// SPDX-License-Identifier: GPL-2.0 /* Copyright(c) 2013 - 2019 Intel Corporation. */ #include #include #include #include "fm10k.h" static const struct fm10k_info *fm10k_info_tbl[] = { [fm10k_device_pf] = &fm10k_pf_info, [fm10k_device_vf] = &fm10k_vf_info, }; /* * fm10k_pci_tbl - PCI Device ID Table * * Wildcard entries (PCI_ANY_ID) should come last * Last entry must be all 0s * * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, * Class, Class Mask, private data (not used) } */ static const struct pci_device_id fm10k_pci_tbl[] = { { PCI_VDEVICE(INTEL, FM10K_DEV_ID_PF), fm10k_device_pf }, { PCI_VDEVICE(INTEL, FM10K_DEV_ID_SDI_FM10420_QDA2), fm10k_device_pf }, { PCI_VDEVICE(INTEL, FM10K_DEV_ID_SDI_FM10420_DA2), fm10k_device_pf }, { PCI_VDEVICE(INTEL, FM10K_DEV_ID_VF), fm10k_device_vf }, /* required last entry */ { 0, } }; MODULE_DEVICE_TABLE(pci, fm10k_pci_tbl); u16 fm10k_read_pci_cfg_word(struct fm10k_hw *hw, u32 reg) { struct fm10k_intfc *interface = hw->back; u16 value = 0; if (FM10K_REMOVED(hw->hw_addr)) return ~value; pci_read_config_word(interface->pdev, reg, &value); if (value == 0xFFFF) fm10k_write_flush(hw); return value; } u32 fm10k_read_reg(struct fm10k_hw *hw, int reg) { u32 __iomem *hw_addr = READ_ONCE(hw->hw_addr); u32 value = 0; if (FM10K_REMOVED(hw_addr)) return ~value; value = readl(&hw_addr[reg]); if (!(~value) && (!reg || !(~readl(hw_addr)))) { struct fm10k_intfc *interface = hw->back; struct net_device *netdev = interface->netdev; hw->hw_addr = NULL; netif_device_detach(netdev); netdev_err(netdev, "PCIe link lost, device now detached\n"); } return value; } static int fm10k_hw_ready(struct fm10k_intfc *interface) { struct fm10k_hw *hw = &interface->hw; fm10k_write_flush(hw); return FM10K_REMOVED(hw->hw_addr) ? -ENODEV : 0; } /** * fm10k_macvlan_schedule - Schedule MAC/VLAN queue task * @interface: fm10k private interface structure * * Schedule the MAC/VLAN queue monitor task. If the MAC/VLAN task cannot be * started immediately, request that it be restarted when possible. */ void fm10k_macvlan_schedule(struct fm10k_intfc *interface) { /* Avoid processing the MAC/VLAN queue when the service task is * disabled, or when we're resetting the device. */ if (!test_bit(__FM10K_MACVLAN_DISABLE, interface->state) && !test_and_set_bit(__FM10K_MACVLAN_SCHED, interface->state)) { clear_bit(__FM10K_MACVLAN_REQUEST, interface->state); /* We delay the actual start of execution in order to allow * multiple MAC/VLAN updates to accumulate before handling * them, and to allow some time to let the mailbox drain * between runs. */ queue_delayed_work(fm10k_workqueue, &interface->macvlan_task, 10); } else { set_bit(__FM10K_MACVLAN_REQUEST, interface->state); } } /** * fm10k_stop_macvlan_task - Stop the MAC/VLAN queue monitor * @interface: fm10k private interface structure * * Wait until the MAC/VLAN queue task has stopped, and cancel any future * requests. */ static void fm10k_stop_macvlan_task(struct fm10k_intfc *interface) { /* Disable the MAC/VLAN work item */ set_bit(__FM10K_MACVLAN_DISABLE, interface->state); /* Make sure we waited until any current invocations have stopped */ cancel_delayed_work_sync(&interface->macvlan_task); /* We set the __FM10K_MACVLAN_SCHED bit when we schedule the task. * However, it may not be unset of the MAC/VLAN task never actually * got a chance to run. Since we've canceled the task here, and it * cannot be rescheuled right now, we need to ensure the scheduled bit * gets unset. */ clear_bit(__FM10K_MACVLAN_SCHED, interface->state); } /** * fm10k_resume_macvlan_task - Restart the MAC/VLAN queue monitor * @interface: fm10k private interface structure * * Clear the __FM10K_MACVLAN_DISABLE bit and, if a request occurred, schedule * the MAC/VLAN work monitor. */ static void fm10k_resume_macvlan_task(struct fm10k_intfc *interface) { /* Re-enable the MAC/VLAN work item */ clear_bit(__FM10K_MACVLAN_DISABLE, interface->state); /* We might have received a MAC/VLAN request while disabled. If so, * kick off the queue now. */ if (test_bit(__FM10K_MACVLAN_REQUEST, interface->state)) fm10k_macvlan_schedule(interface); } void fm10k_service_event_schedule(struct fm10k_intfc *interface) { if (!test_bit(__FM10K_SERVICE_DISABLE, interface->state) && !test_and_set_bit(__FM10K_SERVICE_SCHED, interface->state)) { clear_bit(__FM10K_SERVICE_REQUEST, interface->state); queue_work(fm10k_workqueue, &interface->service_task); } else { set_bit(__FM10K_SERVICE_REQUEST, interface->state); } } static void fm10k_service_event_complete(struct fm10k_intfc *interface) { WARN_ON(!test_bit(__FM10K_SERVICE_SCHED, interface->state)); /* flush memory to make sure state is correct before next watchog */ smp_mb__before_atomic(); clear_bit(__FM10K_SERVICE_SCHED, interface->state); /* If a service event was requested since we started, immediately * re-schedule now. This ensures we don't drop a request until the * next timer event. */ if (test_bit(__FM10K_SERVICE_REQUEST, interface->state)) fm10k_service_event_schedule(interface); } static void fm10k_stop_service_event(struct fm10k_intfc *interface) { set_bit(__FM10K_SERVICE_DISABLE, interface->state); cancel_work_sync(&interface->service_task); /* It's possible that cancel_work_sync stopped the service task from * running before it could actually start. In this case the * __FM10K_SERVICE_SCHED bit will never be cleared. Since we know that * the service task cannot be running at this point, we need to clear * the scheduled bit, as otherwise the service task may never be * restarted. */ clear_bit(__FM10K_SERVICE_SCHED, interface->state); } static void fm10k_start_service_event(struct fm10k_intfc *interface) { clear_bit(__FM10K_SERVICE_DISABLE, interface->state); fm10k_service_event_schedule(interface); } /** * fm10k_service_timer - Timer Call-back * @t: pointer to timer data **/ static void fm10k_service_timer(struct timer_list *t) { struct fm10k_intfc *interface = from_timer(interface, t, service_timer); /* Reset the timer */ mod_timer(&interface->service_timer, (HZ * 2) + jiffies); fm10k_service_event_schedule(interface); } /** * fm10k_prepare_for_reset - Prepare the driver and device for a pending reset * @interface: fm10k private data structure * * This function prepares for a device reset by shutting as much down as we * can. It does nothing and returns false if __FM10K_RESETTING was already set * prior to calling this function. It returns true if it actually did work. */ static bool fm10k_prepare_for_reset(struct fm10k_intfc *interface) { struct net_device *netdev = interface->netdev; /* put off any impending NetWatchDogTimeout */ netif_trans_update(netdev); /* Nothing to do if a reset is already in progress */ if (test_and_set_bit(__FM10K_RESETTING, interface->state)) return false; /* As the MAC/VLAN task will be accessing registers it must not be * running while we reset. Although the task will not be scheduled * once we start resetting it may already be running */ fm10k_stop_macvlan_task(interface); rtnl_lock(); fm10k_iov_suspend(interface->pdev); if (netif_running(netdev)) fm10k_close(netdev); fm10k_mbx_free_irq(interface); /* free interrupts */ fm10k_clear_queueing_scheme(interface); /* delay any future reset requests */ interface->last_reset = jiffies + (10 * HZ); rtnl_unlock(); return true; } static int fm10k_handle_reset(struct fm10k_intfc *interface) { struct net_device *netdev = interface->netdev; struct fm10k_hw *hw = &interface->hw; int err; WARN_ON(!test_bit(__FM10K_RESETTING, interface->state)); rtnl_lock(); pci_set_master(interface->pdev); /* reset and initialize the hardware so it is in a known state */ err = hw->mac.ops.reset_hw(hw); if (err) { dev_err(&interface->pdev->dev, "reset_hw failed: %d\n", err); goto reinit_err; } err = hw->mac.ops.init_hw(hw); if (err) { dev_err(&interface->pdev->dev, "init_hw failed: %d\n", err); goto reinit_err; } err = fm10k_init_queueing_scheme(interface); if (err) { dev_err(&interface->pdev->dev, "init_queueing_scheme failed: %d\n", err); goto reinit_err; } /* re-associate interrupts */ err = fm10k_mbx_request_irq(interface); if (err) goto err_mbx_irq; err = fm10k_hw_ready(interface); if (err) goto err_open; /* update hardware address for VFs if perm_addr has changed */ if (hw->mac.type == fm10k_mac_vf) { if (is_valid_ether_addr(hw->mac.perm_addr)) { ether_addr_copy(hw->mac.addr, hw->mac.perm_addr); ether_addr_copy(netdev->perm_addr, hw->mac.perm_addr); ether_addr_copy(netdev->dev_addr, hw->mac.perm_addr); netdev->addr_assign_type &= ~NET_ADDR_RANDOM; } if (hw->mac.vlan_override) netdev->features &= ~NETIF_F_HW_VLAN_CTAG_RX; else netdev->features |= NETIF_F_HW_VLAN_CTAG_RX; } err = netif_running(netdev) ? fm10k_open(netdev) : 0; if (err) goto err_open; fm10k_iov_resume(interface->pdev); rtnl_unlock(); fm10k_resume_macvlan_task(interface); clear_bit(__FM10K_RESETTING, interface->state); return err; err_open: fm10k_mbx_free_irq(interface); err_mbx_irq: fm10k_clear_queueing_scheme(interface); reinit_err: netif_device_detach(netdev); rtnl_unlock(); clear_bit(__FM10K_RESETTING, interface->state); return err; } static void fm10k_detach_subtask(struct fm10k_intfc *interface) { struct net_device *netdev = interface->netdev; u32 __iomem *hw_addr; u32 value; /* do nothing if netdev is still present or hw_addr is set */ if (netif_device_present(netdev) || interface->hw.hw_addr) return; /* We've lost the PCIe register space, and can no longer access the * device. Shut everything except the detach subtask down and prepare * to reset the device in case we recover. If we actually prepare for * reset, indicate that we're detached. */ if (fm10k_prepare_for_reset(interface)) set_bit(__FM10K_RESET_DETACHED, interface->state); /* check the real address space to see if we've recovered */ hw_addr = READ_ONCE(interface->uc_addr); value = readl(hw_addr); if (~value) { int err; /* Make sure the reset was initiated because we detached, * otherwise we might race with a different reset flow. */ if (!test_and_clear_bit(__FM10K_RESET_DETACHED, interface->state)) return; /* Restore the hardware address */ interface->hw.hw_addr = interface->uc_addr; /* PCIe link has been restored, and the device is active * again. Restore everything and reset the device. */ err = fm10k_handle_reset(interface); if (err) { netdev_err(netdev, "Unable to reset device: %d\n", err); interface->hw.hw_addr = NULL; return; } /* Re-attach the netdev */ netif_device_attach(netdev); netdev_warn(netdev, "PCIe link restored, device now attached\n"); return; } } static void fm10k_reset_subtask(struct fm10k_intfc *interface) { int err; if (!test_and_clear_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags)) return; /* If another thread has already prepared to reset the device, we * should not attempt to handle a reset here, since we'd race with * that thread. This may happen if we suspend the device or if the * PCIe link is lost. In this case, we'll just ignore the RESET * request, as it will (eventually) be taken care of when the thread * which actually started the reset is finished. */ if (!fm10k_prepare_for_reset(interface)) return; netdev_err(interface->netdev, "Reset interface\n"); err = fm10k_handle_reset(interface); if (err) dev_err(&interface->pdev->dev, "fm10k_handle_reset failed: %d\n", err); } /** * fm10k_configure_swpri_map - Configure Receive SWPRI to PC mapping * @interface: board private structure * * Configure the SWPRI to PC mapping for the port. **/ static void fm10k_configure_swpri_map(struct fm10k_intfc *interface) { struct net_device *netdev = interface->netdev; struct fm10k_hw *hw = &interface->hw; int i; /* clear flag indicating update is needed */ clear_bit(FM10K_FLAG_SWPRI_CONFIG, interface->flags); /* these registers are only available on the PF */ if (hw->mac.type != fm10k_mac_pf) return; /* configure SWPRI to PC map */ for (i = 0; i < FM10K_SWPRI_MAX; i++) fm10k_write_reg(hw, FM10K_SWPRI_MAP(i), netdev_get_prio_tc_map(netdev, i)); } /** * fm10k_watchdog_update_host_state - Update the link status based on host. * @interface: board private structure **/ static void fm10k_watchdog_update_host_state(struct fm10k_intfc *interface) { struct fm10k_hw *hw = &interface->hw; s32 err; if (test_bit(__FM10K_LINK_DOWN, interface->state)) { interface->host_ready = false; if (time_is_after_jiffies(interface->link_down_event)) return; clear_bit(__FM10K_LINK_DOWN, interface->state); } if (test_bit(FM10K_FLAG_SWPRI_CONFIG, interface->flags)) { if (rtnl_trylock()) { fm10k_configure_swpri_map(interface); rtnl_unlock(); } } /* lock the mailbox for transmit and receive */ fm10k_mbx_lock(interface); err = hw->mac.ops.get_host_state(hw, &interface->host_ready); if (err && time_is_before_jiffies(interface->last_reset)) set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags); /* free the lock */ fm10k_mbx_unlock(interface); } /** * fm10k_mbx_subtask - Process upstream and downstream mailboxes * @interface: board private structure * * This function will process both the upstream and downstream mailboxes. **/ static void fm10k_mbx_subtask(struct fm10k_intfc *interface) { /* If we're resetting, bail out */ if (test_bit(__FM10K_RESETTING, interface->state)) return; /* process upstream mailbox and update device state */ fm10k_watchdog_update_host_state(interface); /* process downstream mailboxes */ fm10k_iov_mbx(interface); } /** * fm10k_watchdog_host_is_ready - Update netdev status based on host ready * @interface: board private structure **/ static void fm10k_watchdog_host_is_ready(struct fm10k_intfc *interface) { struct net_device *netdev = interface->netdev; /* only continue if link state is currently down */ if (netif_carrier_ok(netdev)) return; netif_info(interface, drv, netdev, "NIC Link is up\n"); netif_carrier_on(netdev); netif_tx_wake_all_queues(netdev); } /** * fm10k_watchdog_host_not_ready - Update netdev status based on host not ready * @interface: board private structure **/ static void fm10k_watchdog_host_not_ready(struct fm10k_intfc *interface) { struct net_device *netdev = interface->netdev; /* only continue if link state is currently up */ if (!netif_carrier_ok(netdev)) return; netif_info(interface, drv, netdev, "NIC Link is down\n"); netif_carrier_off(netdev); netif_tx_stop_all_queues(netdev); } /** * fm10k_update_stats - Update the board statistics counters. * @interface: board private structure **/ void fm10k_update_stats(struct fm10k_intfc *interface) { struct net_device_stats *net_stats = &interface->netdev->stats; struct fm10k_hw *hw = &interface->hw; u64 hw_csum_tx_good = 0, hw_csum_rx_good = 0, rx_length_errors = 0; u64 rx_switch_errors = 0, rx_drops = 0, rx_pp_errors = 0; u64 rx_link_errors = 0; u64 rx_errors = 0, rx_csum_errors = 0, tx_csum_errors = 0; u64 restart_queue = 0, tx_busy = 0, alloc_failed = 0; u64 rx_bytes_nic = 0, rx_pkts_nic = 0, rx_drops_nic = 0; u64 tx_bytes_nic = 0, tx_pkts_nic = 0; u64 bytes, pkts; int i; /* ensure only one thread updates stats at a time */ if (test_and_set_bit(__FM10K_UPDATING_STATS, interface->state)) return; /* do not allow stats update via service task for next second */ interface->next_stats_update = jiffies + HZ; /* gather some stats to the interface struct that are per queue */ for (bytes = 0, pkts = 0, i = 0; i < interface->num_tx_queues; i++) { struct fm10k_ring *tx_ring = READ_ONCE(interface->tx_ring[i]); if (!tx_ring) continue; restart_queue += tx_ring->tx_stats.restart_queue; tx_busy += tx_ring->tx_stats.tx_busy; tx_csum_errors += tx_ring->tx_stats.csum_err; bytes += tx_ring->stats.bytes; pkts += tx_ring->stats.packets; hw_csum_tx_good += tx_ring->tx_stats.csum_good; } interface->restart_queue = restart_queue; interface->tx_busy = tx_busy; net_stats->tx_bytes = bytes; net_stats->tx_packets = pkts; interface->tx_csum_errors = tx_csum_errors; interface->hw_csum_tx_good = hw_csum_tx_good; /* gather some stats to the interface struct that are per queue */ for (bytes = 0, pkts = 0, i = 0; i < interface->num_rx_queues; i++) { struct fm10k_ring *rx_ring = READ_ONCE(interface->rx_ring[i]); if (!rx_ring) continue; bytes += rx_ring->stats.bytes; pkts += rx_ring->stats.packets; alloc_failed += rx_ring->rx_stats.alloc_failed; rx_csum_errors += rx_ring->rx_stats.csum_err; rx_errors += rx_ring->rx_stats.errors; hw_csum_rx_good += rx_ring->rx_stats.csum_good; rx_switch_errors += rx_ring->rx_stats.switch_errors; rx_drops += rx_ring->rx_stats.drops; rx_pp_errors += rx_ring->rx_stats.pp_errors; rx_link_errors += rx_ring->rx_stats.link_errors; rx_length_errors += rx_ring->rx_stats.length_errors; } net_stats->rx_bytes = bytes; net_stats->rx_packets = pkts; interface->alloc_failed = alloc_failed; interface->rx_csum_errors = rx_csum_errors; interface->hw_csum_rx_good = hw_csum_rx_good; interface->rx_switch_errors = rx_switch_errors; interface->rx_drops = rx_drops; interface->rx_pp_errors = rx_pp_errors; interface->rx_link_errors = rx_link_errors; interface->rx_length_errors = rx_length_errors; hw->mac.ops.update_hw_stats(hw, &interface->stats); for (i = 0; i < hw->mac.max_queues; i++) { struct fm10k_hw_stats_q *q = &interface->stats.q[i]; tx_bytes_nic += q->tx_bytes.count; tx_pkts_nic += q->tx_packets.count; rx_bytes_nic += q->rx_bytes.count; rx_pkts_nic += q->rx_packets.count; rx_drops_nic += q->rx_drops.count; } interface->tx_bytes_nic = tx_bytes_nic; interface->tx_packets_nic = tx_pkts_nic; interface->rx_bytes_nic = rx_bytes_nic; interface->rx_packets_nic = rx_pkts_nic; interface->rx_drops_nic = rx_drops_nic; /* Fill out the OS statistics structure */ net_stats->rx_errors = rx_errors; net_stats->rx_dropped = interface->stats.nodesc_drop.count; /* Update VF statistics */ fm10k_iov_update_stats(interface); clear_bit(__FM10K_UPDATING_STATS, interface->state); } /** * fm10k_watchdog_flush_tx - flush queues on host not ready * @interface: pointer to the device interface structure **/ static void fm10k_watchdog_flush_tx(struct fm10k_intfc *interface) { int some_tx_pending = 0; int i; /* nothing to do if carrier is up */ if (netif_carrier_ok(interface->netdev)) return; for (i = 0; i < interface->num_tx_queues; i++) { struct fm10k_ring *tx_ring = interface->tx_ring[i]; if (tx_ring->next_to_use != tx_ring->next_to_clean) { some_tx_pending = 1; break; } } /* We've lost link, so the controller stops DMA, but we've got * queued Tx work that's never going to get done, so reset * controller to flush Tx. */ if (some_tx_pending) set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags); } /** * fm10k_watchdog_subtask - check and bring link up * @interface: pointer to the device interface structure **/ static void fm10k_watchdog_subtask(struct fm10k_intfc *interface) { /* if interface is down do nothing */ if (test_bit(__FM10K_DOWN, interface->state) || test_bit(__FM10K_RESETTING, interface->state)) return; if (interface->host_ready) fm10k_watchdog_host_is_ready(interface); else fm10k_watchdog_host_not_ready(interface); /* update stats only once every second */ if (time_is_before_jiffies(interface->next_stats_update)) fm10k_update_stats(interface); /* flush any uncompleted work */ fm10k_watchdog_flush_tx(interface); } /** * fm10k_check_hang_subtask - check for hung queues and dropped interrupts * @interface: pointer to the device interface structure * * This function serves two purposes. First it strobes the interrupt lines * in order to make certain interrupts are occurring. Secondly it sets the * bits needed to check for TX hangs. As a result we should immediately * determine if a hang has occurred. */ static void fm10k_check_hang_subtask(struct fm10k_intfc *interface) { /* If we're down or resetting, just bail */ if (test_bit(__FM10K_DOWN, interface->state) || test_bit(__FM10K_RESETTING, interface->state)) return; /* rate limit tx hang checks to only once every 2 seconds */ if (time_is_after_eq_jiffies(interface->next_tx_hang_check)) return; interface->next_tx_hang_check = jiffies + (2 * HZ); if (netif_carrier_ok(interface->netdev)) { int i; /* Force detection of hung controller */ for (i = 0; i < interface->num_tx_queues; i++) set_check_for_tx_hang(interface->tx_ring[i]); /* Rearm all in-use q_vectors for immediate firing */ for (i = 0; i < interface->num_q_vectors; i++) { struct fm10k_q_vector *qv = interface->q_vector[i]; if (!qv->tx.count && !qv->rx.count) continue; writel(FM10K_ITR_ENABLE | FM10K_ITR_PENDING2, qv->itr); } } } /** * fm10k_service_task - manages and runs subtasks * @work: pointer to work_struct containing our data **/ static void fm10k_service_task(struct work_struct *work) { struct fm10k_intfc *interface; interface = container_of(work, struct fm10k_intfc, service_task); /* Check whether we're detached first */ fm10k_detach_subtask(interface); /* tasks run even when interface is down */ fm10k_mbx_subtask(interface); fm10k_reset_subtask(interface); /* tasks only run when interface is up */ fm10k_watchdog_subtask(interface); fm10k_check_hang_subtask(interface); /* release lock on service events to allow scheduling next event */ fm10k_service_event_complete(interface); } /** * fm10k_macvlan_task - send queued MAC/VLAN requests to switch manager * @work: pointer to work_struct containing our data * * This work item handles sending MAC/VLAN updates to the switch manager. When * the interface is up, it will attempt to queue mailbox messages to the * switch manager requesting updates for MAC/VLAN pairs. If the Tx fifo of the * mailbox is full, it will reschedule itself to try again in a short while. * This ensures that the driver does not overload the switch mailbox with too * many simultaneous requests, causing an unnecessary reset. **/ static void fm10k_macvlan_task(struct work_struct *work) { struct fm10k_macvlan_request *item; struct fm10k_intfc *interface; struct delayed_work *dwork; struct list_head *requests; struct fm10k_hw *hw; unsigned long flags; dwork = to_delayed_work(work); interface = container_of(dwork, struct fm10k_intfc, macvlan_task); hw = &interface->hw; requests = &interface->macvlan_requests; do { /* Pop the first item off the list */ spin_lock_irqsave(&interface->macvlan_lock, flags); item = list_first_entry_or_null(requests, struct fm10k_macvlan_request, list); if (item) list_del_init(&item->list); spin_unlock_irqrestore(&interface->macvlan_lock, flags); /* We have no more items to process */ if (!item) goto done; fm10k_mbx_lock(interface); /* Check that we have plenty of space to send the message. We * want to ensure that the mailbox stays low enough to avoid a * change in the host state, otherwise we may see spurious * link up / link down notifications. */ if (!hw->mbx.ops.tx_ready(&hw->mbx, FM10K_VFMBX_MSG_MTU + 5)) { hw->mbx.ops.process(hw, &hw->mbx); set_bit(__FM10K_MACVLAN_REQUEST, interface->state); fm10k_mbx_unlock(interface); /* Put the request back on the list */ spin_lock_irqsave(&interface->macvlan_lock, flags); list_add(&item->list, requests); spin_unlock_irqrestore(&interface->macvlan_lock, flags); break; } switch (item->type) { case FM10K_MC_MAC_REQUEST: hw->mac.ops.update_mc_addr(hw, item->mac.glort, item->mac.addr, item->mac.vid, item->set); break; case FM10K_UC_MAC_REQUEST: hw->mac.ops.update_uc_addr(hw, item->mac.glort, item->mac.addr, item->mac.vid, item->set, 0); break; case FM10K_VLAN_REQUEST: hw->mac.ops.update_vlan(hw, item->vlan.vid, item->vlan.vsi, item->set); break; default: break; } fm10k_mbx_unlock(interface); /* Free the item now that we've sent the update */ kfree(item); } while (true); done: WARN_ON(!test_bit(__FM10K_MACVLAN_SCHED, interface->state)); /* flush memory to make sure state is correct */ smp_mb__before_atomic(); clear_bit(__FM10K_MACVLAN_SCHED, interface->state); /* If a MAC/VLAN request was scheduled since we started, we