// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2013-2015 Chelsio Communications. All rights reserved. */ #include #include #include "cxgb4.h" #include "t4_regs.h" #include "t4fw_api.h" #include "cxgb4_cudbg.h" #include "cxgb4_filter.h" #include "cxgb4_tc_flower.h" #define EEPROM_MAGIC 0x38E2F10C static u32 get_msglevel(struct net_device *dev) { return netdev2adap(dev)->msg_enable; } static void set_msglevel(struct net_device *dev, u32 val) { netdev2adap(dev)->msg_enable = val; } enum cxgb4_ethtool_tests { CXGB4_ETHTOOL_LB_TEST, CXGB4_ETHTOOL_MAX_TEST, }; static const char cxgb4_selftest_strings[CXGB4_ETHTOOL_MAX_TEST][ETH_GSTRING_LEN] = { "Loop back test (offline)", }; static const char * const flash_region_strings[] = { "All", "Firmware", "PHY Firmware", "Boot", "Boot CFG", }; static const char stats_strings[][ETH_GSTRING_LEN] = { "tx_octets_ok ", "tx_frames_ok ", "tx_broadcast_frames ", "tx_multicast_frames ", "tx_unicast_frames ", "tx_error_frames ", "tx_frames_64 ", "tx_frames_65_to_127 ", "tx_frames_128_to_255 ", "tx_frames_256_to_511 ", "tx_frames_512_to_1023 ", "tx_frames_1024_to_1518 ", "tx_frames_1519_to_max ", "tx_frames_dropped ", "tx_pause_frames ", "tx_ppp0_frames ", "tx_ppp1_frames ", "tx_ppp2_frames ", "tx_ppp3_frames ", "tx_ppp4_frames ", "tx_ppp5_frames ", "tx_ppp6_frames ", "tx_ppp7_frames ", "rx_octets_ok ", "rx_frames_ok ", "rx_broadcast_frames ", "rx_multicast_frames ", "rx_unicast_frames ", "rx_frames_too_long ", "rx_jabber_errors ", "rx_fcs_errors ", "rx_length_errors ", "rx_symbol_errors ", "rx_runt_frames ", "rx_frames_64 ", "rx_frames_65_to_127 ", "rx_frames_128_to_255 ", "rx_frames_256_to_511 ", "rx_frames_512_to_1023 ", "rx_frames_1024_to_1518 ", "rx_frames_1519_to_max ", "rx_pause_frames ", "rx_ppp0_frames ", "rx_ppp1_frames ", "rx_ppp2_frames ", "rx_ppp3_frames ", "rx_ppp4_frames ", "rx_ppp5_frames ", "rx_ppp6_frames ", "rx_ppp7_frames ", "rx_bg0_frames_dropped ", "rx_bg1_frames_dropped ", "rx_bg2_frames_dropped ", "rx_bg3_frames_dropped ", "rx_bg0_frames_trunc ", "rx_bg1_frames_trunc ", "rx_bg2_frames_trunc ", "rx_bg3_frames_trunc ", "tso ", "uso ", "tx_csum_offload ", "rx_csum_good ", "vlan_extractions ", "vlan_insertions ", "gro_packets ", "gro_merged ", #if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE) "tx_tls_encrypted_packets", "tx_tls_encrypted_bytes ", "tx_tls_ctx ", "tx_tls_ooo ", "tx_tls_skip_no_sync_data", "tx_tls_drop_no_sync_data", "tx_tls_drop_bypass_req ", #endif }; static char adapter_stats_strings[][ETH_GSTRING_LEN] = { "db_drop ", "db_full ", "db_empty ", "write_coal_success ", "write_coal_fail ", }; static char loopback_stats_strings[][ETH_GSTRING_LEN] = { "-------Loopback----------- ", "octets_ok ", "frames_ok ", "bcast_frames ", "mcast_frames ", "ucast_frames ", "error_frames ", "frames_64 ", "frames_65_to_127 ", "frames_128_to_255 ", "frames_256_to_511 ", "frames_512_to_1023 ", "frames_1024_to_1518 ", "frames_1519_to_max ", "frames_dropped ", "bg0_frames_dropped ", "bg1_frames_dropped ", "bg2_frames_dropped ", "bg3_frames_dropped ", "bg0_frames_trunc ", "bg1_frames_trunc ", "bg2_frames_trunc ", "bg3_frames_trunc ", }; static const char cxgb4_priv_flags_strings[][ETH_GSTRING_LEN] = { [PRIV_FLAG_PORT_TX_VM_BIT] = "port_tx_vm_wr", }; static int get_sset_count(struct net_device *dev, int sset) { switch (sset) { case ETH_SS_STATS: return ARRAY_SIZE(stats_strings) + ARRAY_SIZE(adapter_stats_strings) + ARRAY_SIZE(loopback_stats_strings); case ETH_SS_PRIV_FLAGS: return ARRAY_SIZE(cxgb4_priv_flags_strings); case ETH_SS_TEST: return ARRAY_SIZE(cxgb4_selftest_strings); default: return -EOPNOTSUPP; } } static int get_regs_len(struct net_device *dev) { struct adapter *adap = netdev2adap(dev); return t4_get_regs_len(adap); } static int get_eeprom_len(struct net_device *dev) { return EEPROMSIZE; } static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) { struct adapter *adapter = netdev2adap(dev); u32 exprom_vers; strlcpy(info->driver, cxgb4_driver_name, sizeof(info->driver)); strlcpy(info->bus_info, pci_name(adapter->pdev), sizeof(info->bus_info)); info->regdump_len = get_regs_len(dev); if (adapter->params.fw_vers) snprintf(info->fw_version, sizeof(info->fw_version), "%u.%u.%u.%u, TP %u.%u.%u.%u", FW_HDR_FW_VER_MAJOR_G(adapter->params.fw_vers), FW_HDR_FW_VER_MINOR_G(adapter->params.fw_vers), FW_HDR_FW_VER_MICRO_G(adapter->params.fw_vers), FW_HDR_FW_VER_BUILD_G(adapter->params.fw_vers), FW_HDR_FW_VER_MAJOR_G(adapter->params.tp_vers), FW_HDR_FW_VER_MINOR_G(adapter->params.tp_vers), FW_HDR_FW_VER_MICRO_G(adapter->params.tp_vers), FW_HDR_FW_VER_BUILD_G(adapter->params.tp_vers)); if (!t4_get_exprom_version(adapter, &exprom_vers)) snprintf(info->erom_version, sizeof(info->erom_version), "%u.%u.%u.%u", FW_HDR_FW_VER_MAJOR_G(exprom_vers), FW_HDR_FW_VER_MINOR_G(exprom_vers), FW_HDR_FW_VER_MICRO_G(exprom_vers), FW_HDR_FW_VER_BUILD_G(exprom_vers)); info->n_priv_flags = ARRAY_SIZE(cxgb4_priv_flags_strings); } static void get_strings(struct net_device *dev, u32 stringset, u8 *data) { if (stringset == ETH_SS_STATS) { memcpy(data, stats_strings, sizeof(stats_strings)); data += sizeof(stats_strings); memcpy(data, adapter_stats_strings, sizeof(adapter_stats_strings)); data += sizeof(adapter_stats_strings); memcpy(data, loopback_stats_strings, sizeof(loopback_stats_strings)); } else if (stringset == ETH_SS_PRIV_FLAGS) { memcpy(data, cxgb4_priv_flags_strings, sizeof(cxgb4_priv_flags_strings)); } else if (stringset == ETH_SS_TEST) { memcpy(data, cxgb4_selftest_strings, sizeof(cxgb4_selftest_strings)); } } /* port stats maintained per queue of the port. They should be in the same * order as in stats_strings above. */ struct queue_port_stats { u64 tso; u64 uso; u64 tx_csum; u64 rx_csum; u64 vlan_ex; u64 vlan_ins; u64 gro_pkts; u64 gro_merged; #if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE) u64 tx_tls_encrypted_packets; u64 tx_tls_encrypted_bytes; u64 tx_tls_ctx; u64 tx_tls_ooo; u64 tx_tls_skip_no_sync_data; u64 tx_tls_drop_no_sync_data; u64 tx_tls_drop_bypass_req; #endif }; struct adapter_stats { u64 db_drop; u64 db_full; u64 db_empty; u64 wc_success; u64 wc_fail; }; static void collect_sge_port_stats(const struct adapter *adap, const struct port_info *p, struct queue_port_stats *s) { const struct sge_eth_txq *tx = &adap->sge.ethtxq[p->first_qset]; const struct sge_eth_rxq *rx = &adap->sge.ethrxq[p->first_qset]; #if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE) const struct ch_ktls_port_stats_debug *ktls_stats; #endif struct sge_eohw_txq *eohw_tx; unsigned int i; memset(s, 0, sizeof(*s)); for (i = 0; i < p->nqsets; i++, rx++, tx++) { s->tso += tx->tso; s->uso += tx->uso; s->tx_csum += tx->tx_cso; s->rx_csum += rx->stats.rx_cso; s->vlan_ex += rx->stats.vlan_ex; s->vlan_ins += tx->vlan_ins; s->gro_pkts += rx->stats.lro_pkts; s->gro_merged += rx->stats.lro_merged; } if (adap->sge.eohw_txq) { eohw_tx = &adap->sge.eohw_txq[p->first_qset]; for (i = 0; i < p->nqsets; i++, eohw_tx++) { s->tso += eohw_tx->tso; s->uso += eohw_tx->uso; s->tx_csum += eohw_tx->tx_cso; s->vlan_ins += eohw_tx->vlan_ins; } } #if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE) ktls_stats = &adap->ch_ktls_stats.ktls_port[p->port_id]; s->tx_tls_encrypted_packets = atomic64_read(&ktls_stats->ktls_tx_encrypted_packets); s->tx_tls_encrypted_bytes = atomic64_read(&ktls_stats->ktls_tx_encrypted_bytes); s->tx_tls_ctx = atomic64_read(&ktls_stats->ktls_tx_ctx); s->tx_tls_ooo = atomic64_read(&ktls_stats->ktls_tx_ooo); s->tx_tls_skip_no_sync_data = atomic64_read(&ktls_stats->ktls_tx_skip_no_sync_data); s->tx_tls_drop_no_sync_data = atomic64_read(&ktls_stats->ktls_tx_drop_no_sync_data); s->tx_tls_drop_bypass_req = atomic64_read(&ktls_stats->ktls_tx_drop_bypass_req); #endif } static void collect_adapter_stats(struct adapter *adap, struct adapter_stats *s) { u64 val1, val2; memset(s, 0, sizeof(*s)); s->db_drop = adap->db_stats.db_drop; s->db_full = adap->db_stats.db_full; s->db_empty = adap->db_stats.db_empty; if (!is_t4(adap->params.chip)) { int v; v = t4_read_reg(adap, SGE_STAT_CFG_A); if (STATSOURCE_T5_G(v) == 7) { val2 = t4_read_reg(adap, SGE_STAT_MATCH_A); val1 = t4_read_reg(adap, SGE_STAT_TOTAL_A); s->wc_success = val1 - val2; s->wc_fail = val2; } } } static void get_stats(struct net_device *dev, struct ethtool_stats *stats, u64 *data) { struct port_info *pi = netdev_priv(dev); struct adapter *adapter = pi->adapter; struct lb_port_stats s; int i; u64 *p0; t4_get_port_stats_offset(adapter, pi->tx_chan, (struct port_stats *)data, &pi->stats_base); data += sizeof(struct port_stats) / sizeof(u64); collect_sge_port_stats(adapter, pi, (struct queue_port_stats *)data); data += sizeof(struct queue_port_stats) / sizeof(u64); collect_adapter_stats(adapter, (struct adapter_stats *)data); data += sizeof(struct adapter_stats) / sizeof(u64); *data++ = (u64)pi->port_id; memset(&s, 0, sizeof(s)); t4_get_lb_stats(adapter, pi->port_id, &s); p0 = &s.octets; for (i = 0; i < ARRAY_SIZE(loopback_stats_strings) - 1; i++) *data++ = (unsigned long long)*p0++; } static void get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf) { struct adapter *adap = netdev2adap(dev); size_t buf_size; buf_size = t4_get_regs_len(adap); regs->version = mk_adap_vers(adap); t4_get_regs(adap, buf, buf_size); } static int restart_autoneg(struct net_device *dev) { struct port_info *p = netdev_priv(dev); if (!netif_running(dev)) return -EAGAIN; if (p->link_cfg.autoneg != AUTONEG_ENABLE) return -EINVAL; t4_restart_aneg(p->adapter, p->adapter->pf, p->tx_chan); return 0; } static int identify_port(struct net_device *dev, enum ethtool_phys_id_state state) { unsigned int val; struct adapter *adap = netdev2adap(dev); if (state == ETHTOOL_ID_ACTIVE) val = 0xffff; else if (state == ETHTOOL_ID_INACTIVE) val = 0; else return -EINVAL; return t4_identify_port(adap, adap->pf, netdev2pinfo(dev)->viid, val); } /** * from_fw_port_mod_type - translate Firmware Port/Module type to Ethtool * @port_type: Firmware Port Type * @mod_type: Firmware Module Type * * Translate Firmware Port/Module type to Ethtool Port Type. */ static int from_fw_port_mod_type(enum fw_port_type port_type, enum fw_port_module_type mod_type) { if (port_type == FW_PORT_TYPE_BT_SGMII || port_type == FW_PORT_TYPE_BT_XFI || port_type == FW_PORT_TYPE_BT_XAUI) { return PORT_TP; } else if (port_type == FW_PORT_TYPE_FIBER_XFI || port_type == FW_PORT_TYPE_FIBER_XAUI) { return PORT_FIBRE; } else if (port_type == FW_PORT_TYPE_SFP || port_type == FW_PORT_TYPE_QSFP_10G || port_type == FW_PORT_TYPE_QSA || port_type == FW_PORT_TYPE_QSFP || port_type == FW_PORT_TYPE_CR4_QSFP || port_type == FW_PORT_TYPE_CR_QSFP || port_type == FW_PORT_TYPE_CR2_QSFP || port_type == FW_PORT_TYPE_SFP28) { if (mod_type == FW_PORT_MOD_TYPE_LR || mod_type == FW_PORT_MOD_TYPE_SR || mod_type == FW_PORT_MOD_TYPE_ER || mod_type == FW_PORT_MOD_TYPE_LRM) return PORT_FIBRE; else if (mod_type == FW_PORT_MOD_TYPE_TWINAX_PASSIVE || mod_type == FW_PORT_MOD_TYPE_TWINAX_ACTIVE) return PORT_DA; else return PORT_OTHER; } else if (port_type == FW_PORT_TYPE_KR4_100G || port_type == FW_PORT_TYPE_KR_SFP28 || port_type == FW_PORT_TYPE_KR_XLAUI) { return PORT_NONE; } return PORT_OTHER; } /** * speed_to_fw_caps - translate Port Speed to Firmware Port Capabilities * @speed: speed in Kb/s * * Translates a specific Port Speed into a Firmware Port Capabilities * value. */ static unsigned int speed_to_fw_caps(int speed) { if (speed == 100) return FW_PORT_CAP32_SPEED_100M; if (speed == 1000) return FW_PORT_CAP32_SPEED_1G; if (speed == 10000) return FW_PORT_CAP32_SPEED_10G; if (speed == 25000) return FW_PORT_CAP32_SPEED_25G; if (speed == 40000) return FW_PORT_CAP32_SPEED_40G; if (speed == 50000) return FW_PORT_CAP32_SPEED_50G; if (speed == 100000) return FW_PORT_CAP32_SPEED_100G; if (speed == 200000) return FW_PORT_CAP32_SPEED_200G; if (speed == 400000) return FW_PORT_CAP32_SPEED_400G; return 0; } /** * fw_caps_to_lmm - translate Firmware to ethtool Link Mode Mask * @port_type: Firmware Port Type * @fw_caps: Firmware Port Capabilities * @link_mode_mask: ethtool Link Mode Mask * * Translate a Firmware Port Capabilities specification to an ethtool * Link Mode Mask. */ static void fw_caps_to_lmm(enum fw_port_type port_type, fw_port_cap32_t fw_caps, unsigned long *link_mode_mask) { #define SET_LMM(__lmm_name) \ do { \ __set_bit(ETHTOOL_LINK_MODE_ ## __lmm_name ## _BIT, \ link_mode_mask); \ } while (0) #define FW_CAPS_TO_LMM(__fw_name, __lmm_name) \ do { \ if (fw_caps & FW_PORT_CAP32_ ## __fw_name) \ SET_LMM(__lmm_name); \ } while (0) switch (port_type) { case FW_PORT_TYPE_BT_SGMII: case FW_PORT_TYPE_BT_XFI: case FW_PORT_TYPE_BT_XAUI: SET_LMM(TP); FW_CAPS_TO_LMM(SPEED_100M, 100baseT_Full); FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full); FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full); break; case FW_PORT_TYPE_KX4: case FW_PORT_TYPE_KX: SET_LMM(Backplane); FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full); FW_CAPS_TO_LMM(SPEED_10G, 10000baseKX4_Full); break; case FW_PORT_TYPE_KR: SET_LMM(Backplane); FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full); break; case FW_PORT_TYPE_BP_AP: SET_LMM(Backplane); FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full); FW_CAPS_TO_LMM(SPEED_10G, 10000baseR_FEC); FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full); break; case FW_PORT_TYPE_BP4_AP: SET_LMM(Backplane); FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full); FW_CAPS_TO_LMM(SPEED_10G, 10000baseR_FEC); FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full); FW_CAPS_TO_LMM(SPEED_10G, 10000baseKX4_Full); break; case FW_PORT_TYPE_FIBER_XFI: case FW_PORT_TYPE_FIBER_XAUI: case FW_PORT_TYPE_SFP: case FW_PORT_TYPE_QSFP_10G: case FW_PORT_TYPE_QSA: SET_LMM(FIBRE); FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full); FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full); break; case FW_PORT_TYPE_BP40_BA: case FW_PORT_TYPE_QSFP: SET_LMM(FIBRE); FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full); FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full); FW_CAPS_TO_LMM(SPEED_40G, 40000baseSR4_Full); break; case FW_PORT_TYPE_CR_QSFP: case FW_PORT_TYPE_SFP28: SET_LMM(FIBRE); FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full); FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full); FW_CAPS_TO_LMM(SPEED_25G, 25000baseCR_Full); break; case FW_PORT_TYPE_KR_SFP28: SET_LMM(Backplane); FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full); FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full); FW_CAPS_TO_LMM(SPEED_25G, 25000baseKR_Full); break; case FW_PORT_TYPE_KR_XLAUI: SET_LMM(Backplane); FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full); FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full); FW_CAPS_TO_LMM(SPEED_40G, 40000baseKR4_Full); break; case FW_PORT_TYPE_CR2_QSFP: SET_LMM(FIBRE); FW_CAPS_TO_LMM(SPEED_50G, 50000baseSR2_Full); break; case FW_PORT_TYPE_KR4_100G: case FW_PORT_TYPE_CR4_QSFP: SET_LMM(FIBRE); FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full); FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full); FW_CAPS_TO_LMM(SPEED_40G, 40000baseSR4_Full); FW_CAPS_TO_LMM(SPEED_25G, 25000baseCR_Full); FW_CAPS_TO_LMM(SPEED_50G, 50000baseCR2_Full); FW_CAPS_TO_LMM(SPEED_100G, 100000baseCR4_Full); break; default: break; } if (fw_caps & FW_PORT_CAP32_FEC_V(FW_PORT_CAP32_FEC_M)) { FW_CAPS_TO_LMM(FEC_RS, FEC_RS); FW_CAPS_TO_LMM(FEC_BASER_RS, FEC_BASER); } else { SET_LMM(FEC_NONE); } FW_CAPS_TO_LMM(ANEG, Autoneg); FW_CAPS_TO_LMM(802_3_PAUSE, Pause); FW_CAPS_TO_LMM(802_3_ASM_DIR, Asym_Pause); #undef FW_CAPS_TO_LMM #undef SET_LMM } /** * lmm_to_fw_caps - translate ethtool Link Mode Mask to Firmware * capabilities * @link_mode_mask: ethtool Link Mode Mask * * Translate ethtool Link Mode Mask into a Firmware Port capabilities * value. */ static unsigned int lmm_to_fw_caps(const unsigned long *link_mode_mask) { unsigned int fw_caps = 0; #define LMM_TO_FW_CAPS(__lmm_name, __fw_name) \ do { \ if (test_bit(ETHTOOL_LINK_MODE_ ## __lmm_name ## _BIT, \ link_mode_mask)) \ fw_caps |= FW_PORT_CAP32_ ## __fw_name; \ } while (0) LMM_TO_FW_CAPS(100baseT_Full, SPEED_100M); LMM_TO_FW_CAPS(1000baseT_Full, SPEED_1G); LMM_TO_FW_CAPS(10000baseT_Full, SPEED_10G); LMM_TO_FW_CAPS(40000baseSR4_Full, SPEED_40G); LMM_TO_FW_CAPS(25000baseCR_Full, SPEED_25G); LMM_TO_FW_CAPS(50000baseCR2_Full, SPEED_50G); LMM_TO_FW_CAPS(100000baseCR4_Full, SPEED_100G); #undef LMM_TO_FW_CAPS return fw_caps; } static int get_link_ksettings(struct net_device *dev, struct ethtool_link_ksettings *link_ksettings) { struct port_info *pi = netdev_priv(dev); struct ethtool_link_settings *base = &link_ksettings->base; /* For the nonce, the Firmware doesn't send up Port State changes * when the Virtual Interface attached to the Port is down. So * if it's down, let's grab any changes. */ if (!netif_running(dev)) (void)t4_update_port_info(pi); ethtool_link_ksettings_zero_link_mode(link_ksettings, supported); ethtool_link_ksettings_zero_link_mode(link_ksettings, advertising); ethtool_link_ksettings_zero_link_mode(link_ksettings, lp_advertising); base->port = from_fw_port_mod_type(pi->port_type, pi->mod_type); if (pi->mdio_addr >= 0) { base->phy_address = pi->mdio_addr; base->mdio_support = (pi->port_type == FW_PORT_TYPE_BT_SGMII ? ETH_MDIO_SUPPORTS_C22 : ETH_MDIO_SUPPORTS_C45); } else { base->phy_address = 255; base->mdio_support = 0; } fw_caps_to_lmm(pi->port_type, pi->link_cfg.pcaps, link_ksettings->link_modes.supported); fw_caps_to_lmm(pi->port_type, t4_link_acaps(pi->adapter, pi->lport, &pi->link_cfg), link_ksettings->link_modes.advertising); fw_caps_to_lmm(pi->port_type, pi->link_cfg.lpacaps, link_ksettings->link_modes.lp_advertising); base->speed = (netif_carrier_ok(dev) ? pi->link_cfg.speed : SPEED_UNKNOWN); base->duplex = DUPLEX_FULL; base->autoneg = pi->link_cfg.autoneg; if (pi->link_cfg.pcaps & FW_PORT_CAP32_ANEG) ethtool_link_ksettings_add_link_mode(link_ksettings, supported, Autoneg); if (pi->link_cfg.autoneg) ethtool_link_ksettings_add_link_mode(link_ksettings, advertising, Autoneg); return 0; } static int set_link_ksettings(struct net_device *dev, const struct ethtool_link_ksettings *link_ksettings) { struct port_info *pi = netdev_priv(dev); struct link_config *lc = &pi->link_cfg; const struct ethtool_link_settings *base = &link_ksettings->base; struct link_config old_lc; unsigned int fw_caps; int ret = 0; /* only full-duplex supported */ if (base->duplex != DUPLEX_FULL) return -EINVAL; old_lc = *lc; if (!(lc->pcaps & FW_PORT_CAP32_ANEG) || base->autoneg == AUTONEG_DISABLE) { fw_caps = speed_to_fw_caps(base->speed); /* Speed must be supported by Physical Port Capabilities. */ if (!(lc->pcaps & fw_caps)) return -EINVAL; lc->speed_caps = fw_caps; lc->acaps = fw_caps; } else { fw_caps = lmm_to_fw_caps(link_ksettings->link_modes.advertising); if (!(lc->pcaps & fw_caps)) return -EINVAL; lc->speed_caps = 0; lc->acaps = fw_caps | FW_PORT_CAP32_ANEG; } lc->autoneg = base->autoneg; /* If the firmware rejects the Link Configuration request, back out * the changes and report the error. */ ret = t4_link_l1cfg(pi->adapter, pi->adapter->mbox, pi->tx_chan, lc); if (ret) *lc = old_lc; return ret; } /* Translate the Firmware FEC value into the ethtool value. */ static inline unsigned int fwcap_to_eth_fec(unsigned int fw_fec) { unsigned int eth_fec = 0; if (fw_fec & FW_PORT_CAP32_FEC_RS) eth_fec |= ETHTOOL_FEC_RS; if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS) eth_fec |= ETHTOOL_FEC_BASER; /* if nothing is set, then FEC is off */ if (!eth_fec) eth_fec = ETHTOOL_FEC_OFF; return eth_fec; } /* Translate Common Code FEC value into ethtool value. */ static inline unsigned int cc_to_eth_fec(unsigned int cc_fec) { unsigned int eth_fec = 0; if (cc_fec & FEC_AUTO) eth_fec |= ETHTOOL_FEC_AUTO; if (cc_fec & FEC_RS) eth_fec |= ETHTOOL_FEC_RS; if (cc_fec & FEC_BASER_RS) eth_fec |= ETHTOOL_FEC_BASER; /* if nothing is set, then FEC is off */ if (!eth_fec) eth_fec = ETHTOOL_FEC_OFF; return eth_fec; } /* Translate ethtool FEC value into Common Code value. */ static inline unsigned int eth_to_cc_fec(unsigned int eth_fec) { unsigned int cc_fec = 0; if (eth_fec & ETHTOOL_FEC_OFF) return cc_fec; if (eth_fec & ETHTOOL_FEC_AUTO) cc_fec |= FEC_AUTO; if (eth_fec & ETHTOOL_FEC_RS) cc_fec |= FEC_RS; if (eth_fec & ETHTOOL_FEC_BASER) cc_fec |= FEC_BASER_RS; return cc_fec; } static int get_fecparam(struct net_device *dev, struct ethtool_fecparam *fec) { const struct port_info *pi = netdev_priv(dev); const struct link_config *lc = &pi->link_cfg; /* Translate the Firmware FEC Support into the ethtool value. We * always support IEEE 802.3 "automatic" selection of Link FEC type if * any FEC is supported. */ fec->fec = fwcap_to_eth_fec(lc->pcaps); if (fec->fec != ETHTOOL_FEC_OFF) fec->fec |= ETHTOOL_FEC_AUTO; /* Translate the current internal FEC parameters into the * ethtool values. */ fec->active_fec = cc_to_eth_fec(lc->fec); return 0; } static int set_fecparam(struct net_device *dev, struct ethtool_fecparam *fec) { struct port_info *pi = netdev_priv(dev); struct link_config *lc = &pi->link_cfg; struct link_config old_lc; int ret; /* Save old Link Configuration in case the L1 Configure below * fails. */ old_lc = *lc; /* Try to perform the L1 Configure and return the result of that * effort. If it fails, revert the attempted change. */ lc->requested_fec = eth_to_cc_fec(fec->fec); ret = t4_link_l1cfg(pi->adapter, pi->adapter->mbox, pi->tx_chan, lc); if (ret) *lc = old_lc; return ret; } static void get_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause) { struct port_info *p = netdev_priv(dev); epause->autoneg = (p->link_cfg.requested_fc & PAUSE_AUTONEG) != 0; epause->rx_pause = (p->link_cfg.advertised_fc & PAUSE_RX) != 0; epause->tx_pause = (p->link_cfg.advertised_fc & PAUSE_TX) != 0; } static int set_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause) { struct port_info *p = netdev_priv(dev); struct link_config *lc = &p->link_cfg; if (epause->autoneg == AUTONEG_DISABLE) lc->requested_fc = 0; else if (lc->pcaps & FW_PORT_CAP32_ANEG) lc->requested_fc = PAUSE_AUTONEG; else return -EINVAL; if (epause->rx_pause) lc->requested_fc |= PAUSE_RX; if (epause->tx_pause) lc->requested_fc |= PAUSE_TX; if (netif_running(dev)) return t4_link_l1cfg(p->adapter, p->adapter->mbox, p->tx_chan, lc); return 0; } static void get_sge_param(struct net_device *dev, struct ethtool_ringparam *e) { const struct port_info *pi = netdev_priv(dev); const struct sge *s = &pi->adapter->sge; e->rx_max_pending = MAX_RX_BUFFERS; e->rx_mini_max_pending = MAX_RSPQ_ENTRIES; e->rx_jumbo_max_pending = 0; e->tx_max_pending = MAX_TXQ_ENTRIES; e->rx_pending = s->ethrxq[pi->first_qset].fl.size - 8; e->rx_mini_pending = s->ethrxq[pi->first_qset].rspq.size; e->rx_jumbo_pending = 0; e->tx_pending = s->ethtxq[pi->first_qset].q.size; } static int set_sge_param(struct net_device *dev, struct ethtool_ringparam *e) { int i; const struct port_info *pi = netdev_priv(dev); struct adapter *adapter = pi->adapter; struct sge *s = &adapter->sge; if (e->rx_pending > MAX_RX_BUFFERS || e->rx_jumbo_pending || e->tx_pending > MAX_TXQ_ENTRIES || e->rx_mini_pending > MAX_RSPQ_ENTRIES || e->rx_mini_pending < MIN_RSPQ_ENTRIES || e->rx_pending < MIN_FL_ENTRIES || e->tx_pending < MIN_TXQ_ENTRIES) return -EINVAL; if (adapter->flags & CXGB4_FULL_INIT_DONE) return -EBUSY; for (i = 0; i < pi->nqsets; ++i) { s->ethtxq[pi->first_qset + i].q.size = e->tx_pending; s->ethrxq[pi->first_qset + i].fl.size = e->rx_pending + 8; s->ethrxq[pi->first_qset + i].rspq.size = e->rx_mini_pending; } return 0; } /** * set_rx_intr_params - set a net devices's RX interrupt holdoff paramete! * @dev: the network device * @us: the hold-off time in us, or 0 to disable timer * @cnt: the hold-off packet count, or 0 to disable counter * * Set the RX interrupt hold-off parameters for a network device. */ static int set_rx_intr_params(struct net_device *dev, unsigned int us, unsigned int cnt) { int i, err; struct port_info *pi = netdev_priv(dev); struct adapter *adap = pi->adapter; struct sge_eth_rxq *q = &adap->sge.ethrxq[pi->first_qset]; for (i = 0; i < pi->nqsets; i++, q++) { err = cxgb4_set_rspq_intr_params(&q->rspq, us, cnt); if (err) return err; } return 0; } static int set_adaptive_rx_setting(struct net_device *dev, int adaptive_rx) { int i; struct port_info *pi = netdev_priv(dev); struct adapter *adap = pi->adapter; struct sge_eth_rxq *q = &adap->sge.ethrxq[pi->first_qset]; for (i = 0; i < pi->nqsets; i++, q++) q->rspq.adaptive_rx = adaptive_rx; return 0; } static int get_adaptive_rx_setting(struct net_device *dev) { struct port_info *pi = netdev_priv(dev); struct adapter *adap = pi->adapter; struct sge_eth_rxq *q = &adap->sge.ethrxq[pi->first_qset]; return q->rspq.adaptive_rx; } /* Return the current global Adapter SGE Doorbell Queue Timer Tick for all * Ethernet TX Queues. */ static int get_dbqtimer_tick(struct net_device *dev) { struct port_info *pi = netdev_priv(dev); struct adapter *adap = pi->adapter; if (!(adap->flags & CXGB4_SGE_DBQ_TIMER)) return 0; return adap->sge.dbqtimer_tick; } /* Return the SGE Doorbell Queue Timer Value for the Ethernet TX Queues * associated with a Network Device. */ static int get_dbqtimer(struct net_device *dev) { struct port_info *pi = netdev_priv(dev); struct adapter *adap = pi->adapter; struct sge_eth_txq *txq; txq = &adap->sge.ethtxq[pi->first_qset]; if (!(adap->flags & CXGB4_SGE_DBQ_TIMER)) return 0; /* all of the TX Queues use the same Timer Index */ return adap->sge.dbqtimer_val[txq->dbqtimerix]; } /* Set the global Adapter SGE Doorbell Queue Timer Tick for all Ethernet TX * Queues. This is the fundamental "Tick" that sets the scale of values which * can be used. Individual Ethernet TX Queues index into a relatively small * array of Tick Multipliers. Changing the base Tick will thus change all of * the resulting Timer Values associated with those multipliers for all * Ethernet TX Queues. */ static int set_dbqtimer_tick(struct net_device *dev, int usecs) { struct port_info *pi = netdev_priv(dev); struct adapter *adap = pi->adapter; struct sge *s = &adap->sge; u32 param, val; int ret; if (!(adap->flags & CXGB4_SGE_DBQ_TIMER)) return 0; /* return early if it's the same Timer Tick we're already using */ if (s->dbqtimer_tick == usecs) return 0; /* attempt to set the new Timer Tick value */ param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_DBQ_TIMERTICK)); val = usecs; ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, ¶m, &val); if (ret) return ret; s->dbqtimer_tick = usecs; /* if successful, reread resulting dependent Timer values */ ret = t4_read_sge_dbqtimers(adap, ARRAY_SIZE(s->dbqtimer_val), s->dbqtimer_val); return ret; } /* Set the SGE Doorbell Queue Timer Value for the Ethernet TX Queues * associated with a Network Device. There is a relatively small array of * possible Timer Values so we need to pick the closest value available. */ static int set_dbqtimer(struct net_device *dev, int usecs) { int qix, timerix, min_timerix, delta, min_delta; struct port_info *pi = netdev_priv(dev); struct adapter *adap = pi->adapter; struct sge *s = &adap->sge; struct sge_eth_txq *txq; u32 param, val; int ret; if (!(adap->flags & CXGB4_SGE_DBQ_TIMER)) return 0; /* Find the SGE Doorbell Timer Value that's closest to the requested * value. */ min_delta = INT_MAX; min_timerix = 0; for (timerix = 0; timerix < ARRAY_SIZE(s->dbqtimer_val); timerix++) { delta = s->dbqtimer_val[timerix] - usecs; if (delta < 0) delta = -delta; if (delta < min_delta) { min_delta = delta; min_timerix = timerix; } } /* Return early if it's the same Timer Index we're already using. * We use the same Timer Index for all of the TX Queues for an * interface so it's only necessary to check the first one. */ txq = &s->ethtxq[pi->first_qset]; if (txq->dbqtimerix == min_timerix) return 0; for (qix = 0; qix < pi->nqsets; qix++, txq++) { if (adap->flags & CXGB4_FULL_INIT_DONE) { param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DMAQ_EQ_TIMERIX) | FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id)); val = min_timerix; ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, ¶m, &val); if (ret) return ret; } txq->dbqtimerix = min_timerix; } return 0; } /* Set the global Adapter SGE Doorbell Queue Timer Tick for all Ethernet TX * Queues and the Timer Value for the Ethernet TX Queues associated with a * Network Device. Since changing the global Tick changes all of the * available Timer Values, we need to do this first before selecting the * resulting closest Timer Value. Moreover, since the Tick is global, * changing it affects the Timer Values for all Network Devices on the * adapter. So, before changing the Tick, we grab all of the current Timer * Values for other Network Devices on this Adapter and then attempt to select * new Timer Values which are close to the old values ... */ static int set_dbqtimer_tickval(struct net_device *dev, int tick_usecs, int timer_usecs) { struct port_info *pi = netdev_priv(dev); struct adapter *adap = pi->adapter; int timer[MAX_NPORTS]; unsigned int port; int ret; /* Grab the other adapter Network Interface current timers and fill in * the new one for this Network Interface. */ for_each_port(adap, port) if (port == pi->port_id) timer[port] = timer_usecs; else timer[port] = get_dbqtimer(adap->port[port]); /* Change the global Tick first ... */ ret = set_dbqtimer_tick(dev, tick_usecs); if (ret) return ret; /* ... and then set all of the Network Interface Timer Values ... */ for_each_port(adap, port) { ret = set_dbqtimer(adap->port[port], timer[port]); if (ret) return ret; } return 0; } static int set_coalesce(struct net_device *dev, struct ethtool_coalesce *coalesce) { int ret; set_adaptive_rx_setting(dev, coalesce->use_adaptive_rx_coalesce); ret = set_rx_intr_params(dev, coalesce->rx_coalesce_usecs, coalesce->rx_max_coalesced_frames); if (ret) return ret; return set_dbqtimer_tickval(dev, coalesce->tx_coalesce_usecs_irq, coalesce->tx_coalesce_usecs); } static int get_coalesce(struct net_device *dev, struct ethtool_coalesce *c) { const struct port_info *pi = netdev_priv(dev); const struct adapter *adap = pi->adapter; const struct sge_rspq *rq = &adap->sge.ethrxq[pi->first_qset].rspq; c->rx_coalesce_usecs = qtimer_val(adap, rq); c->rx_max_coalesced_frames = (rq->intr_params & QINTR_CNT_EN_F) ? adap->sge.counter_val[rq->pktcnt_idx] : 0; c->use_adaptive_rx_coalesce = get_adaptive_rx_setting(dev); c->tx_coalesce_usecs_irq = get_dbqtimer_tick(dev); c->tx_coalesce_usecs = get_dbqtimer(dev); return 0; } /* The next two routines implement eeprom read/write from physical addresses. */ static int eeprom_rd_phys(struct adapter *adap, unsigned int phys_addr, u32 *v) { int vaddr = t4_eeprom_ptov(phys_addr, adap->pf, EEPROMPFSIZE); if (vaddr >= 0) vaddr = pci_read_vpd(adap->pdev, vaddr, sizeof(u32), v); return vaddr < 0 ? vaddr : 0; } static int eeprom_wr_phys(struct adapter *adap, unsigned int phys_addr, u32 v) { int vaddr = t4_eeprom_ptov(phys_addr, adap->pf, EEPROMPFSIZE); if (vaddr >= 0) vaddr = pci_write_vpd(adap->pdev, vaddr, sizeof(u32), &v); return vaddr < 0 ? vaddr : 0; } #define EEPROM_MAGIC 0x38E2F10C static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *e, u8 *data) { int i, err = 0; struct adapter *adapter = netdev2adap(dev); u8 *buf = kvzalloc(EEPROMSIZE, GFP_KERNEL); if (!buf) return -ENOMEM; e->magic = EEPROM_MAGIC; for (i = e->offset & ~3; !err && i < e->offset + e->len; i += 4) err = eeprom_rd_phys(adapter, i, (u32 *)&buf[i]); if (!err) memcpy(data, buf + e->offset, e->len); kvfree(buf); return err; } static int set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, u8 *data) { u8 *buf; int err = 0; u32 aligned_offset, aligned_len, *p; struct adapter *adapter = netdev2adap(dev); if (eeprom->magic != EEPROM_MAGIC) return -EINVAL; aligned_offset = eeprom->offset & ~3; aligned_len = (eeprom->len + (eeprom->offset & 3) + 3) & ~3; if (adapter->pf > 0) { u32 start = 1024 + adapter->pf * EEPROMPFSIZE; if (aligned_offset < start || aligned_offset + aligned_len > start + EEPROMPFSIZE) return -EPERM; } if (aligned_offset != eeprom->offset || aligned_len != eeprom->len) { /* RMW possibly needed for first or last words. */ buf = kvzalloc(aligned_len, GFP_KERNEL); if (!buf) return -ENOMEM; err = eeprom_rd_phys(adapter, aligned_offset, (u32 *)buf); if (!err && aligned_len > 4) err = eeprom_rd_phys(adapter, aligned_offset + aligned_len - 4, (u32 *)&buf[aligned_len - 4]); if (err) goto out; memcpy(buf + (eeprom->offset & 3), data, eeprom->len); } else { buf = data; } err = t4_seeprom_wp(adapter, false); if (err) goto out; for (p = (u32 *)buf; !err && aligned_len; aligned_len -= 4, p++) { err = eeprom_wr_phys(adapter, aligned_offset, *p); aligned_offset += 4; } if (!err) err = t4_seeprom_wp(adapter, true); out: if (buf != data) kvfree(buf); return err; } static int cxgb4_ethtool_flash_bootcfg(struct net_device *netdev, const u8 *data, u32 size) { struct adapter *adap = netdev2adap(netdev); int ret; ret = t4_load_bootcfg(adap, data, size); if (ret) dev_err(adap->pdev_dev, "Failed to load boot cfg image\n"); return ret; } static int cxgb4_ethtool_flash_boot(struct net_device *netdev, const u8 *bdata, u32 size) { struct adapter *adap = netdev2adap(netdev); unsigned int offset; u8 *data; int ret; data = kmemdup(bdata, size, GFP_KERNEL); if (!data) return -ENOMEM; offset = OFFSET_G(t4_read_reg(adap, PF_REG(0, PCIE_PF_EXPROM_OFST_A))); ret = t4_load_boot(adap, data, offset, size); if (ret) dev_err(adap->pdev_dev, "Failed to load boot image\n"); kfree(data); return ret; } #define CXGB4_PHY_SIG 0x130000ea static int cxgb4_validate_phy_image(const u8 *data, u32 *size) { struct cxgb4_fw_data *header; header = (struct cxgb4_fw_data *)data; if (be32_to_cpu(header->signature) != CXGB4_PHY_SIG) return -EINVAL; return 0; } static int cxgb4_ethtool_flash_phy(struct net_device *netdev, const u8 *data, u32 size) { struct adapter *adap = netdev2adap(netdev); int ret; ret = cxgb4_validate_phy_image(data, NULL); if (ret) { dev_err(adap->pdev_dev, "PHY signature mismatch\n"); return ret; } /* We have to RESET the chip/firmware because we need the * chip in uninitialized state for loading new PHY image. * Otherwise, the running firmware will only store the PHY * image in local RAM which will be lost after next reset. */ ret = t4_fw_reset(adap, adap->mbox, PIORSTMODE_F | PIORST_F); if (ret < 0) { dev_err(adap->pdev_dev, "Set FW to RESET for flashing PHY FW failed. ret: %d\n", ret); return ret; } ret = t4_load_phy_fw(adap, MEMWIN_NIC, NULL, data, size); if (ret < 0) { dev_err(adap->pdev_dev, "Failed to load PHY FW. ret: %d\n", ret); return ret; } return 0; } static int cxgb4_ethtool_flash_fw(struct net_device *netdev, const u8 *data, u32 size) { struct adapter *adap = netdev2adap(netdev); unsigned int mbox = PCIE_FW_MASTER_M + 1; int ret; /* If the adapter has been fully initialized then we'll go ahead and * try to get the firmware's cooperation in upgrading to the new * firmware image otherwise we'll try to do the entire job from the * host ... and we always "force" the operation in this path. */ if (adap->flags & CXGB4_FULL_INIT_DONE) mbox = adap->mbox; ret = t4_fw_upgrade(adap, mbox, data, size, 1); if (ret) dev_err(adap->pdev_dev, "Failed to flash firmware\n"); return ret; } static int cxgb4_ethtool_flash_region(struct net_device *netdev, const u8 *data, u32 size, u32 region) { struct adapter *adap = netdev2adap(netdev); int ret; switch (region) { case CXGB4_ETHTOOL_FLASH_FW: ret = cxgb4_ethtool_flash_fw(netdev, data, size); break; case CXGB4_ETHTOOL_FLASH_PHY: ret = cxgb4_ethtool_flash_phy(netdev, data, size); break; case CXGB4_ETHTOOL_FLASH_BOOT: ret = cxgb4_ethtool_flash_boot(netdev, data, size); break; case CXGB4_ETHTOOL_FLASH_BOOTCFG: ret = cxgb4_ethtool_flash_bootcfg(netdev, data, size); break; default: ret = -EOPNOTSUPP; break; } if (!ret) dev_info(adap->pdev_dev, "loading %s successful, reload cxgb4 driver\n", flash_region_strings[region]); return ret; } #define CXGB4_FW_SIG 