// SPDX-License-Identifier: GPL-2.0 /* * Lantiq / Intel GSWIP switch driver for VRX200 SoCs * * Copyright (C) 2010 Lantiq Deutschland * Copyright (C) 2012 John Crispin * Copyright (C) 2017 - 2019 Hauke Mehrtens * * The VLAN and bridge model the GSWIP hardware uses does not directly * matches the model DSA uses. * * The hardware has 64 possible table entries for bridges with one VLAN * ID, one flow id and a list of ports for each bridge. All entries which * match the same flow ID are combined in the mac learning table, they * act as one global bridge. * The hardware does not support VLAN filter on the port, but on the * bridge, this driver converts the DSA model to the hardware. * * The CPU gets all the exception frames which do not match any forwarding * rule and the CPU port is also added to all bridges. This makes it possible * to handle all the special cases easily in software. * At the initialization the driver allocates one bridge table entry for * each switch port which is used when the port is used without an * explicit bridge. This prevents the frames from being forwarded * between all LAN ports by default. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "lantiq_pce.h" /* GSWIP MDIO Registers */ #define GSWIP_MDIO_GLOB 0x00 #define GSWIP_MDIO_GLOB_ENABLE BIT(15) #define GSWIP_MDIO_CTRL 0x08 #define GSWIP_MDIO_CTRL_BUSY BIT(12) #define GSWIP_MDIO_CTRL_RD BIT(11) #define GSWIP_MDIO_CTRL_WR BIT(10) #define GSWIP_MDIO_CTRL_PHYAD_MASK 0x1f #define GSWIP_MDIO_CTRL_PHYAD_SHIFT 5 #define GSWIP_MDIO_CTRL_REGAD_MASK 0x1f #define GSWIP_MDIO_READ 0x09 #define GSWIP_MDIO_WRITE 0x0A #define GSWIP_MDIO_MDC_CFG0 0x0B #define GSWIP_MDIO_MDC_CFG1 0x0C #define GSWIP_MDIO_PHYp(p) (0x15 - (p)) #define GSWIP_MDIO_PHY_LINK_MASK 0x6000 #define GSWIP_MDIO_PHY_LINK_AUTO 0x0000 #define GSWIP_MDIO_PHY_LINK_DOWN 0x4000 #define GSWIP_MDIO_PHY_LINK_UP 0x2000 #define GSWIP_MDIO_PHY_SPEED_MASK 0x1800 #define GSWIP_MDIO_PHY_SPEED_AUTO 0x1800 #define GSWIP_MDIO_PHY_SPEED_M10 0x0000 #define GSWIP_MDIO_PHY_SPEED_M100 0x0800 #define GSWIP_MDIO_PHY_SPEED_G1 0x1000 #define GSWIP_MDIO_PHY_FDUP_MASK 0x0600 #define GSWIP_MDIO_PHY_FDUP_AUTO 0x0000 #define GSWIP_MDIO_PHY_FDUP_EN 0x0200 #define GSWIP_MDIO_PHY_FDUP_DIS 0x0600 #define GSWIP_MDIO_PHY_FCONTX_MASK 0x0180 #define GSWIP_MDIO_PHY_FCONTX_AUTO 0x0000 #define GSWIP_MDIO_PHY_FCONTX_EN 0x0100 #define GSWIP_MDIO_PHY_FCONTX_DIS 0x0180 #define GSWIP_MDIO_PHY_FCONRX_MASK 0x0060 #define GSWIP_MDIO_PHY_FCONRX_AUTO 0x0000 #define GSWIP_MDIO_PHY_FCONRX_EN 0x0020 #define GSWIP_MDIO_PHY_FCONRX_DIS 0x0060 #define GSWIP_MDIO_PHY_ADDR_MASK 0x001f #define GSWIP_MDIO_PHY_MASK (GSWIP_MDIO_PHY_ADDR_MASK | \ GSWIP_MDIO_PHY_FCONRX_MASK | \ GSWIP_MDIO_PHY_FCONTX_MASK | \ GSWIP_MDIO_PHY_LINK_MASK | \ GSWIP_MDIO_PHY_SPEED_MASK | \ GSWIP_MDIO_PHY_FDUP_MASK) /* GSWIP MII Registers */ #define GSWIP_MII_CFGp(p) (0x2 * (p)) #define GSWIP_MII_CFG_RESET BIT(15) #define GSWIP_MII_CFG_EN BIT(14) #define GSWIP_MII_CFG_ISOLATE BIT(13) #define GSWIP_MII_CFG_LDCLKDIS BIT(12) #define GSWIP_MII_CFG_RGMII_IBS BIT(8) #define GSWIP_MII_CFG_RMII_CLK BIT(7) #define GSWIP_MII_CFG_MODE_MIIP 0x0 #define GSWIP_MII_CFG_MODE_MIIM 0x1 #define GSWIP_MII_CFG_MODE_RMIIP 0x2 #define GSWIP_MII_CFG_MODE_RMIIM 0x3 #define GSWIP_MII_CFG_MODE_RGMII 0x4 #define GSWIP_MII_CFG_MODE_MASK 0xf #define GSWIP_MII_CFG_RATE_M2P5 0x00 #define GSWIP_MII_CFG_RATE_M25 0x10 #define GSWIP_MII_CFG_RATE_M125 0x20 #define GSWIP_MII_CFG_RATE_M50 0x30 #define GSWIP_MII_CFG_RATE_AUTO 0x40 #define GSWIP_MII_CFG_RATE_MASK 0x70 #define GSWIP_MII_PCDU0 0x01 #define GSWIP_MII_PCDU1 0x03 #define GSWIP_MII_PCDU5 0x05 #define GSWIP_MII_PCDU_TXDLY_MASK GENMASK(2, 0) #define GSWIP_MII_PCDU_RXDLY_MASK GENMASK(9, 7) /* GSWIP Core Registers */ #define GSWIP_SWRES 0x000 #define GSWIP_SWRES_R1 BIT(1) /* GSWIP Software reset */ #define GSWIP_SWRES_R0 BIT(0) /* GSWIP Hardware reset */ #define GSWIP_VERSION 0x013 #define GSWIP_VERSION_REV_SHIFT 0 #define GSWIP_VERSION_REV_MASK GENMASK(7, 0) #define GSWIP_VERSION_MOD_SHIFT 8 #define GSWIP_VERSION_MOD_MASK GENMASK(15, 8) #define GSWIP_VERSION_2_0 0x100 #define GSWIP_VERSION_2_1 0x021 #define GSWIP_VERSION_2_2 0x122 #define GSWIP_VERSION_2_2_ETC 0x022 #define GSWIP_BM_RAM_VAL(x) (0x043 - (x)) #define GSWIP_BM_RAM_ADDR 0x044 #define GSWIP_BM_RAM_CTRL 0x045 #define GSWIP_BM_RAM_CTRL_BAS BIT(15) #define GSWIP_BM_RAM_CTRL_OPMOD BIT(5) #define GSWIP_BM_RAM_CTRL_ADDR_MASK GENMASK(4, 0) #define GSWIP_BM_QUEUE_GCTRL 0x04A #define GSWIP_BM_QUEUE_GCTRL_GL_MOD BIT(10) /* buffer management Port Configuration Register */ #define GSWIP_BM_PCFGp(p) (0x080 + ((p) * 2)) #define GSWIP_BM_PCFG_CNTEN BIT(0) /* RMON Counter Enable */ #define GSWIP_BM_PCFG_IGCNT BIT(1) /* Ingres Special Tag RMON count */ /* buffer management Port Control Register */ #define GSWIP_BM_RMON_CTRLp(p) (0x81 + ((p) * 2)) #define GSWIP_BM_CTRL_RMON_RAM1_RES BIT(0) /* Software Reset for RMON RAM 1 */ #define GSWIP_BM_CTRL_RMON_RAM2_RES BIT(1) /* Software Reset for RMON RAM 2 */ /* PCE */ #define GSWIP_PCE_TBL_KEY(x) (0x447 - (x)) #define GSWIP_PCE_TBL_MASK 0x448 #define GSWIP_PCE_TBL_VAL(x) (0x44D - (x)) #define GSWIP_PCE_TBL_ADDR 0x44E #define GSWIP_PCE_TBL_CTRL 0x44F #define GSWIP_PCE_TBL_CTRL_BAS BIT(15) #define GSWIP_PCE_TBL_CTRL_TYPE BIT(13) #define GSWIP_PCE_TBL_CTRL_VLD BIT(12) #define GSWIP_PCE_TBL_CTRL_KEYFORM BIT(11) #define GSWIP_PCE_TBL_CTRL_GMAP_MASK GENMASK(10, 7) #define GSWIP_PCE_TBL_CTRL_OPMOD_MASK GENMASK(6, 5) #define GSWIP_PCE_TBL_CTRL_OPMOD_ADRD 0x00 #define GSWIP_PCE_TBL_CTRL_OPMOD_ADWR 0x20 #define GSWIP_PCE_TBL_CTRL_OPMOD_KSRD 0x40 #define GSWIP_PCE_TBL_CTRL_OPMOD_KSWR 0x60 #define GSWIP_PCE_TBL_CTRL_ADDR_MASK GENMASK(4, 0) #define GSWIP_PCE_PMAP1 0x453 /* Monitoring port map */ #define GSWIP_PCE_PMAP2 0x454 /* Default Multicast port map */ #define GSWIP_PCE_PMAP3 0x455 /* Default Unknown Unicast port map */ #define GSWIP_PCE_GCTRL_0 0x456 #define GSWIP_PCE_GCTRL_0_MTFL BIT(0) /* MAC Table Flushing */ #define GSWIP_PCE_GCTRL_0_MC_VALID BIT(3) #define GSWIP_PCE_GCTRL_0_VLAN BIT(14) /* VLAN aware Switching */ #define GSWIP_PCE_GCTRL_1 0x457 #define GSWIP_PCE_GCTRL_1_MAC_GLOCK BIT(2) /* MAC Address table lock */ #define GSWIP_PCE_GCTRL_1_MAC_GLOCK_MOD BIT(3) /* Mac address table lock forwarding mode */ #define GSWIP_PCE_PCTRL_0p(p) (0x480 + ((p) * 0xA)) #define GSWIP_PCE_PCTRL_0_TVM BIT(5) /* Transparent VLAN mode */ #define GSWIP_PCE_PCTRL_0_VREP BIT(6) /* VLAN Replace Mode */ #define GSWIP_PCE_PCTRL_0_INGRESS BIT(11) /* Accept special tag in ingress */ #define GSWIP_PCE_PCTRL_0_PSTATE_LISTEN 0x0 #define GSWIP_PCE_PCTRL_0_PSTATE_RX 0x1 #define GSWIP_PCE_PCTRL_0_PSTATE_TX 0x2 #define GSWIP_PCE_PCTRL_0_PSTATE_LEARNING 0x3 #define GSWIP_PCE_PCTRL_0_PSTATE_FORWARDING 0x7 #define GSWIP_PCE_PCTRL_0_PSTATE_MASK GENMASK(2, 0) #define GSWIP_PCE_VCTRL(p) (0x485 + ((p) * 0xA)) #define GSWIP_PCE_VCTRL_UVR BIT(0) /* Unknown VLAN Rule */ #define GSWIP_PCE_VCTRL_VIMR BIT(3) /* VLAN Ingress Member violation rule */ #define GSWIP_PCE_VCTRL_VEMR BIT(4) /* VLAN Egress Member violation rule */ #define GSWIP_PCE_VCTRL_VSR BIT(5) /* VLAN Security */ #define GSWIP_PCE_VCTRL_VID0 BIT(6) /* Priority Tagged Rule */ #define GSWIP_PCE_DEFPVID(p) (0x486 + ((p) * 0xA)) #define GSWIP_MAC_FLEN 