should * re-schedule. However, there is no reason to re-schedule if there is * no work to do. */ if (test_bit(__FM10K_MACVLAN_REQUEST, interface->state)) fm10k_macvlan_schedule(interface); } /** * fm10k_configure_tx_ring - Configure Tx ring after Reset * @interface: board private structure * @ring: structure containing ring specific data * * Configure the Tx descriptor ring after a reset. **/ static void fm10k_configure_tx_ring(struct fm10k_intfc *interface, struct fm10k_ring *ring) { struct fm10k_hw *hw = &interface->hw; u64 tdba = ring->dma; u32 size = ring->count * sizeof(struct fm10k_tx_desc); u32 txint = FM10K_INT_MAP_DISABLE; u32 txdctl = BIT(FM10K_TXDCTL_MAX_TIME_SHIFT) | FM10K_TXDCTL_ENABLE; u8 reg_idx = ring->reg_idx; /* disable queue to avoid issues while updating state */ fm10k_write_reg(hw, FM10K_TXDCTL(reg_idx), 0); fm10k_write_flush(hw); /* possible poll here to verify ring resources have been cleaned */ /* set location and size for descriptor ring */ fm10k_write_reg(hw, FM10K_TDBAL(reg_idx), tdba & DMA_BIT_MASK(32)); fm10k_write_reg(hw, FM10K_TDBAH(reg_idx), tdba >> 32); fm10k_write_reg(hw, FM10K_TDLEN(reg_idx), size); /* reset head and tail pointers */ fm10k_write_reg(hw, FM10K_TDH(reg_idx), 0); fm10k_write_reg(hw, FM10K_TDT(reg_idx), 0); /* store tail pointer */ ring->tail = &interface->uc_addr[FM10K_TDT(reg_idx)]; /* reset ntu and ntc to place SW in sync with hardware */ ring->next_to_clean = 0; ring->next_to_use = 0; /* Map interrupt */ if (ring->q_vector) { txint = ring->q_vector->v_idx + NON_Q_VECTORS; txint |= FM10K_INT_MAP_TIMER0; } fm10k_write_reg(hw, FM10K_TXINT(reg_idx), txint); /* enable use of FTAG bit in Tx descriptor, register is RO for VF */ fm10k_write_reg(hw, FM10K_PFVTCTL(reg_idx), FM10K_PFVTCTL_FTAG_DESC_ENABLE); /* Initialize XPS */ if (!test_and_set_bit(__FM10K_TX_XPS_INIT_DONE, ring->state) && ring->q_vector) netif_set_xps_queue(ring->netdev, &ring->q_vector->affinity_mask, ring->queue_index); /* enable queue */ fm10k_write_reg(hw, FM10K_TXDCTL(reg_idx), txdctl); } /** * fm10k_enable_tx_ring - Verify Tx ring is enabled after configuration * @interface: board private structure * @ring: structure containing ring specific data * * Verify the Tx descriptor ring is ready for transmit. **/ static void fm10k_enable_tx_ring(struct fm10k_intfc *interface, struct fm10k_ring *ring) { struct fm10k_hw *hw = &interface->hw; int wait_loop = 10; u32 txdctl; u8 reg_idx = ring->reg_idx; /* if we are already enabled just exit */ if (fm10k_read_reg(hw, FM10K_TXDCTL(reg_idx)) & FM10K_TXDCTL_ENABLE) return; /* poll to verify queue is enabled */ do { usleep_range(1000, 2000); txdctl = fm10k_read_reg(hw, FM10K_TXDCTL(reg_idx)); } while (!(txdctl & FM10K_TXDCTL_ENABLE) && --wait_loop); if (!wait_loop) netif_err(interface, drv, interface->netdev, "Could not enable Tx Queue %d\n", reg_idx); } /** * fm10k_configure_tx - Configure Transmit Unit after Reset * @interface: board private structure * * Configure the Tx unit of the MAC after a reset. **/ static void fm10k_configure_tx(struct fm10k_intfc *interface) { int i; /* Setup the HW Tx Head and Tail descriptor pointers */ for (i = 0; i < interface->num_tx_queues; i++) fm10k_configure_tx_ring(interface, interface->tx_ring[i]); /* poll here to verify that Tx rings are now enabled */ for (i = 0; i < interface->num_tx_queues; i++) fm10k_enable_tx_ring(interface, interface->tx_ring[i]); } /** * fm10k_configure_rx_ring - Configure Rx ring after Reset * @interface: board private structure * @ring: structure containing ring specific data * * Configure the Rx descriptor ring after a reset. **/ static void fm10k_configure_rx_ring(struct fm10k_intfc *interface, struct fm10k_ring *ring) { u64 rdba = ring->dma; struct fm10k_hw *hw = &interface->hw; u32 size = ring->count * sizeof(union fm10k_rx_desc); u32 rxqctl, rxdctl = FM10K_RXDCTL_WRITE_BACK_MIN_DELAY; u32 srrctl = FM10K_SRRCTL_BUFFER_CHAINING_EN; u32 rxint = FM10K_INT_MAP_DISABLE; u8 rx_pause = interface->rx_pause; u8 reg_idx = ring->reg_idx; /* disable queue to avoid issues while updating state */ rxqctl = fm10k_read_reg(hw, FM10K_RXQCTL(reg_idx)); rxqctl &= ~FM10K_RXQCTL_ENABLE; fm10k_write_reg(hw, FM10K_RXQCTL(reg_idx), rxqctl); fm10k_write_flush(hw); /* possible poll here to verify ring resources have been cleaned */ /* set location and size for descriptor ring */ fm10k_write_reg(hw, FM10K_RDBAL(reg_idx), rdba & DMA_BIT_MASK(32)); fm10k_write_reg(hw, FM10K_RDBAH(reg_idx), rdba >> 32); fm10k_write_reg(hw, FM10K_RDLEN(reg_idx), size); /* reset head and tail pointers */ fm10k_write_reg(hw, FM10K_RDH(reg_idx), 0); fm10k_write_reg(hw, FM10K_RDT(reg_idx), 0); /* store tail pointer */ ring->tail = &interface->uc_addr[FM10K_RDT(reg_idx)]; /* reset ntu and ntc to place SW in sync with hardware */ ring->next_to_clean = 0; ring->next_to_use = 0; ring->next_to_alloc = 0; /* Configure the Rx buffer size for one buff without split */ srrctl |= FM10K_RX_BUFSZ >> FM10K_SRRCTL_BSIZEPKT_SHIFT; /* Configure the Rx ring to suppress loopback packets */ srrctl |= FM10K_SRRCTL_LOOPBACK_SUPPRESS; fm10k_write_reg(hw, FM10K_SRRCTL(reg_idx), srrctl); /* Enable drop on empty */ #ifdef CONFIG_DCB if (interface->pfc_en) rx_pause = interface->pfc_en; #endif if (!(rx_pause & BIT(ring->qos_pc))) rxdctl |= FM10K_RXDCTL_DROP_ON_EMPTY; fm10k_write_reg(hw, FM10K_RXDCTL(reg_idx), rxdctl); /* assign default VLAN to queue */ ring->vid = hw->mac.default_vid; /* if we have an active VLAN, disable default VLAN ID */ if (test_bit(hw->mac.default_vid, interface->active_vlans)) ring->vid |= FM10K_VLAN_CLEAR; /* Map interrupt */ if (ring->q_vector) { rxint = ring->q_vector->v_idx + NON_Q_VECTORS; rxint |= FM10K_INT_MAP_TIMER1; } fm10k_write_reg(hw, FM10K_RXINT(reg_idx), rxint); /* enable queue */ rxqctl = fm10k_read_reg(hw, FM10K_RXQCTL(reg_idx)); rxqctl |= FM10K_RXQCTL_ENABLE; fm10k_write_reg(hw, FM10K_RXQCTL(reg_idx), rxqctl); /* place buffers on ring for receive data */ fm10k_alloc_rx_buffers(ring, fm10k_desc_unused(ring)); } /** * fm10k_update_rx_drop_en - Configures the drop enable bits for Rx rings * @interface: board private structure * * Configure the drop enable bits for the Rx rings. **/ void fm10k_update_rx_drop_en(struct fm10k_intfc *interface) { struct fm10k_hw *hw = &interface->hw; u8 rx_pause = interface->rx_pause; int i; #ifdef CONFIG_DCB if (interface->pfc_en) rx_pause = interface->pfc_en; #endif for (i = 0; i < interface->num_rx_queues; i++) { struct fm10k_ring *ring = interface->rx_ring[i]; u32 rxdctl = FM10K_RXDCTL_WRITE_BACK_MIN_DELAY; u8 reg_idx = ring->reg_idx; if (!(rx_pause & BIT(ring->qos_pc))) rxdctl |= FM10K_RXDCTL_DROP_ON_EMPTY; fm10k_write_reg(hw, FM10K_RXDCTL(reg_idx), rxdctl); } } /** * fm10k_configure_dglort - Configure Receive DGLORT after reset * @interface: board private structure * * Configure the DGLORT description and RSS tables. **/ static void fm10k_configure_dglort(struct fm10k_intfc *interface) { struct fm10k_dglort_cfg dglort = { 0 }; struct fm10k_hw *hw = &interface->hw; int i; u32 mrqc; /* Fill out hash function seeds */ for (i = 0; i < FM10K_RSSRK_SIZE; i++) fm10k_write_reg(hw, FM10K_RSSRK(0, i), interface->rssrk[i]); /* Write RETA table to hardware */ for (i = 0; i < FM10K_RETA_SIZE; i++) fm10k_write_reg(hw, FM10K_RETA(0, i), interface->reta[i]); /* Generate RSS hash based on packet types, TCP/UDP * port numbers and/or IPv4/v6 src and dst addresses */ mrqc = FM10K_MRQC_IPV4 | FM10K_MRQC_TCP_IPV4 | FM10K_MRQC_IPV6 | FM10K_MRQC_TCP_IPV6; if (test_bit(FM10K_FLAG_RSS_FIELD_IPV4_UDP, interface->flags)) mrqc |= FM10K_MRQC_UDP_IPV4; if (test_bit(FM10K_FLAG_RSS_FIELD_IPV6_UDP, interface->flags)) mrqc |= FM10K_MRQC_UDP_IPV6; fm10k_write_reg(hw, FM10K_MRQC(0), mrqc); /* configure default DGLORT mapping for RSS/DCB */ dglort.inner_rss = 1; dglort.rss_l = fls(interface->ring_feature[RING_F_RSS].mask); dglort.pc_l = fls(interface->ring_feature[RING_F_QOS].mask); hw->mac.ops.configure_dglort_map(hw, &dglort); /* assign GLORT per queue for queue mapped testing */ if (interface->glort_count > 64) { memset(&dglort, 0, sizeof(dglort)); dglort.inner_rss = 1; dglort.glort = interface->glort + 64; dglort.idx = fm10k_dglort_pf_queue; dglort.queue_l = fls(interface->num_rx_queues - 1); hw->mac.ops.configure_dglort_map(hw, &dglort); } /* assign glort value for RSS/DCB specific to this interface */ memset(&dglort, 0, sizeof(dglort)); dglort.inner_rss = 1; dglort.glort = interface->glort; dglort.rss_l = fls(interface->ring_feature[RING_F_RSS].mask); dglort.pc_l = fls(interface->ring_feature[RING_F_QOS].mask); /* configure DGLORT mapping for RSS/DCB */ dglort.idx = fm10k_dglort_pf_rss; if (interface->l2_accel) dglort.shared_l = fls(interface->l2_accel->size); hw->mac.ops.configure_dglort_map(hw, &dglort); } /** * fm10k_configure_rx - Configure Receive Unit after Reset * @interface: board private structure * * Configure the Rx unit of the MAC after a reset. **/ static void fm10k_configure_rx(struct fm10k_intfc *interface) { int i; /* Configure SWPRI to PC map */ fm10k_configure_swpri_map(interface); /* Configure RSS and DGLORT map */ fm10k_configure_dglort(interface); /* Setup the HW Rx Head and Tail descriptor pointers */ for (i = 0; i < interface->num_rx_queues; i++) fm10k_configure_rx_ring(interface, interface->rx_ring[i]); /* possible poll here to verify that Rx rings are now enabled */ } static void fm10k_napi_enable_all(struct fm10k_intfc *interface) { struct fm10k_q_vector *q_vector; int q_idx; for (q_idx = 0; q_idx < interface->num_q_vectors; q_idx++) { q_vector = interface->q_vector[q_idx]; napi_enable(&q_vector->napi); } } static irqreturn_t fm10k_msix_clean_rings(int __always_unused irq, void *data) { struct fm10k_q_vector *q_vector = data; if (q_vector->rx.count || q_vector->tx.count) napi_schedule_irqoff(&q_vector->napi); return IRQ_HANDLED; } static irqreturn_t fm10k_msix_mbx_vf(int __always_unused irq, void *data) { struct fm10k_intfc *interface = data; struct fm10k_hw *hw = &interface->hw; struct fm10k_mbx_info *mbx = &hw->mbx; /* re-enable mailbox interrupt and indicate 20us delay */ fm10k_write_reg(hw, FM10K_VFITR(FM10K_MBX_VECTOR), (FM10K_MBX_INT_DELAY >> hw->mac.itr_scale) | FM10K_ITR_ENABLE); /* service upstream mailbox */ if (fm10k_mbx_trylock(interface)) { mbx->ops.process(hw, mbx); fm10k_mbx_unlock(interface); } hw->mac.get_host_state = true; fm10k_service_event_schedule(interface); return IRQ_HANDLED; } #define FM10K_ERR_MSG(type) case (type): error = #type; break static void fm10k_handle_fault(struct fm10k_intfc *interface, int type, struct fm10k_fault *fault) { struct pci_dev *pdev = interface->pdev; struct fm10k_hw *hw = &interface->hw; struct fm10k_iov_data *iov_data = interface->iov_data; char *error; switch (type) { case FM10K_PCA_FAULT: switch (fault->type) { default: error = "Unknown PCA error"; break; FM10K_ERR_MSG(PCA_NO_FAULT); FM10K_ERR_MSG(PCA_UNMAPPED_ADDR); FM10K_ERR_MSG(PCA_BAD_QACCESS_PF); FM10K_ERR_MSG(PCA_BAD_QACCESS_VF); FM10K_ERR_MSG(PCA_MALICIOUS_REQ); FM10K_ERR_MSG(PCA_POISONED_TLP); FM10K_ERR_MSG(PCA_TLP_ABORT); } break; case FM10K_THI_FAULT: switch (fault->type) { default: error = "Unknown THI error"; break; FM10K_ERR_MSG(THI_NO_FAULT); FM10K_ERR_MSG(THI_MAL_DIS_Q_FAULT); } break; case FM10K_FUM_FAULT: switch (fault->type) { default: error = "Unknown FUM error"; break; FM10K_ERR_MSG(FUM_NO_FAULT); FM10K_ERR_MSG(FUM_UNMAPPED_ADDR); FM10K_ERR_MSG(FUM_BAD_VF_QACCESS); FM10K_ERR_MSG(FUM_ADD_DECODE_ERR); FM10K_ERR_MSG(FUM_RO_ERROR); FM10K_ERR_MSG(FUM_QPRC_CRC_ERROR); FM10K_ERR_MSG(FUM_CSR_TIMEOUT); FM10K_ERR_MSG(FUM_INVALID_TYPE); FM10K_ERR_MSG(FUM_INVALID_LENGTH); FM10K_ERR_MSG(FUM_INVALID_BE); FM10K_ERR_MSG(FUM_INVALID_ALIGN); } break; default: error = "Undocumented fault"; break; } dev_warn(&pdev->dev, "%s Address: 0x%llx SpecInfo: 0x%x Func: %02x.%0x\n", error, fault->address, fault->specinfo, PCI_SLOT(fault->func), PCI_FUNC(fault->func)); /* For VF faults, clear out the respective LPORT, reset the queue * resources, and then reconnect to the mailbox. This allows the * VF in question to resume behavior. For transient faults that are * the result of non-malicious behavior this will log the fault and * allow the VF to resume functionality. Obviously for malicious VFs * they will be able to attempt malicious behavior again. In this * case, the system administrator will need to step in and manually * remove or disable the VF in question. */ if (fault->func && iov_data) { int vf = fault->func - 1; struct fm10k_vf_info *vf_info = &iov_data->vf_info[vf]; hw->iov.ops.reset_lport(hw, vf_info); hw->iov.ops.reset_resources(hw, vf_info); /* reset_lport disables the VF, so re-enable it */ hw->iov.ops.set_lport(hw, vf_info, vf, FM10K_VF_FLAG_MULTI_CAPABLE); /* reset_resources will disconnect from the mbx */ vf_info->mbx.ops.connect(hw, &vf_info->mbx); } } static void fm10k_report_fault(struct fm10k_intfc *interface, u32 eicr) { struct fm10k_hw *hw = &interface->hw; struct fm10k_fault fault = { 0 }; int type, err; for (eicr &= FM10K_EICR_FAULT_MASK, type = FM10K_PCA_FAULT; eicr; eicr >>= 1, type += FM10K_FAULT_SIZE) { /* only check if there is an error reported */ if (!(eicr & 0x1)) continue; /* retrieve fault info */ err = hw->mac.ops.get_fault(hw, type, &fault); if (err) { dev_err(&interface->pdev->dev, "error reading fault\n"); continue; } fm10k_handle_fault(interface, type, &fault); } } static void fm10k_reset_drop_on_empty(struct fm10k_intfc *interface, u32 eicr) { struct fm10k_hw *hw = &interface->hw; const u32 rxdctl = FM10K_RXDCTL_WRITE_BACK_MIN_DELAY; u32 maxholdq; int q; if (!(eicr & FM10K_EICR_MAXHOLDTIME)) return; maxholdq = fm10k_read_reg(hw, FM10K_MAXHOLDQ(7)); if (maxholdq) fm10k_write_reg(hw, FM10K_MAXHOLDQ(7), maxholdq); for (q = 255;;) { if (maxholdq & BIT(31)) { if (q < FM10K_MAX_QUEUES_PF) { interface->rx_overrun_pf++; fm10k_write_reg(hw, FM10K_RXDCTL(q), rxdctl); } else { interface->rx_overrun_vf++; } } maxholdq *= 2; if (!maxholdq) q &= ~(32 - 1); if (!q) break; if (q-- % 32) continue; maxholdq = fm10k_read_reg(hw, FM10K_MAXHOLDQ(q / 32)); if (maxholdq) fm10k_write_reg(hw, FM10K_MAXHOLDQ(q / 32), maxholdq); } } static irqreturn_t fm10k_msix_mbx_pf(int __always_unused irq, void *data) { struct fm10k_intfc *interface = data; struct fm10k_hw *hw = &interface->hw; struct fm10k_mbx_info *mbx = &hw->mbx; u32 eicr; s32 err = 0; /* unmask any set bits related to this interrupt */ eicr = fm10k_read_reg(hw, FM10K_EICR); fm10k_write_reg(hw, FM10K_EICR, eicr & (FM10K_EICR_MAILBOX | FM10K_EICR_SWITCHREADY | FM10K_EICR_SWITCHNOTREADY)); /* report any faults found to the message log */ fm10k_report_fault(interface, eicr); /* reset any queues disabled due to receiver overrun */ fm10k_reset_drop_on_empty(interface, eicr); /* service mailboxes */ if (fm10k_mbx_trylock(interface)) { err = mbx->ops.process(hw, mbx); /* handle VFLRE events */ fm10k_iov_event(interface); fm10k_mbx_unlock(interface); } if (err == FM10K_ERR_RESET_REQUESTED) set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags); /* if switch toggled state we should reset GLORTs */ if (eicr & FM10K_EICR_SWITCHNOTREADY) { /* force link down for at least 4 seconds */ interface->link_down_event = jiffies + (4 * HZ); set_bit(__FM10K_LINK_DOWN, interface->state); /* reset dglort_map back to no config */ hw->mac.dglort_map = FM10K_DGLORTMAP_NONE; } /* we should validate host state after interrupt event */ hw->mac.get_host_state = true; /* validate host state, and handle VF mailboxes in the service task */ fm10k_service_event_schedule(interface); /* re-enable mailbox interrupt and indicate 20us delay */ fm10k_write_reg(hw, FM10K_ITR(FM10K_MBX_VECTOR), (FM10K_MBX_INT_DELAY >> hw->mac.itr_scale) | FM10K_ITR_ENABLE); return IRQ_HANDLED; } void fm10k_mbx_free_irq(struct fm10k_intfc *interface) { struct fm10k_hw *hw = &interface->hw; struct msix_entry *entry; int itr_reg; /* no mailbox IRQ to free if MSI-X is not enabled */ if (!interface->msix_entries) return; entry = &interface->msix_entries[FM10K_MBX_VECTOR]; /* disconnect the mailbox */ hw->mbx.ops.disconnect(hw, &hw->mbx); /* disable Mailbox cause */ if (hw->mac.type == fm10k_mac_pf) { fm10k_write_reg(hw, FM10K_EIMR, FM10K_EIMR_DISABLE(PCA_FAULT) | FM10K_EIMR_DISABLE(FUM_FAULT) | FM10K_EIMR_DISABLE(MAILBOX) | FM10K_EIMR_DISABLE(SWITCHREADY) | FM10K_EIMR_DISABLE(SWITCHNOTREADY) | FM10K_EIMR_DISABLE(SRAMERROR) | FM10K_EIMR_DISABLE(VFLR) | FM10K_EIMR_DISABLE(MAXHOLDTIME)); itr_reg = FM10K_ITR(FM10K_MBX_VECTOR); } else { itr_reg = FM10K_VFITR(FM10K_MBX_VECTOR); } fm10k_write_reg(hw, itr_reg, FM10K_ITR_MASK_SET); free_irq(entry->vector, interface); } static s32 fm10k_mbx_mac_addr(struct fm10k_hw *hw, u32 **results, struct fm10k_mbx_info *mbx) { bool vlan_override = hw->mac.vlan_override; u16 default_vid = hw->mac.default_vid; struct fm10k_intfc *interface; s32 err; err = fm10k_msg_mac_vlan_vf(hw, results, mbx); if (err) return err; interface = container_of(hw, struct fm10k_intfc, hw); /* MAC was changed so we need reset */ if (is_valid_ether_addr(hw->mac.perm_addr) && !ether_addr_equal(hw->mac.perm_addr, hw->mac.addr)) set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags); /* VLAN override was changed, or default VLAN changed */ if ((vlan_override != hw->mac.vlan_override) || (default_vid != hw->mac.default_vid)) set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags); return 0; } /* generic error handler for mailbox issues */ static s32 fm10k_mbx_error(struct fm10k_hw *hw, u32 **results, struct fm10k_mbx_info __always_unused *mbx) { struct fm10k_intfc *interface; struct pci_dev *pdev; interface = container_of(hw, struct fm10k_intfc, hw); pdev = interface->pdev; dev_err(&pdev->dev, "Unknown message ID %u\n", **results & FM10K_TLV_ID_MASK); return 0; } static const struct fm10k_msg_data vf_mbx_data[] = { FM10K_TLV_MSG_TEST_HANDLER(fm10k_tlv_msg_test), FM10K_VF_MSG_MAC_VLAN_HANDLER(fm10k_mbx_mac_addr), FM10K_VF_MSG_LPORT_STATE_HANDLER(fm10k_msg_lport_state_vf), FM10K_TLV_MSG_ERROR_HANDLER(fm10k_mbx_error), }; static int fm10k_mbx_request_irq_vf(struct fm10k_intfc *interface) { struct msix_entry *entry = &interface->msix_entries[FM10K_MBX_VECTOR]; struct net_device *dev = interface->netdev; struct fm10k_hw *hw = &interface->hw; int err; /* Use timer0 for interrupt moderation on the mailbox */ u32 itr = entry->entry | FM10K_INT_MAP_TIMER0; /* register mailbox handlers */ err = hw->mbx.ops.register_handlers(&hw->mbx, vf_mbx_data); if (err) return err; /* request the IRQ */ err = request_irq(entry->vector, fm10k_msix_mbx_vf, 0, dev->name, interface); if (err) { netif_err(interface, probe, dev, "request_irq for msix_mbx failed: %d\n", err); return err; } /* map all of the interrupt sources */ fm10k_write_reg(hw, FM10K_VFINT_MAP, itr); /* enable interrupt */ fm10k_write_reg(hw, FM10K_VFITR(entry->entry), FM10K_ITR_ENABLE); return 0; } static s32 fm10k_lport_map(struct fm10k_hw *hw, u32 **results, struct fm10k_mbx_info *mbx) { struct fm10k_intfc *interface; u32 dglort_map = hw->mac.dglort_map; s32 err; interface = container_of(hw, struct fm10k_intfc, hw); err = fm10k_msg_err_pf(hw, results, mbx); if (!err && hw->swapi.status) { /* force link down for a reasonable delay */ interface->link_down_event = jiffies + (2 * HZ); set_bit(__FM10K_LINK_DOWN, interface->state); /* reset dglort_map back to no config */ hw->mac.dglort_map = FM10K_DGLORTMAP_NONE; fm10k_service_event_schedule(interface); /* prevent overloading kernel message buffer */ if (interface->lport_map_failed) return 0; interface->lport_map_failed = true; if (hw->swapi.status == FM10K_MSG_ERR_PEP_NOT_SCHEDULED) dev_warn(&interface->pdev->dev, "cannot obtain link because the host interface is configured for a PCIe host interface bandwidth of zero\n"); dev_warn(&interface->pdev->dev, "request logical port map failed: %d\n", hw->swapi.status); return 0; } err = fm10k_msg_lport_map_pf(hw, results, mbx); if (err) return err; interface->lport_map_failed = false; /* we need to reset if port count was just updated */ if (dglort_map != hw->mac.dglort_map) set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags); return 0; } static s32 fm10k_update_pvid(struct fm10k_hw *hw, u32 **results, struct fm10k_mbx_info __always_unused *mbx) { struct fm10k_intfc *interface; u16 glort, pvid; u32 pvid_update; s32 err; err = fm10k_tlv_attr_get_u32(results[FM10K_PF_ATTR_ID_UPDATE_PVID], &pvid_update); if (err) return err; /* extract values from the pvid update */ glort = FM10K_MSG_HDR_FIELD_GET(pvid_update, UPDATE_PVID_GLORT); pvid = FM10K_MSG_HDR_FIELD_GET(pvid_update, UPDATE_PVID_PVID); /* if glort is not valid return error */ if (!fm10k_glort_valid_pf(hw, glort)) return FM10K_ERR_PARAM; /* verify VLAN ID is valid */ if (pvid >= FM10K_VLAN_TABLE_VID_MAX) return FM10K_ERR_PARAM; interface = container_of(hw, struct fm10k_intfc, hw); /* check to see if this belongs to one of the VFs */ err = fm10k_iov_update_pvid(interface, glort, pvid); if (!err) return 0; /* we need to reset if default VLAN was just updated */ if (pvid != hw->mac.default_vid) set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags); hw->mac.default_vid = pvid; return 0; } static const struct fm10k_msg_data pf_mbx_data[] = { FM10K_PF_MSG_ERR_HANDLER(XCAST_MODES, fm10k_msg_err_pf), FM10K_PF_MSG_ERR_HANDLER(UPDATE_MAC_FWD_RULE, fm10k_msg_err_pf), FM10K_PF_MSG_LPORT_MAP_HANDLER(fm10k_lport_map), FM10K_PF_MSG_ERR_HANDLER(LPORT_CREATE, fm10k_msg_err_pf), FM10K_PF_MSG_ERR_HANDLER(LPORT_DELETE, fm10k_msg_err_pf), FM10K_PF_MSG_UPDATE_PVID_HANDLER(fm10k_update_pvid), FM10K_TLV_MSG_ERROR_HANDLER(fm10k_mbx_error), }; static int fm10k_mbx_request_irq_pf(struct fm10k_intfc *interface) { struct msix_entry *entry = &interface->msix_entries[FM10K_MBX_VECTOR]; struct net_device *dev = interface->netdev; struct fm10k_hw *hw = &interface->hw; int err; /* Use timer0 for interrupt moderation on the mailbox */ u32 mbx_itr = entry->entry | FM10K_INT_MAP_TIMER0; u32 other_itr = entry->entry | FM10K_INT_MAP_IMMEDIATE; /* register mailbox handlers */ err = hw->mbx.ops.register_handlers(&hw->mbx, pf_mbx_data); if (err) return err; /* request the IRQ */ err = request_irq(entry->vector, fm10k_msix_mbx_pf, 0, dev->name, interface); if (err) { netif_err(interface, probe, dev, "request_irq for msix_mbx failed: %d\n", err); return err; } /* Enable interrupts w/ no moderation for "other" interrupts */ fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_pcie_fault), other_itr); fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_switch_up_down), other_itr); fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_sram), other_itr); fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_max_hold_time), other_itr); fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_vflr), other_itr); /* Enable interrupts w/ moderation for mailbox */ fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_mailbox), mbx_itr); /* Enable individual interrupt causes */ fm10k_write_reg(hw, FM10K_EIMR, FM10K_EIMR_ENABLE(PCA_FAULT) | FM10K_EIMR_ENABLE(FUM_FAULT) | FM10K_EIMR_ENABLE(MAILBOX) | FM10K_EIMR_ENABLE(SWITCHREADY) | FM10K_EIMR_ENABLE(SWITCHNOTREADY) | FM10K_EIMR_ENABLE(SRAMERROR) | FM10K_EIMR_ENABLE(VFLR) | FM10K_EIMR_ENABLE(MAXHOLDTIME)); /* enable interrupt */ fm10k_write_reg(hw, FM10K_ITR(entry->entry), FM10K_ITR_ENABLE); return 0; } int fm10k_mbx_request_irq(struct fm10k_intfc *interface) { struct fm10k_hw *hw = &interface->hw; int err; /* enable Mailbox cause */ if (hw->mac.type == fm10k_mac_pf) err = fm10k_mbx_request_irq_pf(interface); else err = fm10k_mbx_request_irq_vf(interface); if (err) return err; /* connect mailbox */ err = hw->mbx.ops.connect(hw, &hw->mbx); /* if the mailbox failed