0x4368656c #define CXGB4_FW_SIG_OFFSET 0x160 static int cxgb4_validate_fw_image(const u8 *data, u32 *size) { struct cxgb4_fw_data *header; header = (struct cxgb4_fw_data *)&data[CXGB4_FW_SIG_OFFSET]; if (be32_to_cpu(header->signature) != CXGB4_FW_SIG) return -EINVAL; if (size) *size = be16_to_cpu(((struct fw_hdr *)data)->len512) * 512; return 0; } static int cxgb4_validate_bootcfg_image(const u8 *data, u32 *size) { struct cxgb4_bootcfg_data *header; header = (struct cxgb4_bootcfg_data *)data; if (le16_to_cpu(header->signature) != BOOT_CFG_SIG) return -EINVAL; return 0; } static int cxgb4_validate_boot_image(const u8 *data, u32 *size) { struct cxgb4_pci_exp_rom_header *exp_header; struct cxgb4_pcir_data *pcir_header; struct legacy_pci_rom_hdr *header; const u8 *cur_header = data; u16 pcir_offset; exp_header = (struct cxgb4_pci_exp_rom_header *)data; if (le16_to_cpu(exp_header->signature) != BOOT_SIGNATURE) return -EINVAL; if (size) { do { header = (struct legacy_pci_rom_hdr *)cur_header; pcir_offset = le16_to_cpu(header->pcir_offset); pcir_header = (struct cxgb4_pcir_data *)(cur_header + pcir_offset); *size += header->size512 * 512; cur_header += header->size512 * 512; } while (!(pcir_header->indicator & CXGB4_HDR_INDI)); } return 0; } static int cxgb4_ethtool_get_flash_region(const u8 *data, u32 *size) { if (!cxgb4_validate_fw_image(data, size)) return CXGB4_ETHTOOL_FLASH_FW; if (!cxgb4_validate_boot_image(data, size)) return CXGB4_ETHTOOL_FLASH_BOOT; if (!cxgb4_validate_phy_image(data, size)) return CXGB4_ETHTOOL_FLASH_PHY; if (!cxgb4_validate_bootcfg_image(data, size)) return CXGB4_ETHTOOL_FLASH_BOOTCFG; return -EOPNOTSUPP; } static int set_flash(struct net_device *netdev, struct ethtool_flash *ef) { struct adapter *adap = netdev2adap(netdev); const struct firmware *fw; unsigned int master; u8 master_vld = 0; const u8 *fw_data; size_t fw_size; u32 size = 0; u32 pcie_fw; int region; int ret; pcie_fw = t4_read_reg(adap, PCIE_FW_A); master = PCIE_FW_MASTER_G(pcie_fw); if (pcie_fw & PCIE_FW_MASTER_VLD_F) master_vld = 1; /* if csiostor is the master return */ if (master_vld && (master != adap->pf)) { dev_warn(adap->pdev_dev, "cxgb4 driver needs to be loaded as MASTER to support FW flash\n"); return -EOPNOTSUPP; } ef->data[sizeof(ef->data) - 1] = '\0'; ret = request_firmware(&fw, ef->data, adap->pdev_dev); if (ret < 0) return ret; fw_data = fw->data; fw_size = fw->size; if (ef->region == ETHTOOL_FLASH_ALL_REGIONS) { while (fw_size > 0) { size = 0; region = cxgb4_ethtool_get_flash_region(fw_data, &size); if (region < 0 || !size) { ret = region; goto out_free_fw; } ret = cxgb4_ethtool_flash_region(netdev, fw_data, size, region); if (ret) goto out_free_fw; fw_data += size; fw_size -= size; } } else { ret = cxgb4_ethtool_flash_region(netdev, fw_data, fw_size, ef->region); } out_free_fw: release_firmware(fw); return ret; } static int get_ts_info(struct net_device *dev, struct ethtool_ts_info *ts_info) { struct port_info *pi = netdev_priv(dev); struct adapter *adapter = pi->adapter; ts_info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE | SOF_TIMESTAMPING_RX_SOFTWARE | SOF_TIMESTAMPING_SOFTWARE; ts_info->so_timestamping |= SOF_TIMESTAMPING_RX_HARDWARE | SOF_TIMESTAMPING_TX_HARDWARE | SOF_TIMESTAMPING_RAW_HARDWARE; ts_info->tx_types = (1 << HWTSTAMP_TX_OFF) | (1 << HWTSTAMP_TX_ON); ts_info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) | (1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) | (1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC) | (1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) | (1 << HWTSTAMP_FILTER_PTP_V2_L4_SYNC) | (1 << HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ); if (adapter->ptp_clock) ts_info->phc_index = ptp_clock_index(adapter->ptp_clock); else ts_info->phc_index = -1; return 0; } static u32 get_rss_table_size(struct net_device *dev) { const struct port_info *pi = netdev_priv(dev); return pi->rss_size; } static int get_rss_table(struct net_device *dev, u32 *p, u8 *key, u8 *hfunc) { const struct port_info *pi = netdev_priv(dev); unsigned int n = pi->rss_size; if (hfunc) *hfunc = ETH_RSS_HASH_TOP; if (!p) return 0; while (n--) p[n] = pi->rss[n]; return 0; } static int set_rss_table(struct net_device *dev, const u32 *p, const u8 *key, const u8 hfunc) { unsigned int i; struct port_info *pi = netdev_priv(dev); /* We require at least one supported parameter to be changed and no * change in any of the unsupported parameters */ if (key || (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)) return -EOPNOTSUPP; if (!p) return 0; /* Interface must be brought up atleast once */ if (pi->adapter->flags & CXGB4_FULL_INIT_DONE) { for (i = 0; i < pi->rss_size; i++) pi->rss[i] = p[i]; return cxgb4_write_rss(pi, pi->rss); } return -EPERM; } static struct filter_entry *cxgb4_get_filter_entry(struct adapter *adap, u32 ftid) { struct tid_info *t = &adap->tids; if (ftid >= t->hpftid_base && ftid < t->hpftid_base + t->nhpftids) return &t->hpftid_tab[ftid - t->hpftid_base]; if (ftid >= t->ftid_base && ftid < t->ftid_base + t->nftids) return &t->ftid_tab[ftid - t->ftid_base]; return lookup_tid(t, ftid); } static void cxgb4_fill_filter_rule(struct ethtool_rx_flow_spec *fs, struct ch_filter_specification *dfs) { switch (dfs->val.proto) { case IPPROTO_TCP: if (dfs->type) fs->flow_type = TCP_V6_FLOW; else fs->flow_type = TCP_V4_FLOW; break; case IPPROTO_UDP: if (dfs->type) fs->flow_type = UDP_V6_FLOW; else fs->flow_type = UDP_V4_FLOW; break; } if (dfs->type) { fs->h_u.tcp_ip6_spec.psrc = cpu_to_be16(dfs->val.fport); fs->m_u.tcp_ip6_spec.psrc = cpu_to_be16(dfs->mask.fport); fs->h_u.tcp_ip6_spec.pdst = cpu_to_be16(dfs->val.lport); fs->m_u.tcp_ip6_spec.pdst = cpu_to_be16(dfs->mask.lport); memcpy(&fs->h_u.tcp_ip6_spec.ip6src, &dfs->val.fip[0], sizeof(fs->h_u.tcp_ip6_spec.ip6src)); memcpy(&fs->m_u.tcp_ip6_spec.ip6src, &dfs->mask.fip[0], sizeof(fs->m_u.tcp_ip6_spec.ip6src)); memcpy(&fs->h_u.tcp_ip6_spec.ip6dst, &dfs->val.lip[0], sizeof(fs->h_u.tcp_ip6_spec.ip6dst)); memcpy(&fs->m_u.tcp_ip6_spec.ip6dst, &dfs->mask.lip[0], sizeof(fs->m_u.tcp_ip6_spec.ip6dst)); fs->h_u.tcp_ip6_spec.tclass = dfs->val.tos; fs->m_u.tcp_ip6_spec.tclass = dfs->mask.tos; } else { fs->h_u.tcp_ip4_spec.psrc = cpu_to_be16(dfs->val.fport); fs->m_u.tcp_ip4_spec.psrc = cpu_to_be16(dfs->mask.fport); fs->h_u.tcp_ip4_spec.pdst = cpu_to_be16(dfs->val.lport); fs->m_u.tcp_ip4_spec.pdst = cpu_to_be16(dfs->mask.lport); memcpy(&fs->h_u.tcp_ip4_spec.ip4src, &dfs->val.fip[0], sizeof(fs->h_u.tcp_ip4_spec.ip4src)); memcpy(&fs->m_u.tcp_ip4_spec.ip4src, &dfs->mask.fip[0], sizeof(fs->m_u.tcp_ip4_spec.ip4src)); memcpy(&fs->h_u.tcp_ip4_spec.ip4dst, &dfs->val.lip[0], sizeof(fs->h_u.tcp_ip4_spec.ip4dst)); memcpy(&fs->m_u.tcp_ip4_spec.ip4dst, &dfs->mask.lip[0], sizeof(fs->m_u.tcp_ip4_spec.ip4dst)); fs->h_u.tcp_ip4_spec.tos = dfs->val.tos; fs->m_u.tcp_ip4_spec.tos = dfs->mask.tos; } fs->h_ext.vlan_tci = cpu_to_be16(dfs->val.ivlan); fs->m_ext.vlan_tci = cpu_to_be16(dfs->mask.ivlan); fs->flow_type |= FLOW_EXT; if (dfs->action == FILTER_DROP) fs->ring_cookie = RX_CLS_FLOW_DISC; else fs->ring_cookie = dfs->iq; } static int cxgb4_ntuple_get_filter(struct net_device *dev, struct ethtool_rxnfc *cmd, unsigned int loc) { const struct port_info *pi = netdev_priv(dev); struct adapter *adap = netdev2adap(dev); struct filter_entry *f; int ftid; if (!