0x8C5 #define GSWIP_MAC_CTRL_0p(p) (0x903 + ((p) * 0xC)) #define GSWIP_MAC_CTRL_0_PADEN BIT(8) #define GSWIP_MAC_CTRL_0_FCS_EN BIT(7) #define GSWIP_MAC_CTRL_0_FCON_MASK 0x0070 #define GSWIP_MAC_CTRL_0_FCON_AUTO 0x0000 #define GSWIP_MAC_CTRL_0_FCON_RX 0x0010 #define GSWIP_MAC_CTRL_0_FCON_TX 0x0020 #define GSWIP_MAC_CTRL_0_FCON_RXTX 0x0030 #define GSWIP_MAC_CTRL_0_FCON_NONE 0x0040 #define GSWIP_MAC_CTRL_0_FDUP_MASK 0x000C #define GSWIP_MAC_CTRL_0_FDUP_AUTO 0x0000 #define GSWIP_MAC_CTRL_0_FDUP_EN 0x0004 #define GSWIP_MAC_CTRL_0_FDUP_DIS 0x000C #define GSWIP_MAC_CTRL_0_GMII_MASK 0x0003 #define GSWIP_MAC_CTRL_0_GMII_AUTO 0x0000 #define GSWIP_MAC_CTRL_0_GMII_MII 0x0001 #define GSWIP_MAC_CTRL_0_GMII_RGMII 0x0002 #define GSWIP_MAC_CTRL_2p(p) (0x905 + ((p) * 0xC)) #define GSWIP_MAC_CTRL_2_MLEN BIT(3) /* Maximum Untagged Frame Lnegth */ /* Ethernet Switch Fetch DMA Port Control Register */ #define GSWIP_FDMA_PCTRLp(p) (0xA80 + ((p) * 0x6)) #define GSWIP_FDMA_PCTRL_EN BIT(0) /* FDMA Port Enable */ #define GSWIP_FDMA_PCTRL_STEN BIT(1) /* Special Tag Insertion Enable */ #define GSWIP_FDMA_PCTRL_VLANMOD_MASK GENMASK(4, 3) /* VLAN Modification Control */ #define GSWIP_FDMA_PCTRL_VLANMOD_SHIFT 3 /* VLAN Modification Control */ #define GSWIP_FDMA_PCTRL_VLANMOD_DIS (0x0 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT) #define GSWIP_FDMA_PCTRL_VLANMOD_PRIO (0x1 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT) #define GSWIP_FDMA_PCTRL_VLANMOD_ID (0x2 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT) #define GSWIP_FDMA_PCTRL_VLANMOD_BOTH (0x3 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT) /* Ethernet Switch Store DMA Port Control Register */ #define GSWIP_SDMA_PCTRLp(p) (0xBC0 + ((p) * 0x6)) #define GSWIP_SDMA_PCTRL_EN BIT(0) /* SDMA Port Enable */ #define GSWIP_SDMA_PCTRL_FCEN BIT(1) /* Flow Control Enable */ #define GSWIP_SDMA_PCTRL_PAUFWD BIT(3) /* Pause Frame Forwarding */ #define GSWIP_TABLE_ACTIVE_VLAN 0x01 #define GSWIP_TABLE_VLAN_MAPPING 0x02 #define GSWIP_TABLE_MAC_BRIDGE 0x0b #define GSWIP_TABLE_MAC_BRIDGE_STATIC 0x01 /* Static not, aging entry */ #define XRX200_GPHY_FW_ALIGN (16 * 1024) struct gswip_hw_info { int max_ports; int cpu_port; }; struct xway_gphy_match_data { char *fe_firmware_name; char *ge_firmware_name; }; struct gswip_gphy_fw { struct clk *clk_gate; struct reset_control *reset; u32 fw_addr_offset; char *fw_name; }; struct gswip_vlan { struct net_device *bridge; u16 vid; u8 fid; }; struct gswip_priv { __iomem void *gswip; __iomem void *mdio; __iomem void *mii; const struct gswip_hw_info *hw_info; const struct xway_gphy_match_data *gphy_fw_name_cfg; struct dsa_switch *ds; struct device *dev; struct regmap *rcu_regmap; struct gswip_vlan vlans[64]; int num_gphy_fw; struct gswip_gphy_fw *gphy_fw; u32 port_vlan_filter; }; struct gswip_pce_table_entry { u16 index; // PCE_TBL_ADDR.ADDR = pData->table_index u16 table; // PCE_TBL_CTRL.ADDR = pData->table u16 key[8]; u16 val[5]; u16 mask; u8 gmap; bool type; bool valid; bool key_mode; }; struct gswip_rmon_cnt_desc { unsigned int size; unsigned int offset; const char *name; }; #define MIB_DESC(_size, _offset, _name) {.size = _size, .offset = _offset, .name = _name} static const struct gswip_rmon_cnt_desc gswip_rmon_cnt[] = { /** Receive Packet Count (only packets that are accepted and not discarded). */ MIB_DESC(1, 0x1F, "RxGoodPkts"), MIB_DESC(1, 0x23, "RxUnicastPkts"), MIB_DESC(1, 0x22, "RxMulticastPkts"), MIB_DESC(1, 0x21, "RxFCSErrorPkts"), MIB_DESC(1, 0x1D, "RxUnderSizeGoodPkts"), MIB_DESC(1, 0x1E, "RxUnderSizeErrorPkts"), MIB_DESC(1, 0x1B, "RxOversizeGoodPkts"), MIB_DESC(1, 0x1C, "RxOversizeErrorPkts"), MIB_DESC(1, 0x20, "RxGoodPausePkts"), MIB_DESC(1, 0x1A, "RxAlignErrorPkts"), MIB_DESC(1, 0x12, "Rx64BytePkts"), MIB_DESC(1, 0x13, "Rx127BytePkts"), MIB_DESC(1, 0x14, "Rx255BytePkts"), MIB_DESC(1, 0x15, "Rx511BytePkts"), MIB_DESC(1, 0x16, "Rx1023BytePkts"), /** Receive Size 1024-1522 (or more, if configured) Packet Count. */ MIB_DESC(1, 0x17, "RxMaxBytePkts"), MIB_DESC(1, 0x18, "RxDroppedPkts"), MIB_DESC(1, 0x19, "RxFilteredPkts"), MIB_DESC(2, 0x24, "RxGoodBytes"), MIB_DESC(2, 0x26, "RxBadBytes"), MIB_DESC(1, 0x11, "TxAcmDroppedPkts"), MIB_DESC(1, 0x0C, "TxGoodPkts"), MIB_DESC(1, 0x06, "TxUnicastPkts"), MIB_DESC(1, 0x07, "TxMulticastPkts"), MIB_DESC(1, 0x00, "Tx64BytePkts"), MIB_DESC(1, 0x01, "Tx127BytePkts"), MIB_DESC(1, 0x02, "Tx255BytePkts"), MIB_DESC(1, 0x03, "Tx511BytePkts"), MIB_DESC(1, 0x04, "Tx1023BytePkts"), /** Transmit Size 1024-1522 (or more, if configured) Packet Count. */ MIB_DESC(1, 0x05, "TxMaxBytePkts"), MIB_DESC(1, 0x08, "TxSingleCollCount"), MIB_DESC(1, 0x09, "TxMultCollCount"), MIB_DESC(1, 0x0A, "TxLateCollCount"), MIB_DESC(1, 0x0B, "TxExcessCollCount"), MIB_DESC(1, 0x0D, "TxPauseCount"), MIB_DESC(1, 0x10, "TxDroppedPkts"), MIB_DESC(2, 0x0E, "TxGoodBytes"), }; static u32 gswip_switch_r(struct gswip_priv *priv, u32 offset) { return __raw_readl(priv->gswip + (offset * 4)); } static void gswip_switch_w(struct gswip_priv *priv, u32 val, u32 offset) { __raw_writel(val, priv->gswip + (offset * 4)); } static void gswip_switch_mask(struct gswip_priv *priv, u32 clear, u32 set, u32 offset) { u32 val = gswip_switch_r(priv, offset); val &= ~(clear); val |= set; gswip_switch_w(priv, val, offset); } static u32 gswip_switch_r_timeout(struct gswip_priv *priv, u32 offset, u32 cleared) { u32 val; return readx_poll_timeout(__raw_readl, priv->gswip + (offset * 4), val, (val & cleared) == 0, 20, 50000); } static u32 gswip_mdio_r(struct gswip_priv *priv, u32 offset) { return __raw_readl(priv->mdio + (offset * 4)); } static void gswip_mdio_w(struct gswip_priv *priv, u32 val, u32 offset) { __raw_writel(val, priv->mdio + (offset * 4)); } static void gswip_mdio_mask(struct gswip_priv *priv, u32 clear, u32 set, u32 offset) { u32 val = gswip_mdio_r(priv, offset); val &= ~(clear); val |= set; gswip_mdio_w(priv, val, offset); } static u32 gswip_mii_r(struct gswip_priv *priv, u32 offset) { return __raw_readl(priv->mii + (offset * 4)); } static void gswip_mii_w(struct gswip_priv *priv, u32 val, u32 offset) { __raw_writel(val, priv->mii + (offset * 4)); } static void gswip_mii_mask(struct gswip_priv *priv, u32 clear, u32 set, u32 offset) { u32 val = gswip_mii_r(priv, offset); val &= ~(clear); val |= set; gswip_mii_w(priv, val, offset); } static void gswip_mii_mask_cfg(struct gswip_priv *priv, u32 clear, u32 set, int port) { /* There's no MII_CFG register for the CPU port */ if (!dsa_is_cpu_port(priv->ds, port)) gswip_mii_mask(priv, clear, set, GSWIP_MII_CFGp(port)); } static void gswip_mii_mask_pcdu(struct gswip_priv *priv, u32 clear, u32 set, int port) { switch (port) { case 0: gswip_mii_mask(priv, clear, set, GSWIP_MII_PCDU0); break; case 1: gswip_mii_mask(priv, clear, set, GSWIP_MII_PCDU1); break; case 5: gswip_mii_mask(priv, clear, set, GSWIP_MII_PCDU5); break; } } static int gswip_mdio_poll(struct gswip_priv *priv) { int cnt = 100; while (likely(cnt--)) { u32 ctrl = gswip_mdio_r(priv, GSWIP_MDIO_CTRL); if ((ctrl & GSWIP_MDIO_CTRL_BUSY) == 0) return 0; usleep_range(20, 40); } return -ETIMEDOUT; } static int gswip_mdio_wr(struct mii_bus *bus, int addr, int reg, u16 val) { struct gswip_priv *priv = bus->priv; int err; err = gswip_mdio_poll(priv); if (err) { dev_err(&bus->dev, "waiting for MDIO bus busy timed out\n"); return err; } gswip_mdio_w(priv, val, GSWIP_MDIO_WRITE); gswip_mdio_w(priv, GSWIP_MDIO_CTRL_BUSY | GSWIP_MDIO_CTRL_WR | ((addr & GSWIP_MDIO_CTRL_PHYAD_MASK) << GSWIP_MDIO_CTRL_PHYAD_SHIFT) | (reg & GSWIP_MDIO_CTRL_REGAD_MASK), GSWIP_MDIO_CTRL); return 0; } static int gswip_mdio_rd(struct mii_bus *bus, int addr, int reg) { struct gswip_priv *priv = bus->priv; int err; err = gswip_mdio_poll(priv); if (err) { dev_err(&bus->dev, "waiting for MDIO bus busy timed out\n"); return err; } gswip_mdio_w(priv, GSWIP_MDIO_CTRL_BUSY | GSWIP_MDIO_CTRL_RD | ((addr & GSWIP_MDIO_CTRL_PHYAD_MASK) << GSWIP_MDIO_CTRL_PHYAD_SHIFT) | (reg & GSWIP_MDIO_CTRL_REGAD_MASK), GSWIP_MDIO_CTRL); err = gswip_mdio_poll(priv); if (err) { dev_err(&bus->dev, "waiting for MDIO bus busy timed out\n"); return err; } return gswip_mdio_r(priv, GSWIP_MDIO_READ); } static int gswip_mdio(struct gswip_priv *priv, struct device_node *mdio_np) { struct dsa_switch *ds = priv->ds; int err; ds->slave_mii_bus = mdiobus_alloc(); if (!ds->slave_mii_bus) return -ENOMEM; ds->slave_mii_bus->priv = priv; ds->slave_mii_bus->read = gswip_mdio_rd; ds->slave_mii_bus->write = gswip_mdio_wr; ds->slave_mii_bus->name = "lantiq,xrx200-mdio"; snprintf(ds->slave_mii_bus->id, MII_BUS_ID_SIZE, "%s-mii", dev_name(priv->dev)); ds->slave_mii_bus->parent = priv->dev; ds->slave_mii_bus->phy_mask = ~ds->phys_mii_mask; err = of_mdiobus_register(ds->slave_mii_bus, mdio_np); if (err) mdiobus_free(ds->slave_mii_bus); return err; } static int gswip_pce_table_entry_read(struct gswip_priv *priv, struct gswip_pce_table_entry *tbl) { int i; int err; u16 crtl; u16 addr_mode = tbl->key_mode ? GSWIP_PCE_TBL_CTRL_OPMOD_KSRD : GSWIP_PCE_TBL_CTRL_OPMOD_ADRD; err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL, GSWIP_PCE_TBL_CTRL_BAS); if (err) return err; gswip_switch_w(priv, tbl->index, GSWIP_PCE_TBL_ADDR); gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK | GSWIP_PCE_TBL_CTRL_OPMOD_MASK, tbl->table | addr_mode | GSWIP_PCE_TBL_CTRL_BAS, GSWIP_PCE_TBL_CTRL); err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL, GSWIP_PCE_TBL_CTRL_BAS); if (err) return err; for (i = 0; i < ARRAY_SIZE(tbl->key); i++) tbl->key[i] = gswip_switch_r(priv, GSWIP_PCE_TBL_KEY(i)); for (i = 0; i < ARRAY_SIZE(tbl->val); i++) tbl->val[i] = gswip_switch_r(priv, GSWIP_PCE_TBL_VAL(i)); tbl->mask = gswip_switch_r(priv, GSWIP_PCE_TBL_MASK); crtl = gswip_switch_r(priv, GSWIP_PCE_TBL_CTRL); tbl->type = !!(crtl & GSWIP_PCE_TBL_CTRL_TYPE); tbl->valid = !!(crtl & GSWIP_PCE_TBL_CTRL_VLD); tbl->gmap = (crtl & GSWIP_PCE_TBL_CTRL_GMAP_MASK) >> 7; return 0; } static int gswip_pce_table_entry_write(struct gswip_priv *priv, struct gswip_pce_table_entry *tbl) { int i; int err; u16 crtl; u16 addr_mode = tbl->key_mode ? GSWIP_PCE_TBL_CTRL_OPMOD_KSWR : GSWIP_PCE_TBL_CTRL_OPMOD_ADWR; err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL, GSWIP_PCE_TBL_CTRL_BAS); if (err) return err; gswip_switch_w(priv, tbl->index, GSWIP_PCE_TBL_ADDR); gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK | GSWIP_PCE_TBL_CTRL_OPMOD_MASK, tbl->table | addr_mode, GSWIP_PCE_TBL_CTRL); for (i = 0; i < ARRAY_SIZE(tbl->key); i++) gswip_switch_w(priv, tbl->key[i], GSWIP_PCE_TBL_KEY(i)); for (i = 0; i < ARRAY_SIZE(tbl->val); i++) gswip_switch_w(priv, tbl->val[i], GSWIP_PCE_TBL_VAL(i)); gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK | GSWIP_PCE_TBL_CTRL_OPMOD_MASK, tbl->table | addr_mode, GSWIP_PCE_TBL_CTRL); gswip_switch_w(priv, tbl->mask, GSWIP_PCE_TBL_MASK); crtl = gswip_switch_r(priv, GSWIP_PCE_TBL_CTRL); crtl &= ~(GSWIP_PCE_TBL_CTRL_TYPE | GSWIP_PCE_TBL_CTRL_VLD | GSWIP_PCE_TBL_CTRL_GMAP_MASK); if (tbl->type) crtl |= GSWIP_PCE_TBL_CTRL_TYPE; if (tbl->valid) crtl |= GSWIP_PCE_TBL_CTRL_VLD; crtl |= (tbl->gmap << 7) & GSWIP_PCE_TBL_CTRL_GMAP_MASK; crtl |= GSWIP_PCE_TBL_CTRL_BAS; gswip_switch_w(priv, crtl, GSWIP_PCE_TBL_CTRL); return gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL, GSWIP_PCE_TBL_CTRL_BAS); } /* Add the LAN port into a bridge with the CPU port by * default. This prevents automatic forwarding of * packages between the LAN ports when no explicit * bridge is configured. */ static int gswip_add_single_port_br(struct gswip_priv *priv, int port, bool add) { struct gswip_pce_table_entry vlan_active = {0,}; struct gswip_pce_table_entry vlan_mapping = {0,}; unsigned int cpu_port = priv->hw_info->cpu_port; unsigned int max_ports = priv->hw_info->max_ports; int err; if (port >= max_ports) { dev_err(priv->dev, "single port for %i supported\n", port); return -EIO; } vlan_active.index = port + 1; vlan_active.table = GSWIP_TABLE_ACTIVE_VLAN; vlan_active.key[0] = 0; /* vid */ vlan_active.val[0] = port + 1 /* fid */; vlan_active.valid = add; err = gswip_pce_table_entry_write(priv, &vlan_active); if (err) { dev_err(priv->dev, "failed to write active VLAN: %d\n", err); return err; } if (!add) return 0; vlan_mapping.index = port + 1; vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING; vlan_mapping.val[0] = 0 /* vid */; vlan_mapping.val[1] = BIT(port) | BIT(cpu_port); vlan_mapping.val[2] = 0; err = gswip_pce_table_entry_write(priv, &vlan_mapping); if (err) { dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err); return err; } return 0; } static int gswip_port_enable(struct dsa_switch *ds, int port, struct phy_device *phydev) { struct gswip_priv *priv = ds->priv; int err; if (!dsa_is_user_port(ds, port)) return 0; if (!dsa_is_cpu_port(ds, port)) { err = gswip_add_single_port_br(priv, port, true); if (err) return err; } /* RMON Counter Enable for port */ gswip_switch_w(priv, GSWIP_BM_PCFG_CNTEN, GSWIP_BM_PCFGp(port)); /* enable port fetch/store dma & VLAN Modification */ gswip_switch_mask(priv, 0, GSWIP_FDMA_PCTRL_EN | GSWIP_FDMA_PCTRL_VLANMOD_BOTH, GSWIP_FDMA_PCTRLp(port)); gswip_switch_mask(priv, 0, GSWIP_SDMA_PCTRL_EN, GSWIP_SDMA_PCTRLp(port)); if (!dsa_is_cpu_port(ds, port)) { u32 mdio_phy = 0; if (phydev) mdio_phy = phydev->mdio.addr & GSWIP_MDIO_PHY_ADDR_MASK; gswip_mdio_mask(priv, GSWIP_MDIO_PHY_ADDR_MASK, mdio_phy, GSWIP_MDIO_PHYp(port)); } return 0; } static void gswip_port_disable(struct dsa_switch *ds, int port) { struct gswip_priv *priv = ds->priv; if (!dsa_is_user_port(ds, port)) return; gswip_switch_mask(priv, GSWIP_FDMA_PCTRL_EN, 0, GSWIP_FDMA_PCTRLp(port)); gswip_switch_mask(priv, GSWIP_SDMA_PCTRL_EN, 0, GSWIP_SDMA_PCTRLp(port)); } static int gswip_pce_load_microcode(struct gswip_priv *priv) { int i; int err; gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK | GSWIP_PCE_TBL_CTRL_OPMOD_MASK, GSWIP_PCE_TBL_CTRL_OPMOD_ADWR, GSWIP_PCE_TBL_CTRL); gswip_switch_w(priv, 0, GSWIP_PCE_TBL_MASK); for (i = 0; i < ARRAY_SIZE(gswip_pce_microcode); i++) { gswip_switch_w(priv, i, GSWIP_PCE_TBL_ADDR); gswip_switch_w(priv, gswip_pce_microcode[i].val_0, GSWIP_PCE_TBL_VAL(0)); gswip_switch_w(priv, gswip_pce_microcode[i].val_1, GSWIP_PCE_TBL_VAL(1)); gswip_switch_w(priv, gswip_pce_microcode[i].val_2, GSWIP_PCE_TBL_VAL(2)); gswip_switch_w(priv, gswip_pce_microcode[i].val_3, GSWIP_PCE_TBL_VAL(3)); /* start the table access: */ gswip_switch_mask(priv, 0, GSWIP_PCE_TBL_CTRL_BAS, GSWIP_PCE_TBL_CTRL); err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL, GSWIP_PCE_TBL_CTRL_BAS); if (err) return err; } /* tell the switch that the microcode is loaded */ gswip_switch_mask(priv, 0, GSWIP_PCE_GCTRL_0_MC_VALID, GSWIP_PCE_GCTRL_0); return 0; } static int gswip_port_vlan_filtering(struct dsa_switch *ds, int port, bool vlan_filtering, struct switchdev_trans *trans) { struct gswip_priv *priv = ds->priv; /* Do not allow changing the VLAN filtering options while in bridge */ if (switchdev_trans_ph_prepare(trans)) { struct net_device *bridge = dsa_to_port(ds, port)->bridge_dev; if (!bridge) return 0; if (!!