to connect, then free IRQ */ if (err) fm10k_mbx_free_irq(interface); return err; } /** * fm10k_qv_free_irq - release interrupts associated with queue vectors * @interface: board private structure * * Release all interrupts associated with this interface **/ void fm10k_qv_free_irq(struct fm10k_intfc *interface) { int vector = interface->num_q_vectors; struct msix_entry *entry; entry = &interface->msix_entries[NON_Q_VECTORS + vector]; while (vector) { struct fm10k_q_vector *q_vector; vector--; entry--; q_vector = interface->q_vector[vector]; if (!q_vector->tx.count && !q_vector->rx.count) continue; /* clear the affinity_mask in the IRQ descriptor */ irq_set_affinity_hint(entry->vector, NULL); /* disable interrupts */ writel(FM10K_ITR_MASK_SET, q_vector->itr); free_irq(entry->vector, q_vector); } } /** * fm10k_qv_request_irq - initialize interrupts for queue vectors * @interface: board private structure * * Attempts to configure interrupts using the best available * capabilities of the hardware and kernel. **/ int fm10k_qv_request_irq(struct fm10k_intfc *interface) { struct net_device *dev = interface->netdev; struct fm10k_hw *hw = &interface->hw; struct msix_entry *entry; unsigned int ri = 0, ti = 0; int vector, err; entry = &interface->msix_entries[NON_Q_VECTORS]; for (vector = 0; vector < interface->num_q_vectors; vector++) { struct fm10k_q_vector *q_vector = interface->q_vector[vector]; /* name the vector */ if (q_vector->tx.count && q_vector->rx.count) { snprintf(q_vector->name, sizeof(q_vector->name), "%s-TxRx-%u", dev->name, ri++); ti++; } else if (q_vector->rx.count) { snprintf(q_vector->name, sizeof(q_vector->name), "%s-rx-%u", dev->name, ri++); } else if (q_vector->tx.count) { snprintf(q_vector->name, sizeof(q_vector->name), "%s-tx-%u", dev->name, ti++); } else { /* skip this unused q_vector */ continue; } /* Assign ITR register to q_vector */ q_vector->itr = (hw->mac.type == fm10k_mac_pf) ? &interface->uc_addr[FM10K_ITR(entry->entry)] : &interface->uc_addr[FM10K_VFITR(entry->entry)]; /* request the IRQ */ err = request_irq(entry->vector, &fm10k_msix_clean_rings, 0, q_vector->name, q_vector); if (err) { netif_err(interface, probe, dev, "request_irq failed for MSIX interrupt Error: %d\n", err); goto err_out; } /* assign the mask for this irq */ irq_set_affinity_hint(entry->vector, &q_vector->affinity_mask); /* Enable q_vector */ writel(FM10K_ITR_ENABLE, q_vector->itr); entry++; } return 0; err_out: /* wind through the ring freeing all entries and vectors */ while (vector) { struct fm10k_q_vector *q_vector; entry--; vector--; q_vector = interface->q_vector[vector]; if (!q_vector->tx.count && !q_vector->rx.count) continue; /* clear the affinity_mask in the IRQ descriptor */ irq_set_affinity_hint(entry->vector, NULL); /* disable interrupts */ writel(FM10K_ITR_MASK_SET, q_vector->itr); free_irq(entry->vector, q_vector); } return err; } void fm10k_up(struct fm10k_intfc *interface) { struct fm10k_hw *hw = &interface->hw; /* Enable Tx/Rx DMA */ hw->mac.ops.start_hw(hw); /* configure Tx descriptor rings */ fm10k_configure_tx(interface); /* configure Rx descriptor rings */ fm10k_configure_rx(interface); /* configure interrupts */ hw->mac.ops.update_int_moderator(hw); /* enable statistics capture again */ clear_bit(__FM10K_UPDATING_STATS, interface->state); /* clear down bit to indicate we are ready to go */ clear_bit(__FM10K_DOWN, interface->state); /* enable polling cleanups */ fm10k_napi_enable_all(interface); /* re-establish Rx filters */ fm10k_restore_rx_state(interface); /* enable transmits */ netif_tx_start_all_queues(interface->netdev); /* kick off the service timer now */ hw->mac.get_host_state = true; mod_timer(&interface->service_timer, jiffies); } static void fm10k_napi_disable_all(struct fm10k_intfc *interface) { struct fm10k_q_vector *q_vector; int q_idx; for (q_idx = 0; q_idx < interface->num_q_vectors; q_idx++) { q_vector = interface->q_vector[q_idx]; napi_disable(&q_vector->napi); } } void fm10k_down(struct fm10k_intfc *interface) { struct net_device *netdev = interface->netdev; struct fm10k_hw *hw = &interface->hw; int err, i = 0, count = 0; /* signal that we are down to the interrupt handler and service task */ if (test_and_set_bit(__FM10K_DOWN, interface->state)) return; /* call carrier off first to avoid false dev_watchdog timeouts */ netif_carrier_off(netdev); /* disable transmits */ netif_tx_stop_all_queues(netdev); netif_tx_disable(netdev); /* reset Rx filters */ fm10k_reset_rx_state(interface); /* disable polling routines */ fm10k_napi_disable_all(interface); /* capture stats one last time before stopping interface */ fm10k_update_stats(interface); /* prevent updating statistics while we're down */ while (test_and_set_bit(__FM10K_UPDATING_STATS, interface->state)) usleep_range(1000, 2000); /* skip waiting for TX DMA if we lost PCIe link */ if (FM10K_REMOVED(hw->hw_addr)) goto skip_tx_dma_drain; /* In some rare circumstances it can take a while for Tx queues to * quiesce and be fully disabled. Attempt to .stop_hw() first, and * then if we get ERR_REQUESTS_PENDING, go ahead and wait in a loop * until the Tx queues have emptied, or until a number of retries. If * we fail to clear within the retry loop, we will issue a warning * indicating that Tx DMA is probably hung. Note this means we call * .stop_hw() twice but this shouldn't cause any problems. */ err = hw->mac.ops.stop_hw(hw); if (err != FM10K_ERR_REQUESTS_PENDING) goto skip_tx_dma_drain; #define TX_DMA_DRAIN_RETRIES 25 for (count = 0; count < TX_DMA_DRAIN_RETRIES; count++) { usleep_range(10000, 20000); /* start checking at the last ring to have pending Tx */ for (; i < interface->num_tx_queues; i++) if (fm10k_get_tx_pending(interface->tx_ring[i], false)) break; /* if all the queues are drained, we can break now */ if (i == interface->num_tx_queues) break; } if (count >= TX_DMA_DRAIN_RETRIES) dev_err(&interface->pdev->dev, "Tx queues failed to drain after %d tries. Tx DMA is probably hung.\n", count); skip_tx_dma_drain: /* Disable DMA engine for Tx/Rx */ err = hw->mac.ops.stop_hw(hw); if (err == FM10K_ERR_REQUESTS_PENDING) dev_err(&interface->pdev->dev, "due to pending requests hw was not shut down gracefully\n"); else if (err) dev_err(&interface->pdev->dev, "stop_hw failed: %d\n", err); /* free any buffers still on the rings */ fm10k_clean_all_tx_rings(interface); fm10k_clean_all_rx_rings(interface); } /** * fm10k_sw_init - Initialize general software structures * @interface: host interface private structure to initialize * @ent: PCI device ID entry * * fm10k_sw_init initializes the interface private data structure. * Fields are initialized based on PCI device information and * OS network device settings (MTU size). **/ static int fm10k_sw_init(struct fm10k_intfc *interface, const struct pci_device_id *ent) { const struct fm10k_info *fi = fm10k_info_tbl[ent->driver_data]; struct fm10k_hw *hw = &interface->hw; struct pci_dev *pdev = interface->pdev; struct net_device *netdev = interface->netdev; u32 rss_key[FM10K_RSSRK_SIZE]; unsigned int rss; int err; /* initialize back pointer */ hw->back = interface; hw->hw_addr = interface->uc_addr; /* PCI config space info */ hw->vendor_id = pdev->vendor; hw->device_id = pdev->device; hw->revision_id = pdev->revision; hw->subsystem_vendor_id = pdev->subsystem_vendor; hw->subsystem_device_id = pdev->subsystem_device; /* Setup hw api */ memcpy(&hw->mac.ops, fi->mac_ops, sizeof(hw->mac.ops)); hw->mac.type = fi->mac; /* Setup IOV handlers */ if (fi->iov_ops) memcpy(&hw->iov.ops, fi->iov_ops, sizeof(hw->iov.ops)); /* Set common capability flags and settings */ rss = min_t(int, FM10K_MAX_RSS_INDICES, num_online_cpus()); interface->ring_feature[RING_F_RSS].limit = rss; fi->get_invariants(hw); /* pick up the PCIe bus settings for reporting later */ if (hw->mac.ops.get_bus_info) hw->mac.ops.get_bus_info(hw); /* limit the usable