by prepare_tx. This should _only_ be called by the interrupt handler. */ static int go_tx(struct net_device *dev) { struct arcnet_local *lp = netdev_priv(dev); arc_printk(D_DURING, dev, "go_tx: status=%Xh, intmask=%Xh, next_tx=%d, cur_tx=%d\n", lp->hw.status(dev), lp->intmask, lp->next_tx, lp->cur_tx); if (lp->cur_tx != -1 || lp->next_tx == -1) return 0; if (BUGLVL(D_TX)) arcnet_dump_packet(dev, lp->next_tx, "go_tx", 0); lp->cur_tx = lp->next_tx; lp->next_tx = -1; /* start sending */ lp->hw.command(dev, TXcmd | (lp->cur_tx << 3)); dev->stats.tx_packets++; lp->lasttrans_dest = lp->lastload_dest; lp->lastload_dest = 0; lp->excnak_pending = 0; lp->intmask |= TXFREEflag | EXCNAKflag; return 1; } /* Called by the kernel when transmit times out */ void arcnet_timeout(struct net_device *dev, unsigned int txqueue) { unsigned long flags; struct arcnet_local *lp = netdev_priv(dev); int status = lp->hw.status(dev); char *msg; spin_lock_irqsave(&lp->lock, flags); if (status & TXFREEflag) { /* transmit _DID_ finish */ msg = " - missed IRQ?"; } else { msg = ""; dev->stats.tx_aborted_errors++; lp->timed_out = 1; lp->hw.command(dev, NOTXcmd | (lp->cur_tx << 3)); } dev->stats.tx_errors++; /* make sure we didn't miss a TX or a EXC NAK IRQ */ lp->hw.intmask(dev, 0); lp->intmask |= TXFREEflag | EXCNAKflag; lp->hw.intmask(dev, lp->intmask); spin_unlock_irqrestore(&lp->lock, flags); if (time_after(jiffies, lp->last_timeout + 10 * HZ)) { arc_printk(D_EXTRA, dev, "tx timed out%s (status=%Xh, intmask=%Xh, dest=%02Xh)\n", msg, status, lp->intmask, lp->lasttrans_dest); lp->last_timeout = jiffies; } if (lp->cur_tx == -1) netif_wake_queue(dev); } EXPORT_SYMBOL(arcnet_timeout); /* The typical workload of the driver: Handle the network interface * interrupts. Establish which device needs attention, and call the correct * chipset interrupt handler. */ irqreturn_t arcnet_interrupt(int irq, void *dev_id) { struct net_device *dev = dev_id; struct arcnet_local *lp; int recbuf, status, diagstatus, didsomething, boguscount; unsigned long flags; int retval = IRQ_NONE; arc_printk(D_DURING, dev, "\n"); arc_printk(D_DURING, dev, "in arcnet_interrupt\n"); lp = netdev_priv(dev); BUG_ON(!lp); spin_lock_irqsave(&lp->lock, flags); if (lp->reset_in_progress) goto out; /* RESET flag was enabled - if device is not running, we must * clear it right away (but nothing else). */ if (!netif_running(dev)) { if (lp->hw.status(dev) & RESETflag) lp->hw.command(dev, CFLAGScmd | RESETclear); lp->hw.intmask(dev, 0); spin_unlock_irqrestore(&lp->lock, flags); return retval; } arc_printk(D_DURING, dev, "in arcnet_inthandler (status=%Xh, intmask=%Xh)\n", lp->hw.status(dev), lp->intmask); boguscount = 5; do { status = lp->hw.status(dev); diagstatus = (status >> 8) & 0xFF; arc_printk(D_DEBUG, dev, "%s: %d: %s: status=%x\n", __FILE__, __LINE__, __func__, status); didsomething = 0; /* RESET flag was enabled - card is resetting and if RX is * disabled, it's NOT because we just got a packet. * * The card is in an undefined state. * Clear it out and start over. */ if (status & RESETflag) { arc_printk(D_NORMAL, dev, "spurious reset (status=%Xh)\n", status); lp->reset_in_progress = 1; netif_stop_queue(dev); netif_carrier_off(dev); schedule_work(&lp->reset_work); /* get out of the interrupt handler! */ goto out; } /* RX is inhibited - we must have received something. * Prepare to receive into the next buffer. * * We don't actually copy the received packet from the card * until after the transmit handler runs (and possibly * launches the next tx); this should improve latency slightly * if we get both types of interrupts at once. */ recbuf = -1; if (status & lp->intmask & NORXflag) { recbuf = lp->cur_rx; arc_printk(D_DURING, dev, "Buffer #%d: receive irq (status=%Xh)\n", recbuf, status); lp->cur_rx = get_arcbuf(dev); if (lp->cur_rx != -1) { arc_printk(D_DURING, dev, "enabling receive to buffer #%d\n", lp->cur_rx); lp->hw.command(dev, RXcmd | (lp->cur_rx << 3) | RXbcasts); } didsomething++; } if ((diagstatus & EXCNAKflag)) { arc_printk(D_DURING, dev, "EXCNAK IRQ (diagstat=%Xh)\n", diagstatus); lp->hw.command(dev, NOTXcmd); /* disable transmit */ lp->excnak_pending = 1; lp->hw.command(dev, EXCNAKclear); lp->intmask &= ~(EXCNAKflag); didsomething++; } /* a transmit finished, and we're interested in it. */ if ((status & lp->intmask & TXFREEflag) || lp->timed_out) { int ackstatus; lp->intmask &= ~(TXFREEflag | EXCNAKflag); if (status & TXACKflag) ackstatus = 2; else if (lp->excnak_pending) ackstatus = 1; else ackstatus = 0; arc_printk(D_DURING, dev, "TX IRQ (stat=%Xh)\n", status); if (lp->cur_tx != -1 && !lp->timed_out) { if (!(status & TXACKflag)) { if (lp->lasttrans_dest != 0) { arc_printk(D_EXTRA, dev, "transmit was not acknowledged! (status=%Xh, dest=%02Xh)\n", status, lp->lasttrans_dest); dev->stats.tx_errors++; dev->stats.tx_carrier_errors++; } else { arc_printk(D_DURING, dev, "broadcast was not acknowledged; that's normal (status=%Xh, dest=%02Xh)\n", status, lp->lasttrans_dest); } } if (lp->outgoing.proto && lp->outgoing.proto->ack_tx) { lp->outgoing.proto ->ack_tx(dev, ackstatus); } lp->reply_status = ackstatus; tasklet_hi_schedule(&lp->reply_tasklet); } if (lp->cur_tx != -1) release_arcbuf(dev, lp->cur_tx); lp->cur_tx = -1; lp->timed_out = 0; didsomething++; /* send another packet if there is one */ go_tx(dev); /* continue a split packet, if any */ if (lp->outgoing.proto && lp->outgoing.proto->continue_tx) { int txbuf = get_arcbuf(dev); if (txbuf != -1) { if (lp->outgoing.proto->continue_tx(dev, txbuf)) { /* that was the last segment */ dev->stats.tx_bytes += lp->outgoing.skb->len; if (!lp->outgoing.proto->ack_tx) { dev_kfree_skb_irq(lp->outgoing.skb); lp->outgoing.proto = NULL; } } lp->next_tx = txbuf; } } /* inform upper layers of idleness, if necessary */ if (lp->cur_tx == -1) netif_wake_queue(dev); } /* now process the received packet, if any */ if (recbuf != -1) { if (BUGLVL(D_RX)) arcnet_dump_packet(dev, recbuf, "rx irq", 0); arcnet_rx(dev, recbuf); release_arcbuf(dev, recbuf); didsomething++; } if (status & lp->intmask & RECONflag) { lp->hw.command(dev, CFLAGScmd | CONFIGclear); dev->stats.tx_carrier_errors++; arc_printk(D_RECON, dev, "Network reconfiguration detected (status=%Xh)\n", status); if (netif_carrier_ok(dev)) { netif_carrier_off(dev); netdev_info(dev, "link down\n"); } mod_timer(&lp->timer, jiffies + msecs_to_jiffies(1000)); arcnet_led_event(dev, ARCNET_LED_EVENT_RECON); /* MYRECON bit is at bit 7 of diagstatus */ if (diagstatus & 0x80) arc_printk(D_RECON, dev, "Put out that recon myself\n"); /* is the RECON info empty or old? */ if (!lp->first_recon || !lp->last_recon || time_after(jiffies, lp->last_recon + HZ * 10)) { if (lp->network_down) arc_printk(D_NORMAL, dev, "reconfiguration detected: cabling restored?\n"); lp->first_recon = lp->last_recon = jiffies; lp->num_recons = lp->network_down = 0; arc_printk(D_DURING, dev, "recon: clearing counters.\n"); } else { /* add to current RECON counter */ lp->last_recon = jiffies; lp->num_recons++; arc_printk(D_DURING, dev, "recon: counter=%d, time=%lds, net=%d\n", lp->num_recons, (lp->last_recon - lp->first_recon) / HZ, lp->network_down); /* if network is marked up; * and first_recon and last_recon are 60+ apart; * and the average no. of recons counted is * > RECON_THRESHOLD/min; * then print a warning message. */ if (!lp->network_down && (lp->last_recon - lp->first_recon) <= HZ * 60 && lp->num_recons >= RECON_THRESHOLD) { lp->network_down = 1; arc_printk(D_NORMAL, dev, "many reconfigurations detected: cabling problem?