(priv->port_vlan_filter & BIT(port)) != vlan_filtering) return -EIO; return 0; } if (vlan_filtering) { /* Use port based VLAN tag */ gswip_switch_mask(priv, GSWIP_PCE_VCTRL_VSR, GSWIP_PCE_VCTRL_UVR | GSWIP_PCE_VCTRL_VIMR | GSWIP_PCE_VCTRL_VEMR, GSWIP_PCE_VCTRL(port)); gswip_switch_mask(priv, GSWIP_PCE_PCTRL_0_TVM, 0, GSWIP_PCE_PCTRL_0p(port)); } else { /* Use port based VLAN tag */ gswip_switch_mask(priv, GSWIP_PCE_VCTRL_UVR | GSWIP_PCE_VCTRL_VIMR | GSWIP_PCE_VCTRL_VEMR, GSWIP_PCE_VCTRL_VSR, GSWIP_PCE_VCTRL(port)); gswip_switch_mask(priv, 0, GSWIP_PCE_PCTRL_0_TVM, GSWIP_PCE_PCTRL_0p(port)); } return 0; } static int gswip_setup(struct dsa_switch *ds) { struct gswip_priv *priv = ds->priv; unsigned int cpu_port = priv->hw_info->cpu_port; int i; int err; gswip_switch_w(priv, GSWIP_SWRES_R0, GSWIP_SWRES); usleep_range(5000, 10000); gswip_switch_w(priv, 0, GSWIP_SWRES); /* disable port fetch/store dma on all ports */ for (i = 0; i < priv->hw_info->max_ports; i++) { struct switchdev_trans trans; /* Skip the prepare phase, this shouldn't return an error * during setup. */ trans.ph_prepare = false; gswip_port_disable(ds, i); gswip_port_vlan_filtering(ds, i, false, &trans); } /* enable Switch */ gswip_mdio_mask(priv, 0, GSWIP_MDIO_GLOB_ENABLE, GSWIP_MDIO_GLOB); err = gswip_pce_load_microcode(priv); if (err) { dev_err(priv->dev, "writing PCE microcode failed, %i", err); return err; } /* Default unknown Broadcast/Multicast/Unicast port maps */ gswip_switch_w(priv, BIT(cpu_port), GSWIP_PCE_PMAP1); gswip_switch_w(priv, BIT(cpu_port), GSWIP_PCE_PMAP2); gswip_switch_w(priv, BIT(cpu_port), GSWIP_PCE_PMAP3); /* Deactivate MDIO PHY auto polling. Some PHYs as the AR8030 have an * interoperability problem with this auto polling mechanism because * their status registers think that the link is in a different state * than it actually is. For the AR8030 it has the BMSR_ESTATEN bit set * as well as ESTATUS_1000_TFULL and ESTATUS_1000_XFULL. This makes the * auto polling state machine consider the link being negotiated with * 1Gbit/s. Since the PHY itself is a Fast Ethernet RMII PHY this leads * to the switch port being completely dead (RX and TX are both not * working). * Also with various other PHY / port combinations (PHY11G GPHY, PHY22F * GPHY, external RGMII PEF7071/7072) any traffic would stop. Sometimes * it would work fine for a few minutes to hours and then stop, on * other device it would no traffic could be sent or received at all. * Testing shows that when PHY auto polling is disabled these problems * go away. */ gswip_mdio_w(priv, 0x0, GSWIP_MDIO_MDC_CFG0); /* Configure the MDIO Clock 2.5 MHz */ gswip_mdio_mask(priv, 0xff, 0x09, GSWIP_MDIO_MDC_CFG1); /* Disable the xMII interface and clear it's isolation bit */ for (i = 0; i < priv->hw_info->max_ports; i++) gswip_mii_mask_cfg(priv, GSWIP_MII_CFG_EN | GSWIP_MII_CFG_ISOLATE, 0, i); /* enable special tag insertion on cpu port */ gswip_switch_mask(priv, 0, GSWIP_FDMA_PCTRL_STEN, GSWIP_FDMA_PCTRLp(cpu_port)); /* accept special tag in ingress direction */ gswip_switch_mask(priv, 0, GSWIP_PCE_PCTRL_0_INGRESS, GSWIP_PCE_PCTRL_0p(cpu_port)); gswip_switch_mask(priv, 0, GSWIP_MAC_CTRL_2_MLEN, GSWIP_MAC_CTRL_2p(cpu_port)); gswip_switch_w(priv, VLAN_ETH_FRAME_LEN + 8 + ETH_FCS_LEN, GSWIP_MAC_FLEN); gswip_switch_mask(priv, 0, GSWIP_BM_QUEUE_GCTRL_GL_MOD, GSWIP_BM_QUEUE_GCTRL); /* VLAN aware Switching */ gswip_switch_mask(priv, 0, GSWIP_PCE_GCTRL_0_VLAN, GSWIP_PCE_GCTRL_0); /* Flush MAC Table */ gswip_switch_mask(priv, 0, GSWIP_PCE_GCTRL_0_MTFL, GSWIP_PCE_GCTRL_0); err = gswip_switch_r_timeout(priv, GSWIP_PCE_GCTRL_0, GSWIP_PCE_GCTRL_0_MTFL); if (err) { dev_err(priv->dev, "MAC flushing didn't finish\n"); return err; } gswip_port_enable(ds, cpu_port, NULL); return 0; } static enum dsa_tag_protocol gswip_get_tag_protocol(struct dsa_switch *ds, int port, enum dsa_tag_protocol mp) { return DSA_TAG_PROTO_GSWIP; } static int gswip_vlan_active_create(struct gswip_priv *priv, struct net_device *bridge, int fid, u16 vid) { struct gswip_pce_table_entry vlan_active = {0,}; unsigned int max_ports = priv->hw_info->max_ports; int idx = -1; int err; int i; /* Look for a free slot */ for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) { if (!priv->vlans[i].bridge) { idx = i; break; } } if (idx == -1) return -ENOSPC; if (fid == -1) fid = idx; vlan_active.index = idx; vlan_active.table = GSWIP_TABLE_ACTIVE_VLAN; vlan_active.key[0] = vid; vlan_active.val[0] = fid; vlan_active.valid = true; err = gswip_pce_table_entry_write(priv, &vlan_active); if (err) { dev_err(priv->dev, "failed to write active VLAN: %d\n", err); return err; } priv->vlans[idx].bridge = bridge; priv->vlans[idx].vid = vid; priv->vlans[idx].fid = fid; return idx; } static int gswip_vlan_active_remove(struct gswip_priv *priv, int idx) { struct gswip_pce_table_entry vlan_active = {0,}; int err; vlan_active.index = idx; vlan_active.table = GSWIP_TABLE_ACTIVE_VLAN; vlan_active.valid = false; err = gswip_pce_table_entry_write(priv, &vlan_active); if (err) dev_err(priv->dev, "failed to delete active VLAN: %d\n", err); priv->vlans[idx].bridge = NULL; return err; } static int gswip_vlan_add_unaware(struct gswip_priv *priv, struct net_device *bridge, int port) { struct gswip_pce_table_entry vlan_mapping = {0,}; unsigned int max_ports = priv->hw_info->max_ports; unsigned int cpu_port = priv->hw_info->cpu_port; bool active_vlan_created = false; int idx = -1; int i; int err; /* Check if there is already a page for this bridge */ for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) { if (priv->vlans[i].bridge == bridge) { idx = i; break; } } /* If this bridge is not programmed yet, add a Active VLAN table * entry in a free slot and prepare the VLAN mapping table entry. */ if (idx == -1) { idx = gswip_vlan_active_create(priv, bridge, -1, 0); if (idx < 0) return idx; active_vlan_created = true; vlan_mapping.index = idx; vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING; /* VLAN ID byte, maps to the VLAN ID of vlan active table */ vlan_mapping.val[0] = 0; } else { /* Read the existing VLAN mapping entry from the switch */ vlan_mapping.index = idx; vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING; err = gswip_pce_table_entry_read(priv, &vlan_mapping); if (err) { dev_err(priv->dev, "failed to read VLAN mapping: %d\n", err); return err; } } /* Update the VLAN mapping entry and write it to the switch */ vlan_mapping.val[1] |= BIT(cpu_port); vlan_mapping.val[1] |= BIT(port); err = gswip_pce_table_entry_write(priv, &vlan_mapping); if (err) { dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err); /* In case an Active VLAN was creaetd delete it again */ if (active_vlan_created) gswip_vlan_active_remove(priv, idx); return