(adap->flags & CXGB4_FULL_INIT_DONE)) return -EAGAIN; /* Check for maximum filter range */ if (!adap->ethtool_filters) return -EOPNOTSUPP; if (loc >= adap->ethtool_filters->nentries) return -ERANGE; if (!test_bit(loc, adap->ethtool_filters->port[pi->port_id].bmap)) return -ENOENT; ftid = adap->ethtool_filters->port[pi->port_id].loc_array[loc]; /* Fetch filter_entry */ f = cxgb4_get_filter_entry(adap, ftid); cxgb4_fill_filter_rule(&cmd->fs, &f->fs); return 0; } static int get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info, u32 *rules) { const struct port_info *pi = netdev_priv(dev); struct adapter *adap = netdev2adap(dev); unsigned int count = 0, index = 0; int ret = 0; switch (info->cmd) { case ETHTOOL_GRXFH: { unsigned int v = pi->rss_mode; info->data = 0; switch (info->flow_type) { case TCP_V4_FLOW: if (v & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F) info->data = RXH_IP_SRC | RXH_IP_DST | RXH_L4_B_0_1 | RXH_L4_B_2_3; else if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F) info->data = RXH_IP_SRC | RXH_IP_DST; break; case UDP_V4_FLOW: if ((v & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F) && (v & FW_RSS_VI_CONFIG_CMD_UDPEN_F)) info->data = RXH_IP_SRC | RXH_IP_DST | RXH_L4_B_0_1 | RXH_L4_B_2_3; else if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F) info->data = RXH_IP_SRC | RXH_IP_DST; break; case SCTP_V4_FLOW: case AH_ESP_V4_FLOW: case IPV4_FLOW: if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F) info->data = RXH_IP_SRC | RXH_IP_DST; break; case TCP_V6_FLOW: if (v & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F) info->data = RXH_IP_SRC | RXH_IP_DST | RXH_L4_B_0_1 | RXH_L4_B_2_3; else if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F) info->data = RXH_IP_SRC | RXH_IP_DST; break; case UDP_V6_FLOW: if ((v & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F) && (v & FW_RSS_VI_CONFIG_CMD_UDPEN_F)) info->data = RXH_IP_SRC | RXH_IP_DST | RXH_L4_B_0_1 | RXH_L4_B_2_3; else if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F) info->data = RXH_IP_SRC | RXH_IP_DST; break; case SCTP_V6_FLOW: case AH_ESP_V6_FLOW: case IPV6_FLOW: if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F) info->data = RXH_IP_SRC | RXH_IP_DST; break; } return 0; } case ETHTOOL_GRXRINGS: info->data = pi->nqsets; return 0; case ETHTOOL_GRXCLSRLCNT: info->rule_cnt = adap->ethtool_filters->port[pi->port_id].in_use; return 0; case ETHTOOL_GRXCLSRULE: return cxgb4_ntuple_get_filter(dev, info, info->fs.location); case ETHTOOL_GRXCLSRLALL: info->data = adap->ethtool_filters->nentries; while (count < info->rule_cnt) { ret = cxgb4_ntuple_get_filter(dev, info, index); if (!ret) rules[count++] = index; index++; } return 0; } return -EOPNOTSUPP; } static int cxgb4_ntuple_del_filter(struct net_device *dev, struct ethtool_rxnfc *cmd) { struct cxgb4_ethtool_filter_info *filter_info; struct adapter *adapter = netdev2adap(dev); struct port_info *pi = netdev_priv(dev); struct filter_entry *f; u32 filter_id; int ret; if (!(adapter->flags & CXGB4_FULL_INIT_DONE)) return -EAGAIN; /* can still change nfilters */ if (!adapter->ethtool_filters) return -EOPNOTSUPP; if (cmd->fs.location >= adapter->ethtool_filters->nentries) { dev_err(adapter->pdev_dev, "Location must be < %u", adapter->ethtool_filters->nentries); return -ERANGE; } filter_info = &adapter->ethtool_filters->port[pi->port_id]; if (!test_bit(cmd->fs.location, filter_info->bmap)) return -ENOENT; filter_id = filter_info->loc_array[cmd->fs.location]; f = cxgb4_get_filter_entry(adapter, filter_id); if (f->fs.prio) filter_id -= adapter->tids.hpftid_base; else if (!f->fs.hash) filter_id -= (adapter->tids.ftid_base - adapter->tids.nhpftids); ret = cxgb4_flow_rule_destroy(dev, f->fs.tc_prio, &f->fs, filter_id); if (ret) goto err; clear_bit(cmd->fs.location, filter_info->bmap); filter_info->in_use--; err: return ret; } /* Add Ethtool n-tuple filters. */ static int cxgb4_ntuple_set_filter(struct net_device *netdev, struct ethtool_rxnfc *cmd) { struct ethtool_rx_flow_spec_input input = {}; struct cxgb4_ethtool_filter_info *filter_info; struct adapter *adapter = netdev2adap(netdev); struct port_info *pi = netdev_priv(netdev); struct ch_filter_specification fs; struct ethtool_rx_flow_rule *flow; u32 tid; int ret; if (!(adapter->flags & CXGB4_FULL_INIT_DONE)) return -EAGAIN; /* can still change nfilters */ if (!adapter->ethtool_filters) return -EOPNOTSUPP; if (cmd->fs.location >= adapter->ethtool_filters->nentries) { dev_err(adapter->pdev_dev, "Location must be < %u", adapter->ethtool_filters->nentries); return -ERANGE; } if (test_bit(cmd->fs.location, adapter->ethtool_filters->port[pi->port_id].bmap)) return -EEXIST; memset(&fs, 0, sizeof(fs)); input.fs = &cmd->fs; flow = ethtool_rx_flow_rule_create(&input); if (IS_ERR(flow)) { ret = PTR_ERR(flow); goto exit; } fs.hitcnts = 1; ret = cxgb4_flow_rule_replace(netdev, flow->rule, cmd->fs.location, NULL, &fs, &tid); if (ret) goto free; filter_info = &adapter->ethtool_filters->port[pi->port_id]; if (fs.prio) tid += adapter->tids.hpftid_base; else if (!fs.hash) tid += (adapter->tids.ftid_base - adapter->tids.nhpftids); filter_info->loc_array[cmd->fs.location] = tid; set_bit(cmd->fs.location, filter_info->bmap); filter_info->in_use++; free: ethtool_rx_flow_rule_destroy(flow); exit: return ret; } static int set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd) { int ret = -EOPNOTSUPP; switch (cmd->cmd) { case ETHTOOL_SRXCLSRLINS: ret = cxgb4_ntuple_set_filter(dev, cmd); break; case ETHTOOL_SRXCLSRLDEL: ret = cxgb4_ntuple_del_filter(dev, cmd); break; default: break; } return ret; } static int set_dump(struct net_device *dev, struct ethtool_dump *eth_dump) { struct adapter *adapter = netdev2adap(dev); u32 len = 0; len = sizeof(struct cudbg_hdr) + sizeof(struct cudbg_entity_hdr) * CUDBG_MAX_ENTITY; len += cxgb4_get_dump_length(adapter, eth_dump->flag); adapter->eth_dump.flag = eth_dump->flag; adapter->eth_dump.len = len; return 0; } static int get_dump_flag(struct net_device *dev, struct ethtool_dump *eth_dump) { struct adapter *adapter = netdev2adap(dev); eth_dump->flag = adapter->eth_dump.flag; eth_dump->len = adapter->eth_dump.len; eth_dump->version = adapter->eth_dump.version; return 0; } static int get_dump_data(struct net_device *dev, struct ethtool_dump *eth_dump, void *buf) { struct adapter *adapter = netdev2adap(dev); u32 len = 0; int ret = 0; if (adapter->eth_dump.flag == CXGB4_ETH_DUMP_NONE) return -ENOENT; len = sizeof(struct cudbg_hdr) + sizeof(struct cudbg_entity_hdr) * CUDBG_MAX_ENTITY; len += cxgb4_get_dump_length(adapter, adapter->eth_dump.flag); if (eth_dump->len < len) return -ENOMEM; ret = cxgb4_cudbg_collect(adapter, buf, &len, adapter->eth_dump.flag); if (ret) return ret; eth_dump->flag = adapter->eth_dump.flag; eth_dump->len = len; eth_dump->version = adapter->eth_dump.version; return 0; } static int cxgb4_get_module_info(struct net_device *dev, struct ethtool_modinfo *modinfo) { struct port_info *pi = netdev_priv(dev); u8 sff8472_comp, sff_diag_type, sff_rev; struct adapter *adapter = pi->adapter; int ret; if (!t4_is_inserted_mod_type(pi->mod_type)) return -EINVAL; switch (pi->port_type) { case FW_PORT_TYPE_SFP: case FW_PORT_TYPE_QSA: case FW_PORT_TYPE_SFP28: ret = t4_i2c_rd(adapter, adapter->mbox, pi->tx_chan, I2C_DEV_ADDR_A0, SFF_8472_COMP_ADDR, SFF_8472_COMP_LEN, &sff8472_comp); if (ret) return ret; ret = t4_i2c_rd(adapter, adapter->mbox, pi->tx_chan, I2C_DEV_ADDR_A0, SFP_DIAG_TYPE_ADDR, SFP_DIAG_TYPE_LEN, &sff_diag_type); if (ret) return ret; if (!sff8472_comp || (sff_diag_type & SFP_DIAG_ADDRMODE)) { modinfo->type = ETH_MODULE_SFF_8079; modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN; } else { modinfo->type = ETH_MODULE_SFF_8472; if (sff_diag_type & SFP_DIAG_IMPLEMENTED) modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN; else modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN / 2; } break; case FW_PORT_TYPE_QSFP: case FW_PORT_TYPE_QSFP_10G: case FW_PORT_TYPE_CR_QSFP: case FW_PORT_TYPE_CR2_QSFP: case FW_PORT_TYPE_CR4_QSFP: ret = t4_i2c_rd(adapter, adapter->mbox, pi->tx_chan, I2C_DEV_ADDR_A0, SFF_REV_ADDR, SFF_REV_LEN, &sff_rev); /* For QSFP type ports, revision value >= 3 * means the SFP is 8636 compliant. */ if (ret) return ret; if (sff_rev >= 0x3) { modinfo->type = ETH_MODULE_SFF_8636; modinfo->eeprom_len = ETH_MODULE_SFF_8636_LEN; } else { modinfo->type = ETH_MODULE_SFF_8436; modinfo->eeprom_len = ETH_MODULE_SFF_8436_LEN; } break; default: return -EINVAL; } return 0; } static int cxgb4_get_module_eeprom(struct net_device *dev, struct ethtool_eeprom *eprom, u8 *data) { int ret = 0, offset = eprom->offset, len = eprom->len; struct port_info *pi = netdev_priv(dev); struct adapter *adapter = pi->adapter; memset(data, 0, eprom->len); if (offset + len <= I2C_PAGE_SIZE) return t4_i2c_rd(adapter, adapter->mbox, pi->tx_chan, I2C_DEV_ADDR_A0, offset, len, data); /* offset + len spans 0xa0 and 0xa1 pages */ if (offset <= I2C_PAGE_SIZE) { /* read 0xa0 page */ len = I2C_PAGE_SIZE - offset; ret = t4_i2c_rd(adapter, adapter->mbox, pi->tx_chan, I2C_DEV_ADDR_A0, offset, len, data); if (ret) return ret; offset = I2C_PAGE_SIZE; /* Remaining bytes to be read from second page = * Total length - bytes read from first page */ len = eprom->len - len; } /* Read additional optical diagnostics from page 0xa2 if supported */ return t4_i2c_rd(adapter, adapter->mbox, pi->tx_chan, I2C_DEV_ADDR_A2, offset, len, &data[eprom->len - len]); } static u32 cxgb4_get_priv_flags(struct net_device *netdev) { struct port_info *pi = netdev_priv(netdev); struct adapter *adapter = pi->adapter; return (adapter->eth_flags | pi->eth_flags); } /** * set_flags - set/unset specified flags if passed in new_flags * @cur_flags: pointer to current flags * @new_flags: new incoming flags * @flags: set of flags to set/unset */ static inline void set_flags(u32 *cur_flags, u32 new_flags, u32 flags) { *cur_flags = (*cur_flags & ~flags) | (new_flags & flags); } static int cxgb4_set_priv_flags(struct net_device *netdev, u32 flags) { struct port_info *pi = netdev_priv(netdev); struct adapter *adapter = pi->adapter; set_flags(&adapter->eth_flags, flags, PRIV_FLAGS_ADAP); set_flags(&pi->eth_flags, flags, PRIV_FLAGS_PORT); return 0; } static void cxgb4_lb_test(struct net_device *netdev, u64 *lb_status) { int dev_state = netif_running(netdev); if (dev_state) { netif_tx_stop_all_queues(netdev); netif_carrier_off(netdev); } *lb_status = cxgb4_selftest_lb_pkt(netdev); if (dev_state) { netif_tx_start_all_queues(netdev); netif_carrier_on(netdev); } } static void cxgb4_self_test(struct net_device *netdev, struct ethtool_test *eth_test, u64 *data) { struct port_info *pi = netdev_priv(netdev); struct adapter *adap = pi->adapter; memset(data, 0, sizeof(u64) * CXGB4_ETHTOOL_MAX_TEST); if (!(adap->flags & CXGB4_FULL_INIT_DONE) || !(adap->flags & CXGB4_FW_OK)) { eth_test->flags |= ETH_TEST_FL_FAILED; return; } if (eth_test->flags & ETH_TEST_FL_OFFLINE) cxgb4_lb_test(netdev, &data[CXGB4_ETHTOOL_LB_TEST]); if (data[CXGB4_ETHTOOL_LB_TEST]) eth_test->flags |= ETH_TEST_FL_FAILED; } static const struct ethtool_ops cxgb_ethtool_ops = { .supported_coalesce_params = ETHTOOL_COALESCE_USECS | ETHTOOL_COALESCE_RX_MAX_FRAMES | ETHTOOL_COALESCE_TX_USECS_IRQ | ETHTOOL_COALESCE_USE_ADAPTIVE_RX, .get_link_ksettings = get_link_ksettings, .set_link_ksettings = set_link_ksettings, .get_fecparam = get_fecparam, .set_fecparam = set_fecparam, .get_drvinfo = get_drvinfo, .get_msglevel = get_msglevel, .set_msglevel = set_msglevel, .get_ringparam = get_sge_param, .set_ringparam = set_sge_param, .get_coalesce = get_coalesce, .set_coalesce = set_coalesce, .get_eeprom_len = get_eeprom_len, .get_eeprom = get_eeprom, .set_eeprom = set_eeprom, .get_pauseparam = get_pauseparam, .set_pauseparam = set_pauseparam, .get_link = ethtool_op_get_link, .get_strings = get_strings, .set_phys_id = identify_port, .nway_reset = restart_autoneg, .get_sset_count = get_sset_count, .get_ethtool_stats = get_stats, .get_regs_len = get_regs_len, .get_regs = get_regs, .get_rxnfc = get_rxnfc, .set_rxnfc = set_rxnfc, .get_rxfh_indir_size = get_rss_table_size, .get_rxfh = get_rss_table, .set_rxfh = set_rss_table, .self_test = cxgb4_self_test, .flash_device = set_flash, .get_ts_info = get_ts_info, .set_dump = set_dump, .get_dump_flag = get_dump_flag, .get_dump_data = get_dump_data, .get_module_info = cxgb4_get_module_info, .get_module_eeprom = cxgb4_get_module_eeprom, .get_priv_flags = cxgb4_get_priv_flags, .set_priv_flags = cxgb4_set_priv_flags, }; void cxgb4_cleanup_ethtool_filters(struct adapter *adap) { struct cxgb4_ethtool_filter_info *eth_filter_info; u8 i; if (!adap->ethtool_filters) return; eth_filter_info = adap->ethtool_filters->port; if (eth_filter_info) { for (i = 0; i < adap->params.nports; i++) { kvfree(eth_filter_info[i].loc_array); kfree(eth_filter_info[i].bmap); } kfree(eth_filter_info); } kfree(adap->ethtool_filters); } int cxgb4_init_ethtool_filters(struct adapter *adap) { struct cxgb4_ethtool_filter_info *eth_filter_info; struct cxgb4_ethtool_filter *eth_filter; struct tid_info *tids = &adap->tids; u32 nentries, i; int ret; eth_filter = kzalloc(sizeof(*eth_filter), GFP_KERNEL); if (!eth_filter) return -ENOMEM; eth_filter_info = kcalloc(adap->params.nports, sizeof(*eth_filter_info), GFP_KERNEL); if (!eth_filter_info) { ret = -ENOMEM; goto free_eth_filter; } eth_filter->port = eth_filter_info; nentries = tids->nhpftids + tids->nftids; if (is_hashfilter(adap)) nentries += tids->nhash + (adap->tids.stid_base - adap->tids.tid_base); eth_filter->nentries = nentries; for (i = 0; i < adap->params.nports; i++) { eth_filter->port[i].loc_array = kvzalloc(nentries, GFP_KERNEL); if (!eth_filter->port[i].loc_array) { ret = -ENOMEM; goto free_eth_finfo; } eth_filter->port[i].bmap = kcalloc(BITS_TO_LONGS(nentries), sizeof(unsigned long), GFP_KERNEL); if (!eth_filter->port[i].bmap) { ret = -ENOMEM; goto free_eth_finfo; } } adap->ethtool_filters = eth_filter; return 0; free_eth_finfo: while (i-- > 0) { kfree(eth_filter->port[i].bmap); kvfree(eth_filter->port[i].loc_array); } kfree(eth_filter_info); free_eth_filter: kfree(eth_filter); return ret; } void cxgb4_set_ethtool_ops(struct net_device *netdev) { netdev->ethtool_ops = &cxgb_ethtool_ops; }