\n"); } else if (!lp->network_down && lp->last_recon - lp->first_recon > HZ * 60) { /* reset counters if we've gone for * over a minute. */ lp->first_recon = lp->last_recon; lp->num_recons = 1; } } } else if (lp->network_down && time_after(jiffies, lp->last_recon + HZ * 10)) { if (lp->network_down) arc_printk(D_NORMAL, dev, "cabling restored?\n"); lp->first_recon = lp->last_recon = 0; lp->num_recons = lp->network_down = 0; arc_printk(D_DURING, dev, "not recon: clearing counters anyway.\n"); netif_carrier_on(dev); } if (didsomething) retval |= IRQ_HANDLED; } while (--boguscount && didsomething); arc_printk(D_DURING, dev, "arcnet_interrupt complete (status=%Xh, count=%d)\n", lp->hw.status(dev), boguscount); arc_printk(D_DURING, dev, "\n"); lp->hw.intmask(dev, 0); udelay(1); lp->hw.intmask(dev, lp->intmask); out: spin_unlock_irqrestore(&lp->lock, flags); return retval; } EXPORT_SYMBOL(arcnet_interrupt); /* This is a generic packet receiver that calls arcnet??_rx depending on the * protocol ID found. */ static void arcnet_rx(struct net_device *dev, int bufnum) { struct arcnet_local *lp = netdev_priv(dev); union { struct archdr pkt; char buf[512]; } rxdata; struct arc_rfc1201 *soft; int length, ofs; soft = &rxdata.pkt.soft.rfc1201; lp->hw.copy_from_card(dev, bufnum, 0, &rxdata.pkt, ARC_HDR_SIZE); if (rxdata.pkt.hard.offset[0]) { ofs = rxdata.pkt.hard.offset[0]; length = 256 - ofs; } else { ofs = rxdata.pkt.hard.offset[1]; length = 512 - ofs; } /* get the full header, if possible */ if (sizeof(rxdata.pkt.soft) <= length) { lp->hw.copy_from_card(dev, bufnum, ofs, soft, sizeof(rxdata.pkt.soft)); } else { memset(&rxdata.pkt.soft, 0, sizeof(rxdata.pkt.soft)); lp->hw.copy_from_card(dev, bufnum, ofs, soft, length); } arc_printk(D_DURING, dev, "Buffer #%d: received packet from %02Xh to %02Xh (%d+4 bytes)\n", bufnum, rxdata.pkt.hard.source, rxdata.pkt.hard.dest, length); dev->stats.rx_packets++; dev->stats.rx_bytes += length + ARC_HDR_SIZE; /* call the right receiver for the protocol */ if (arc_proto_map[soft->proto]->is_ip) { if (BUGLVL(D_PROTO)) { struct ArcProto *oldp = arc_proto_map[lp->default_proto[rxdata.pkt.hard.source]], *newp = arc_proto_map[soft->proto]; if (oldp != newp) { arc_printk(D_PROTO, dev, "got protocol %02Xh; encap for host %02Xh is now '%c' (was '%c')\n", soft->proto, rxdata.pkt.hard.source, newp->suffix, oldp->suffix); } } /* broadcasts will always be done with the last-used encap. */ lp->default_proto[0] = soft->proto; /* in striking contrast, the following isn't a hack. */ lp->default_proto[rxdata.pkt.hard.source] = soft->proto; } /* call the protocol-specific receiver. */ arc_proto_map[soft->proto]->rx(dev, bufnum, &rxdata.pkt, length); } static void null_rx(struct net_device *dev, int bufnum, struct archdr *pkthdr, int length) { arc_printk(D_PROTO, dev, "rx: don't know how to deal with proto %02Xh from host %02Xh.\n", pkthdr->soft.rfc1201.proto, pkthdr->hard.source); } static int null_build_header(struct sk_buff *skb, struct net_device *dev, unsigned short type, uint8_t daddr) { struct arcnet_local *lp = netdev_priv(dev); arc_printk(D_PROTO, dev, "tx: can't build header for encap %02Xh; load a protocol driver.\n", lp->default_proto[daddr]); /* always fails */ return 0; } /* the "do nothing" prepare_tx function warns that there's nothing to do. */ static int null_prepare_tx(struct net_device *dev, struct archdr *pkt, int length, int bufnum) { struct arcnet_local *lp = netdev_priv(dev); struct arc_hardware newpkt; arc_printk(D_PROTO, dev, "tx: no encap for this host; load a protocol driver.\n"); /* send a packet to myself -- will never get received, of course */ newpkt.source = newpkt.dest = dev->dev_addr[0]; /* only one byte of actual data (and it's random) */ newpkt.offset[0] = 0xFF; lp->hw.copy_to_card(dev, bufnum, 0, &newpkt, ARC_HDR_SIZE); return 1; /* done */ }