err; } gswip_switch_w(priv, 0, GSWIP_PCE_DEFPVID(port)); return 0; } static int gswip_vlan_add_aware(struct gswip_priv *priv, struct net_device *bridge, int port, u16 vid, bool untagged, bool pvid) { struct gswip_pce_table_entry vlan_mapping = {0,}; unsigned int max_ports = priv->hw_info->max_ports; unsigned int cpu_port = priv->hw_info->cpu_port; bool active_vlan_created = false; int idx = -1; int fid = -1; int i; int err; /* Check if there is already a page for this bridge */ for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) { if (priv->vlans[i].bridge == bridge) { if (fid != -1 && fid != priv->vlans[i].fid) dev_err(priv->dev, "one bridge with multiple flow ids\n"); fid = priv->vlans[i].fid; if (priv->vlans[i].vid == vid) { idx = i; break; } } } /* If this bridge is not programmed yet, add a Active VLAN table * entry in a free slot and prepare the VLAN mapping table entry. */ if (idx == -1) { idx = gswip_vlan_active_create(priv, bridge, fid, vid); if (idx < 0) return idx; active_vlan_created = true; vlan_mapping.index = idx; vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING; /* VLAN ID byte, maps to the VLAN ID of vlan active table */ vlan_mapping.val[0] = vid; } else { /* Read the existing VLAN mapping entry from the switch */ vlan_mapping.index = idx; vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING; err = gswip_pce_table_entry_read(priv, &vlan_mapping); if (err) { dev_err(priv->dev, "failed to read VLAN mapping: %d\n", err); return err; } } vlan_mapping.val[0] = vid; /* Update the VLAN mapping entry and write it to the switch */ vlan_mapping.val[1] |= BIT(cpu_port); vlan_mapping.val[2] |= BIT(cpu_port); vlan_mapping.val[1] |= BIT(port); if (untagged) vlan_mapping.val[2] &= ~BIT(port); else vlan_mapping.val[2] |= BIT(port); err = gswip_pce_table_entry_write(priv, &vlan_mapping); if (err) { dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err); /* In case an Active VLAN was creaetd delete it again */ if (active_vlan_created) gswip_vlan_active_remove(priv, idx); return err; } if (pvid) gswip_switch_w(priv, idx, GSWIP_PCE_DEFPVID(port)); return 0; } static int gswip_vlan_remove(struct gswip_priv *priv, struct net_device *bridge, int port, u16 vid, bool pvid, bool vlan_aware) { struct gswip_pce_table_entry vlan_mapping = {0,}; unsigned int max_ports = priv->hw_info->max_ports; unsigned int cpu_port = priv->hw_info->cpu_port; int idx = -1; int i; int err; /* Check if there is already a page for this bridge */ for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) { if (priv->vlans[i].bridge == bridge && (!vlan_aware || priv->vlans[i].vid == vid)) { idx = i; break; } } if (idx == -1) { dev_err(priv->dev, "bridge to leave does not exists\n"); return -ENOENT; } vlan_mapping.index = idx; vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING; err = gswip_pce_table_entry_read(priv, &vlan_mapping); if (err) { dev_err(priv->dev, "failed to read VLAN mapping: %d\n", err); return err; } vlan_mapping.val[1] &= ~BIT(port); vlan_mapping.val[2] &= ~BIT(port); err = gswip_pce_table_entry_write(priv, &vlan_mapping); if (err) { dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err); return err; } /* In case all ports are removed from the bridge, remove the VLAN */ if ((vlan_mapping.val[1] & ~BIT(cpu_port)) == 0) { err = gswip_vlan_active_remove(priv, idx); if (err) { dev_err(priv->dev, "failed to write active VLAN: %d\n", err); return err; } } /* GSWIP 2.2 (GRX300) and later program here the VID directly. */ if (pvid) gswip_switch_w(priv, 0, GSWIP_PCE_DEFPVID(port)); return 0; } static int gswip_port_bridge_join(struct dsa_switch *ds, int port, struct net_device *bridge) { struct gswip_priv *priv = ds->priv; int err; /* When the bridge uses VLAN filtering we have to configure VLAN * specific bridges. No bridge is configured here. */ if (!br_vlan_enabled(bridge)) { err = gswip_vlan_add_unaware(priv, bridge, port); if (err) return err; priv->port_vlan_filter &= ~BIT(port); } else { priv->port_vlan_filter |= BIT(port); } return gswip_add_single_port_br(priv, port, false); } static void gswip_port_bridge_leave(struct dsa_switch *ds, int port, struct net_device *bridge) { struct gswip_priv *priv = ds->priv; gswip_add_single_port_br(priv, port, true); /* When the bridge uses VLAN filtering we have to configure VLAN * specific bridges. No bridge is configured here. */ if (!br_vlan_enabled(bridge)) gswip_vlan_remove(priv, bridge, port, 0, true, false); } static int gswip_port_vlan_prepare(struct dsa_switch *ds, int port, const struct switchdev_obj_port_vlan *vlan) { struct gswip_priv *priv = ds->priv; struct net_device *bridge = dsa_to_port(ds, port)->bridge_dev; unsigned int max_ports = priv->hw_info->max_ports; u16 vid; int i; int pos = max_ports; /* We only support VLAN filtering on bridges */ if (!dsa_is_cpu_port(ds, port) && !bridge) return -EOPNOTSUPP; for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) { int idx = -1; /* Check if there is already a page for this VLAN */ for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) { if (priv->vlans[i].bridge == bridge && priv->vlans[i].vid == vid) { idx = i; break; } } /* If this VLAN is not programmed yet, we have to reserve * one entry in the VLAN table. Make sure we start at the * next position round. */ if (idx == -1) { /* Look for a free slot */ for (; pos < ARRAY_SIZE(priv->vlans); pos++) { if (!priv->vlans[pos].bridge) { idx = pos; pos++; break; } } if (idx == -1) return -ENOSPC; } } return 0; } static void gswip_port_vlan_add(struct dsa_switch *ds, int port, const struct switchdev_obj_port_vlan *vlan) { struct gswip_priv *priv = ds->priv; struct net_device *bridge = dsa_to_port(ds, port)->bridge_dev; bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED; bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID; u16 vid; /* We have to receive all packets on the CPU port and should not * do any VLAN filtering here. This is also called with bridge * NULL and then we do not know for which bridge to configure * this. */ if (dsa_is_cpu_port(ds, port)) return; for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) gswip_vlan_add_aware(priv, bridge, port, vid, untagged, pvid); } static int gswip_port_vlan_del(struct dsa_switch *ds, int port, const struct switchdev_obj_port_vlan *vlan) { struct gswip_priv *priv = ds->priv; struct net_device *bridge = dsa_to_port(ds, port)->bridge_dev; bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID; u16 vid; int err; /* We have to receive all packets on the CPU port and should not * do any VLAN filtering here. This is also called with bridge * NULL and then we do not know for which bridge to configure * this. */ if (dsa_is_cpu_port(ds, port)) return 0; for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) { err = gswip_vlan_remove(priv, bridge, port, vid, pvid, true); if (err) return err; } return 0; } static void gswip_port_fast_age(struct dsa_switch *ds, int port) { struct gswip_priv *priv = ds->priv; struct gswip_pce_table_entry mac_bridge = {0,}; int i; int err; for (i = 0; i < 2048; i++) { mac_bridge.table = GSWIP_TABLE_MAC_BRIDGE; mac_bridge.index = i; err = gswip_pce_table_entry_read(priv, &mac_bridge); if (err) { dev_err(priv->dev, "failed to read mac bridge: %d\n", err); return; } if (!mac_bridge.valid) continue; if (mac_bridge.val[1] & GSWIP_TABLE_MAC_BRIDGE_STATIC) continue; if (((mac_bridge.val[0] & GENMASK(7, 4)) >> 4) != port) continue; mac_bridge.valid = false; err = gswip_pce_table_entry_write(priv, &mac_bridge); if (err) { dev_err(priv->dev, "failed to write mac bridge: %d\n", err); return; } } } static void gswip_port_stp_state_set(struct dsa_switch *ds, int port, u8 state) { struct gswip_priv *priv = ds->priv; u32 stp_state; switch (state) { case BR_STATE_DISABLED: gswip_switch_mask(priv, GSWIP_SDMA_PCTRL_EN, 0, GSWIP_SDMA_PCTRLp(port)); return; case BR_STATE_BLOCKING: case BR_STATE_LISTENING: stp_state = GSWIP_PCE_PCTRL_0_PSTATE_LISTEN; break; case BR_STATE_LEARNING: stp_state = GSWIP_PCE_PCTRL_0_PSTATE_LEARNING; break; case BR_STATE_FORWARDING: stp_state = GSWIP_PCE_PCTRL_0_PSTATE_FORWARDING; break; default: dev_err(priv->dev, "invalid STP state: %d\n", state); return; } gswip_switch_mask(priv, 0, GSWIP_SDMA_PCTRL_EN, GSWIP_SDMA_PCTRLp(port)); gswip_switch_mask(priv, GSWIP_PCE_PCTRL_0_PSTATE_MASK, stp_state, GSWIP_PCE_PCTRL_0p(port)); } static int gswip_port_fdb(struct dsa_switch *ds, int port, const unsigned char *addr, u16 vid, bool add) { struct gswip_priv *priv = ds->priv; struct net_device *bridge = dsa_to_port(ds, port)->bridge_dev; struct gswip_pce_table_entry mac_bridge = {0,}; unsigned int cpu_port = priv->hw_info->cpu_port; int fid = -1; int i; int err; if (!bridge) return -EINVAL; for (i = cpu_port; i < ARRAY_SIZE(priv->vlans); i++) { if (priv->vlans[i].bridge == bridge) { fid = priv->vlans[i].fid; break; } } if (fid == -1) { dev_err(priv->dev, "Port not part of a bridge\n"); return -EINVAL; } mac_bridge.table = GSWIP_TABLE_MAC_BRIDGE; mac_bridge.key_mode = true; mac_bridge.key[0] = addr[5] | (addr[4] << 8); mac_bridge.key[1] = addr[3] | (addr[2] << 8); mac_bridge.key[2] = addr[1] | (addr[0] << 8); mac_bridge.key[3] = fid; mac_bridge.val[0] = add ? BIT(port) : 0; /* port map */ mac_bridge.val[1] = GSWIP_TABLE_MAC_BRIDGE_STATIC; mac_bridge.valid = add; err = gswip_pce_table_entry_write(priv, &mac_bridge); if (err) dev_err(priv->dev, "failed to write mac bridge: %d\n", err); return err; } static int gswip_port_fdb_add(struct dsa_switch *ds, int port, const unsigned char *addr, u16 vid) { return gswip_port_fdb(ds, port, addr, vid, true); } static int gswip_port_fdb_del(struct dsa_switch *ds, int port, const unsigned char *addr, u16 vid) { return gswip_port_fdb(ds, port, addr, vid, false); } static int gswip_port_fdb_dump(struct dsa_switch *ds, int port, dsa_fdb_dump_cb_t *cb, void *data) { struct gswip_priv *priv = ds->priv; struct gswip_pce_table_entry mac_bridge = {0,}; unsigned char addr[6]; int i; int err; for (i = 0; i < 2048; i++) { mac_bridge.table = GSWIP_TABLE_MAC_BRIDGE; mac_bridge.index = i; err = gswip_pce_table_entry_read(priv, &mac_bridge); if (err) { dev_err(priv->dev, "failed to write mac bridge: %d\n", err); return err; } if (!mac_bridge.valid) continue; addr[5] = mac_bridge.key[0] & 0xff; addr[4] = (mac_bridge.key[0] >> 8) & 0xff; addr[3] = mac_bridge.key[1] & 0xff; addr[2] = (mac_bridge.key[1] >> 8) & 0xff; addr[1] = mac_bridge.key[2] & 0xff; addr[0] = (mac_bridge.key[2] >> 8) & 0xff; if (mac_bridge.val[1] & GSWIP_TABLE_MAC_BRIDGE_STATIC) { if (mac_bridge.val[0] & BIT(port)) { err = cb(addr, 0, true, data); if (err) return err; } } else { if (((mac_bridge.val[0] & GENMASK(7, 4)) >> 4) == port) { err = cb(addr, 0, false, data); if (err) return err; } } } return 0; } static void gswip_phylink_validate(struct dsa_switch *ds, int port, unsigned long *supported, struct phylink_link_state *state) { __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, }; switch (port) { case 0: case 1: if (!phy_interface_mode_is_rgmii(state->interface) && state->interface != PHY_INTERFACE_MODE_MII && state->interface != PHY_INTERFACE_MODE_REVMII && state->interface != PHY_INTERFACE_MODE_RMII) goto unsupported; break; case 2: case 3: case 4: if (state->interface != PHY_INTERFACE_MODE_INTERNAL) goto unsupported; break; case 5: if (!phy_interface_mode_is_rgmii(state->interface) && state->interface != PHY_INTERFACE_MODE_INTERNAL) goto unsupported; break; default: bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS); dev_err(ds->dev, "Unsupported port: %i\n", port); return; } /* Allow all the expected bits */ phylink_set(mask, Autoneg); phylink_set_port_modes(mask); phylink_set(mask, Pause); phylink_set(mask, Asym_Pause); /* With the exclusion of MII, Reverse MII and Reduced MII, we * support Gigabit, including Half duplex */ if (state->interface != PHY_INTERFACE_MODE_MII && state->interface != PHY_INTERFACE_MODE_REVMII && state->interface != PHY_INTERFACE_MODE_RMII) { phylink_set(mask, 1000baseT_Full); phylink_set(mask, 1000baseT_Half); } phylink_set(mask, 10baseT_Half); phylink_set(mask, 10baseT_Full); phylink_set(mask, 100baseT_Half); phylink_set(mask, 100baseT_Full); bitmap_and(supported, supported, mask, __ETHTOOL_LINK_MODE_MASK_NBITS); bitmap_and(state->advertising, state->advertising, mask, __ETHTOOL_LINK_MODE_MASK_NBITS); return; unsupported: bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS); dev_err(ds->dev, "Unsupported interface '%s' for port %d\n", phy_modes(state->interface), port); return; } static void gswip_port_set_link(struct gswip_priv *priv, int port, bool link) { u32 mdio_phy; if (link) mdio_phy = GSWIP_MDIO_PHY_LINK_UP; else mdio_phy = GSWIP_MDIO_PHY_LINK_DOWN; gswip_mdio_mask(priv, GSWIP_MDIO_PHY_LINK_MASK, mdio_phy, GSWIP_MDIO_PHYp(port)); } static void gswip_port_set_speed(struct gswip_priv *priv, int port, int speed, phy_interface_t interface) { u32 mdio_phy = 0, mii_cfg = 0, mac_ctrl_0 = 0; switch (speed) { case SPEED_10: mdio_phy = GSWIP_MDIO_PHY_SPEED_M10; if (interface == PHY_INTERFACE_MODE_RMII) mii_cfg = GSWIP_MII_CFG_RATE_M50; else mii_cfg = GSWIP_MII_CFG_RATE_M2P5; mac_ctrl_0 = GSWIP_MAC_CTRL_0_GMII_MII; break; case SPEED_100: mdio_phy = GSWIP_MDIO_PHY_SPEED_M100; if (interface == PHY_INTERFACE_MODE_RMII) mii_cfg = GSWIP_MII_CFG_RATE_M50; else mii_cfg = GSWIP_MII_CFG_RATE_M25; mac_ctrl_0 = GSWIP_MAC_CTRL_0_GMII_MII; break; case SPEED_1000: mdio_phy = GSWIP_MDIO_PHY_SPEED_G1; mii_cfg = GSWIP_MII_CFG_RATE_M125; mac_ctrl_0 = GSWIP_MAC_CTRL_0_GMII_RGMII; break; } gswip_mdio_mask(priv, GSWIP_MDIO_PHY_SPEED_MASK, mdio_phy, GSWIP_MDIO_PHYp(port)); gswip_mii_mask_cfg(priv, GSWIP_MII_CFG_RATE_MASK, mii_cfg, port); gswip_switch_mask(priv, GSWIP_MAC_CTRL_0_GMII_MASK, mac_ctrl_0, GSWIP_MAC_CTRL_0p(port)); } static void gswip_port_set_duplex(struct gswip_priv *priv, int port, int duplex) { u32 mac_ctrl_0, mdio_phy; if (duplex == DUPLEX_FULL) { mac_ctrl_0 = GSWIP_MAC_CTRL_0_FDUP_EN; mdio_phy = GSWIP_MDIO_PHY_FDUP_EN; } else { mac_ctrl_0 = GSWIP_MAC_CTRL_0_FDUP_DIS; mdio_phy = GSWIP_MDIO_PHY_FDUP_DIS; } gswip_switch_mask(priv, GSWIP_MAC_CTRL_0_FDUP_MASK, mac_ctrl_0, GSWIP_MAC_CTRL_0p(port)); gswip_mdio_mask(priv, GSWIP_MDIO_PHY_FDUP_MASK, mdio_phy, GSWIP_MDIO_PHYp(port)); } static void gswip_port_set_pause(struct gswip_priv *priv, int port, bool tx_pause, bool rx_pause) { u32 mac_ctrl_0, mdio_phy; if (tx_pause && rx_pause) { mac_ctrl_0 = GSWIP_MAC_CTRL_0_FCON_RXTX; mdio_phy = GSWIP_MDIO_PHY_FCONTX_EN | GSWIP_MDIO_PHY_FCONRX_EN; } else if (tx_pause) { mac_ctrl_0 = GSWIP_MAC_CTRL_0_FCON_TX; mdio_phy = GSWIP_MDIO_PHY_FCONTX_EN | GSWIP_MDIO_PHY_FCONRX_DIS; } else if (rx_pause) { mac_ctrl_0 = GSWIP_MAC_CTRL_0_FCON_RX; mdio_phy = GSWIP_MDIO_PHY_FCONTX_DIS | GSWIP_MDIO_PHY_FCONRX_EN; } else { mac_ctrl_0 = GSWIP_MAC_CTRL_0_FCON_NONE; mdio_phy = GSWIP_MDIO_PHY_FCONTX_DIS | GSWIP_MDIO_PHY_FCONRX_DIS; } gswip_switch_mask(priv, GSWIP_MAC_CTRL_0_FCON_MASK, mac_ctrl_0, GSWIP_MAC_CTRL_0p(port)); gswip_mdio_mask(priv, GSWIP_MDIO_PHY_FCONTX_MASK | GSWIP_MDIO_PHY_FCONRX_MASK, mdio_phy, GSWIP_MDIO_PHYp(port)); } static void gswip_phylink_mac_config(struct dsa_switch *ds, int port, unsigned int mode, const struct phylink_link_state *state) { struct gswip_priv *priv = ds->priv; u32 miicfg = 0; miicfg |= GSWIP_MII_CFG_LDCLKDIS; switch (state->interface) { case PHY_INTERFACE_MODE_MII: case PHY_INTERFACE_MODE_INTERNAL: miicfg |= GSWIP_MII_CFG_MODE_MIIM; break; case PHY_INTERFACE_MODE_REVMII: miicfg |= GSWIP_MII_CFG_MODE_MIIP; break; case PHY_INTERFACE_MODE_RMII: miicfg |= GSWIP_MII_CFG_MODE_RMIIM; break; case PHY_INTERFACE_MODE_RGMII: case PHY_INTERFACE_MODE_RGMII_ID: case PHY_INTERFACE_MODE_RGMII_RXID: case PHY_INTERFACE_MODE_RGMII_TXID: miicfg |= GSWIP_MII_CFG_MODE_RGMII; break; default: dev_err(ds->dev, "Unsupported interface: %d\n", state->interface); return; } gswip_mii_mask_cfg(priv, GSWIP_MII_CFG_MODE_MASK | GSWIP_MII_CFG_RMII_CLK | GSWIP_MII_CFG_RGMII_IBS | GSWIP_MII_CFG_LDCLKDIS, miicfg, port); switch (state->interface) { case PHY_INTERFACE_MODE_RGMII_ID: gswip_mii_mask_pcdu(priv, GSWIP_MII_PCDU_TXDLY_MASK | GSWIP_MII_PCDU_RXDLY_MASK, 0, port); break; case PHY_INTERFACE_MODE_RGMII_RXID: gswip_mii_mask_pcdu(priv, GSWIP_MII_PCDU_RXDLY_MASK, 0, port); break; case PHY_INTERFACE_MODE_RGMII_TXID: gswip_mii_mask_pcdu(priv, GSWIP_MII_PCDU_TXDLY_MASK, 0, port); break; default: break; } } static void gswip_phylink_mac_link_down(struct dsa_switch *ds, int port, unsigned int mode, phy_interface_t interface) { struct gswip_priv *priv = ds->priv; gswip_mii_mask_cfg(priv, GSWIP_MII_CFG_EN, 0, port); if (!dsa_is_cpu_port(ds, port)) gswip_port_set_link(priv, port, false); } static void gswip_phylink_mac_link_up(struct dsa_switch *ds, int port, unsigned int mode, phy_interface_t interface, struct phy_device *phydev, int speed, int duplex, bool tx_pause, bool rx_pause) { struct gswip_priv *priv = ds->priv; if (!dsa_is_cpu_port(ds, port)) { gswip_port_set_link(priv, port, true); gswip_port_set_speed(priv, port, speed, interface); gswip_port_set_duplex(priv, port, duplex); gswip_port_set_pause(priv, port, tx_pause, rx_pause); } gswip_mii_mask_cfg(priv, 0, GSWIP_MII_CFG_EN, port); } static void gswip_get_strings(struct dsa_switch *ds, int port, u32 stringset, uint8_t *data) { int i; if (stringset != ETH_SS_STATS) return; for (i = 0; i < ARRAY_SIZE(gswip_rmon_cnt); i++) strncpy(data + i * ETH_GSTRING_LEN, gswip_rmon_cnt[i].name, ETH_GSTRING_LEN); } static u32 gswip_bcm_ram_entry_read(struct gswip_priv *priv, u32 table, u32 index) { u32 result; int err; gswip_switch_w(priv, index, GSWIP_BM_RAM_ADDR); gswip_switch_mask(priv, GSWIP_BM_RAM_CTRL_ADDR_MASK | GSWIP_BM_RAM_CTRL_OPMOD, table | GSWIP_BM_RAM_CTRL_BAS, GSWIP_BM_RAM_CTRL); err = gswip_switch_r_timeout(priv, GSWIP_BM_RAM_CTRL, GSWIP_BM_RAM_CTRL_BAS); if (err) { dev_err(priv->dev, "timeout while reading table: %u, index: %u", table, index); return 0; } result = gswip_switch_r(priv, GSWIP_BM_RAM_VAL(0)); result |= gswip_switch_r(priv, GSWIP_BM_RAM_VAL(1)) << 16; return result; } static void gswip_get_ethtool_stats(struct dsa_switch *ds, int port, uint64_t *data) { struct gswip_priv *priv = ds->priv; const struct gswip_rmon_cnt_desc *rmon_cnt; int i; u64 high; for (i = 0; i < ARRAY_SIZE(gswip_rmon_cnt); i++) { rmon_cnt = &gswip_rmon_cnt[i]; data[i] = gswip_bcm_ram_entry_read(priv, port, rmon_cnt->offset); if (rmon_cnt->size == 2) { high = gswip_bcm_ram_entry_read(priv, port, rmon_cnt->offset + 1); data[i] |= high << 32; } } } static int gswip_get_sset_count(struct dsa_switch *ds, int port, int sset) { if (sset != ETH_SS_STATS) return 0; return ARRAY_SIZE(gswip_rmon_cnt); } static const struct dsa_switch_ops gswip_switch_ops = { .get_tag_protocol = gswip_get_tag_protocol, .setup = gswip_setup, .port_enable = gswip_port_enable, .port_disable = gswip_port_disable, .port_bridge_join = gswip_port_bridge_join, .port_bridge_leave = gswip_port_bridge_leave, .port_fast_age = gswip_port_fast_age, .port_vlan_filtering = gswip_port_vlan_filtering, .port_vlan_prepare = gswip_port_vlan_prepare, .port_vlan_add = gswip_port_vlan_add, .port_vlan_del = gswip_port_vlan_del, .port_stp_state_set = gswip_port_stp_state_set, .port_fdb_add = gswip_port_fdb_add, .port_fdb_del = gswip_port_fdb_del, .port_fdb_dump = gswip_port_fdb_dump, .phylink_validate = gswip_phylink_validate, .phylink_mac_config = gswip_phylink_mac_config, .phylink_mac_link_down = gswip_phylink_mac_link_down, .phylink_mac_link_up = gswip_phylink_mac_link_up, .get_strings = gswip_get_strings, .get_ethtool_stats = gswip_get_ethtool_stats, .get_sset_count = gswip_get_sset_count, }; static const struct xway_gphy_match_data xrx200a1x_gphy_data = { .fe_firmware_name = "lantiq/xrx200_phy22f_a14.bin", .ge_firmware_name = "lantiq/xrx200_phy11g_a14.bin", }; static const struct xway_gphy_match_data xrx200a2x_gphy_data = { .fe_firmware_name = "lantiq/xrx200_phy22f_a22.bin", .ge_firmware_name = "lantiq/xrx200_phy11g_a22.bin", }; static const struct xway_gphy_match_data xrx300_gphy_data = { .fe_firmware_name = "lantiq/xrx300_phy22f_a21.bin", .ge_firmware_name = "lantiq/xrx300_phy11g_a21.bin", }; static const struct of_device_id xway_gphy_match[] = { { .compatible = "lantiq,xrx200-gphy-fw", .data = NULL }, { .compatible = "lantiq,xrx200a1x-gphy-fw", .data = &xrx200a1x_gphy_data }, { .compatible = "lantiq,xrx200a2x-gphy-fw", .data = &xrx200a2x_gphy_data }, { .compatible = "lantiq,xrx300-gphy-fw", .data = &xrx300_gphy_data }, { .compatible = "lantiq,xrx330-gphy-fw", .data = &xrx300_gphy_data }, {}, }; static int gswip_gphy_fw_load(struct gswip_priv *priv, struct gswip_gphy_fw *gphy_fw) { struct device *dev = priv->dev; const struct firmware *fw; void *fw_addr; dma_addr_t dma_addr; dma_addr_t dev_addr; size_t size; int ret; ret = clk_prepare_enable(gphy_fw->clk_gate); if (ret) return ret; reset_control_assert(gphy_fw->reset); ret = request_firmware(&fw, gphy_fw->fw_name, dev); if (ret) { dev_err(dev, "failed to load firmware: %s, error: %i\n", gphy_fw->fw_name, ret); return ret; } /* GPHY cores need the firmware code in a persistent and contiguous * memory area with a 16 kB boundary aligned start address. */ size = fw->size + XRX200_GPHY_FW_ALIGN; fw_addr = dmam_alloc_coherent(dev, size, &dma_addr, GFP_KERNEL); if (fw_addr) { fw_addr = PTR_ALIGN(fw_addr, XRX200_GPHY_FW_ALIGN); dev_addr = ALIGN(dma_addr, XRX200_GPHY_FW_ALIGN); memcpy(fw_addr, fw->data, fw->size); } else { dev_err(dev, "failed to alloc firmware memory\n"); release_firmware(fw); return -ENOMEM; } release_firmware(fw); ret = regmap_write(priv->rcu_regmap, gphy_fw->fw_addr_offset, dev_addr); if (ret) return ret; reset_control_deassert(gphy_fw->reset); return ret; } static int gswip_gphy_fw_probe(struct gswip_priv *priv, struct gswip_gphy_fw *gphy_fw, struct device_node *gphy_fw_np, int i) { struct device *dev = priv->dev; u32 gphy_mode; int ret; char gphyname[10]; snprintf(gphyname, sizeof(gphyname), "gphy%d", i); gphy_fw->clk_gate = devm_clk_get(dev, gphyname); if (IS_ERR(gphy_fw->clk_gate)) { dev_err(dev, "Failed to lookup gate clock\n"); return PTR_ERR(gphy_fw->clk_gate); } ret = of_property_read_u32(gphy_fw_np, "reg", &gphy_fw->fw_addr_offset); if (ret) return ret; ret = of_property_read_u32(gphy_fw_np, "lantiq,gphy-mode", &gphy_mode); /* Default to GE mode */ if (ret) gphy_mode = GPHY_MODE_GE; switch (gphy_mode) { case GPHY_MODE_FE: gphy_fw->fw_name = priv->gphy_fw_name_cfg->fe_firmware_name; break; case GPHY_MODE_GE: gphy_fw->fw_name = priv->gphy_fw_name_cfg->ge_firmware_name; break; default: dev_err(dev, "Unknown GPHY mode %d\n", gphy_mode); return -EINVAL; } gphy_fw->reset = of_reset_control_array_get_exclusive(gphy_fw_np); if (IS_ERR(gphy_fw->reset)) { if (PTR_ERR(gphy_fw->reset) != -EPROBE_DEFER) dev_err(dev, "Failed to lookup gphy reset\n"); return PTR_ERR(gphy_fw->reset); } return gswip_gphy_fw_load(priv, gphy_fw); } static void gswip_gphy_fw_remove(struct gswip_priv *priv, struct gswip_gphy_fw *gphy_fw) { int ret; /* check if the device was fully probed */ if (!gphy_fw->fw_name) return; ret = regmap_write(priv->rcu_regmap, gphy_fw->fw_addr_offset, 0); if (ret) dev_err(priv->dev, "can not reset GPHY FW pointer"); clk_disable_unprepare(gphy_fw->clk_gate); reset_control_put(gphy_fw->reset); } static int gswip_gphy_fw_list(struct gswip_priv *priv, struct device_node *gphy_fw_list_np, u32 version) { struct device *dev = priv->dev; struct device_node *gphy_fw_np; const struct of_device_id *match; int err; int i = 0; /* The VRX200 rev 1.1 uses the GSWIP 2.0 and needs the older * GPHY firmware. The VRX200 rev 1.2 uses the GSWIP 2.1 and also * needs a different GPHY firmware. */ if (of_device_is_compatible(gphy_fw_list_np, "lantiq,xrx200-gphy-fw")) { switch (version) { case GSWIP_VERSION_2_0: priv->gphy_fw_name_cfg = &xrx200a1x_gphy_data; break; case GSWIP_VERSION_2_1: priv->gphy_fw_name_cfg = &xrx200a2x_gphy_data; break; default: dev_err(dev, "unknown GSWIP version: 0x%x", version); return -ENOENT; } } match = of_match_node(xway_gphy_match, gphy_fw_list_np); if (match && match->data) priv->gphy_fw_name_cfg = match->data; if (!priv->gphy_fw_name_cfg) { dev_err(dev, "GPHY compatible type not supported"); return -ENOENT; } priv->num_gphy_fw = of_get_available_child_count(gphy_fw_list_np); if (!priv->num_gphy_fw) return -ENOENT; priv->rcu_regmap = syscon_regmap_lookup_by_phandle(gphy_fw_list_np, "lantiq,rcu"); if (IS_ERR(priv->rcu_regmap)) return PTR_ERR(priv->rcu_regmap); priv->gphy_fw = devm_kmalloc_array(dev, priv->num_gphy_fw, sizeof(*priv->gphy_fw), GFP_KERNEL | __GFP_ZERO); if (!priv->gphy_fw) return -ENOMEM; for_each_available_child_of_node(gphy_fw_list_np, gphy_fw_np) { err = gswip_gphy_fw_probe(priv, &priv->gphy_fw[i], gphy_fw_np, i); if (err) { of_node_put(gphy_fw_np); goto remove_gphy; } i++; } /* The standalone PHY11G requires 300ms to be fully * initialized and ready for any MDIO communication after being * taken out of reset. For the SoC-internal GPHY variant there * is no (known) documentation for the minimum time after a * reset. Use the same value as for the standalone variant as * some users have reported internal PHYs not being detected * without any delay. */ msleep(300); return 0; remove_gphy: for (i = 0; i < priv->num_gphy_fw; i++) gswip_gphy_fw_remove(priv, &priv->gphy_fw[i]); return err; } static int gswip_probe(struct platform_device *pdev) { struct gswip_priv *priv; struct device_node *mdio_np, *gphy_fw_np; struct device *dev = &pdev->dev; int err; int i; u32 version; priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; priv->gswip = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(priv->gswip)) return PTR_ERR(priv->gswip); priv->mdio = devm_platform_ioremap_resource(pdev, 1); if (IS_ERR(priv->mdio)) return PTR_ERR(priv->mdio); priv->mii = devm_platform_ioremap_resource(pdev, 2); if (IS_ERR(priv->mii)) return PTR_ERR(priv->mii); priv->hw_info = of_device_get_match_data(dev); if (!priv->hw_info) return -EINVAL; priv->ds = devm_kzalloc(dev, sizeof(*priv->ds), GFP_KERNEL); if (!priv->ds) return -ENOMEM; priv->ds->dev = dev; priv->ds->num_ports = priv->hw_info->max_ports; priv->ds->priv = priv; priv->ds->ops = &gswip_switch_ops; priv->dev = dev; version = gswip_switch_r(priv, GSWIP_VERSION); /* bring up the mdio bus */ gphy_fw_np = of_get_compatible_child(dev->of_node, "lantiq,gphy-fw"); if (gphy_fw_np) { err = gswip_gphy_fw_list(priv, gphy_fw_np, version); of_node_put(gphy_fw_np); if (err) { dev_err(dev, "gphy fw probe failed\n"); return err; } } /* bring up the mdio bus */ mdio_np = of_get_compatible_child(dev->of_node, "lantiq,xrx200-mdio"); if (mdio_np) { err = gswip_mdio(priv, mdio_np); if (err) { dev_err(dev, "mdio probe failed\n"); goto put_mdio_node; } } err = dsa_register_switch(priv->ds); if (err) { dev_err(dev, "dsa switch register failed: %i\n", err); goto mdio_bus; } if (!dsa_is_cpu_port(priv->ds, priv->hw_info->cpu_port)) { dev_err(dev, "wrong CPU port defined, HW only supports port: %i", priv->hw_info->cpu_port); err = -EINVAL; goto disable_switch; } platform_set_drvdata(pdev, priv); dev_info(dev, "probed GSWIP version %lx mod %lx\n", (version & GSWIP_VERSION_REV_MASK) >> GSWIP_VERSION_REV_SHIFT, (version & GSWIP_VERSION_MOD_MASK) >> GSWIP_VERSION_MOD_SHIFT); return 0; disable_switch: gswip_mdio_mask(priv, GSWIP_MDIO_GLOB_ENABLE, 0, GSWIP_MDIO_GLOB); dsa_unregister_switch(priv->ds); mdio_bus: if (mdio_np) { mdiobus_unregister(priv->ds->slave_mii_bus); mdiobus_free(priv->ds->slave_mii_bus); } put_mdio_node: of_node_put(mdio_np); for (i = 0; i < priv->num_gphy_fw; i++) gswip_gphy_fw_remove(priv, &priv->gphy_fw[i]); return err; } static int gswip_remove(struct platform_device *pdev) { struct gswip_priv *priv = platform_get_drvdata(pdev); int i; /* disable the switch */ gswip_mdio_mask(priv, GSWIP_MDIO_GLOB_ENABLE, 0, GSWIP_MDIO_GLOB); dsa_unregister_switch(priv->ds); if (priv->ds->slave_mii_bus) { mdiobus_unregister(priv->ds->slave_mii_bus); of_node_put(priv->ds->slave_mii_bus->dev.of_node); mdiobus_free(priv->ds->slave_mii_bus); } for (i = 0; i < priv->num_gphy_fw; i++) gswip_gphy_fw_remove(priv, &priv->gphy_fw[i]); return 0; } static const struct gswip_hw_info gswip_xrx200 = { .max_ports = 7, .cpu_port = 6, }; static const struct of_device_id gswip_of_match[] = { { .compatible = "lantiq,xrx200-gswip", .data = &gswip_xrx200 }, {}, }; MODULE_DEVICE_TABLE(of, gswip_of_match); static struct platform_driver gswip_driver = { .probe = gswip_probe, .remove = gswip_remove, .driver = { .name = "gswip", .of_match_table = gswip_of_match, }, }; module_platform_driver(gswip_driver); MODULE_FIRMWARE("lantiq/xrx300_phy11g_a21.bin"); MODULE_FIRMWARE("lantiq/xrx300_phy22f_a21.bin"); MODULE_FIRMWARE("lantiq/xrx200_phy11g_a14.bin"); MODULE_FIRMWARE("lantiq/xrx200_phy11g_a22.bin"); MODULE_FIRMWARE("lantiq/xrx200_phy22f_a14.bin"); MODULE_FIRMWARE("lantiq/xrx200_phy22f_a22.bin"); MODULE_AUTHOR("Hauke Mehrtens "); MODULE_DESCRIPTION("Lantiq / Intel GSWIP driver"); MODULE_LICENSE("GPL v2");