DMA range */ if (hw->mac.ops.set_dma_mask) hw->mac.ops.set_dma_mask(hw, dma_get_mask(&pdev->dev)); /* update netdev with DMA restrictions */ if (dma_get_mask(&pdev->dev) > DMA_BIT_MASK(32)) { netdev->features |= NETIF_F_HIGHDMA; netdev->vlan_features |= NETIF_F_HIGHDMA; } /* reset and initialize the hardware so it is in a known state */ err = hw->mac.ops.reset_hw(hw); if (err) { dev_err(&pdev->dev, "reset_hw failed: %d\n", err); return err; } err = hw->mac.ops.init_hw(hw); if (err) { dev_err(&pdev->dev, "init_hw failed: %d\n", err); return err; } /* initialize hardware statistics */ hw->mac.ops.update_hw_stats(hw, &interface->stats); /* Set upper limit on IOV VFs that can be allocated */ pci_sriov_set_totalvfs(pdev, hw->iov.total_vfs); /* Start with random Ethernet address */ eth_random_addr(hw->mac.addr); /* Initialize MAC address from hardware */ err = hw->mac.ops.read_mac_addr(hw); if (err) { dev_warn(&pdev->dev, "Failed to obtain MAC address defaulting to random\n"); /* tag address assignment as random */ netdev->addr_assign_type |= NET_ADDR_RANDOM; } ether_addr_copy(netdev->dev_addr, hw->mac.addr); ether_addr_copy(netdev->perm_addr, hw->mac.addr); if (!is_valid_ether_addr(netdev->perm_addr)) { dev_err(&pdev->dev, "Invalid MAC Address\n"); return -EIO; } /* initialize DCBNL interface */ fm10k_dcbnl_set_ops(netdev); /* set default ring sizes */ interface->tx_ring_count = FM10K_DEFAULT_TXD; interface->rx_ring_count = FM10K_DEFAULT_RXD; /* set default interrupt moderation */ interface->tx_itr = FM10K_TX_ITR_DEFAULT; interface->rx_itr = FM10K_ITR_ADAPTIVE | FM10K_RX_ITR_DEFAULT; /* Initialize the MAC/VLAN queue */ INIT_LIST_HEAD(&interface->macvlan_requests); netdev_rss_key_fill(rss_key, sizeof(rss_key)); memcpy(interface->rssrk, rss_key, sizeof(rss_key)); /* Initialize the mailbox lock */ spin_lock_init(&interface->mbx_lock); spin_lock_init(&interface->macvlan_lock); /* Start off interface as being down */ set_bit(__FM10K_DOWN, interface->state); set_bit(__FM10K_UPDATING_STATS, interface->state); return 0; } /** * fm10k_probe - Device Initialization Routine * @pdev: PCI device information struct * @ent: entry in fm10k_pci_tbl * * Returns 0 on success, negative on failure * * fm10k_probe initializes an interface identified by a pci_dev structure. * The OS initialization, configuring of the interface private structure, * and a hardware reset occur. **/ static int fm10k_probe(struct pci_dev *pdev, const struct pci_device_id *ent) { struct net_device *netdev; struct fm10k_intfc *interface; int err; if (pdev->error_state != pci_channel_io_normal) { dev_err(&pdev->dev, "PCI device still in an error state. Unable to load...\n"); return -EIO; } err = pci_enable_device_mem(pdev); if (err) { dev_err(&pdev->dev, "PCI enable device failed: %d\n", err); return err; } err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(48)); if (err) err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); if (err) { dev_err(&pdev->dev, "DMA configuration failed: %d\n", err); goto err_dma; } err = pci_request_mem_regions(pdev, fm10k_driver_name); if (err) { dev_err(&pdev->dev, "pci_request_selected_regions failed: %d\n", err); goto err_pci_reg; } pci_enable_pcie_error_reporting(pdev); pci_set_master(pdev); pci_save_state(pdev); netdev = fm10k_alloc_netdev(fm10k_info_tbl[ent->driver_data]); if (!netdev) { err = -ENOMEM; goto err_alloc_netdev; } SET_NETDEV_DEV(netdev, &pdev->dev); interface = netdev_priv(netdev); pci_set_drvdata(pdev, interface); interface->netdev = netdev; interface->pdev = pdev; interface->uc_addr = ioremap(pci_resource_start(pdev, 0), FM10K_UC_ADDR_SIZE); if (!interface->uc_addr) { err = -EIO; goto err_ioremap; } err = fm10k_sw_init(interface, ent); if (err) goto err_sw_init; /* enable debugfs support */ fm10k_dbg_intfc_init(interface); err = fm10k_init_queueing_scheme(interface); if (err) goto err_sw_init; /* the mbx interrupt might attempt to schedule the service task, so we * must ensure it is disabled since we haven't yet requested the timer * or work item. */ set_bit(__FM10K_SERVICE_DISABLE, interface->state); err = fm10k_mbx_request_irq(interface); if (err) goto err_mbx_interrupt; /* final check of hardware state before registering the interface */ err = fm10k_hw_ready(interface); if (err) goto err_register; err = register_netdev(netdev); if (err) goto err_register; /* carrier off reporting is important to ethtool even BEFORE open */ netif_carrier_off(netdev); /* stop all the transmit queues from transmitting until link is up */ netif_tx_stop_all_queues(netdev); /* Initialize service timer and service task late in order to avoid * cleanup issues. */ timer_setup(&interface->service_timer, fm10k_service_timer, 0); INIT_WORK(&interface->service_task, fm10k_service_task); /* Setup the MAC/VLAN queue */ INIT_DELAYED_WORK(&interface->macvlan_task, fm10k_macvlan_task); /* kick off service timer now, even when interface is down */ mod_timer(&interface->service_timer, (HZ * 2) + jiffies); /* print warning for non-optimal configurations */ pcie_print_link_status(interface->pdev); /* report MAC address for logging */ dev_info(&pdev->dev, "%pM\n", netdev->dev_addr); /* enable SR-IOV after registering netdev to enforce PF/VF ordering */ fm10k_iov_configure(pdev, 0); /* clear the service task disable bit and kick off service task */ clear_bit(__FM10K_SERVICE_DISABLE, interface->state); fm10k_service_event_schedule(interface); return 0; err_register: fm10k_mbx_free_irq(interface); err_mbx_interrupt: fm10k_clear_queueing_scheme(interface); err_sw_init: if (interface->sw_addr) iounmap(interface->sw_addr); iounmap(interface->uc_addr); err_ioremap: free_netdev(netdev); err_alloc_netdev: pci_disable_pcie_error_reporting(pdev); pci_release_mem_regions(pdev); err_pci_reg: err_dma: pci_disable_device(pdev); return err; } /** * fm10k_remove - Device Removal Routine * @pdev: PCI device information struct * * fm10k_remove is called by the PCI subsystem to alert the driver * that it should release a PCI device. The could be caused by a * Hot-Plug event, or because the driver is going to be removed from * memory. **/ static void fm10k_remove(struct pci_dev *pdev) { struct fm10k_intfc *interface = pci_get_drvdata(pdev); struct net_device *netdev = interface->netdev; del_timer_sync(&interface->service_timer); fm10k_stop_service_event(interface); fm10k_stop_macvlan_task(interface); /* Remove all pending MAC/VLAN requests */ fm10k_clear_macvlan_queue(interface, interface->glort, true); /* free netdev, this may bounce the interrupts due to setup_tc */ if (netdev->reg_state == NETREG_REGISTERED) unregister_netdev(netdev); /* release VFs */ fm10k_iov_disable(pdev); /* disable mailbox interrupt */ fm10k_mbx_free_irq(interface); /* free interrupts */ fm10k_clear_queueing_scheme(interface); /* remove any debugfs interfaces */ fm10k_dbg_intfc_exit(interface); if (interface->sw_addr) iounmap(interface->sw_addr); iounmap(interface->uc_addr); free_netdev(netdev); pci_release_mem_regions(pdev); pci_disable_pcie_error_reporting(pdev); pci_disable_device(pdev); } static void fm10k_prepare_suspend(struct fm10k_intfc *interface) { /* the watchdog task reads from registers, which might appear like * a surprise remove if the PCIe device is disabled while we're * stopped. We stop the watchdog task until after we resume software * activity. * * Note that the MAC/VLAN task will be stopped as part of preparing * for reset so we don't need to handle it here. */ fm10k_stop_service_event(interface); if (fm10k_prepare_for_reset(interface)) set_bit(__FM10K_RESET_SUSPENDED, interface->state); } static int fm10k_handle_resume(struct fm10k_intfc *interface) { struct fm10k_hw *hw = &interface->hw; int err; /* Even if we didn't properly prepare for reset in * fm10k_prepare_suspend, we'll attempt to resume anyways. */ if (!test_and_clear_bit(__FM10K_RESET_SUSPENDED, interface->state)) dev_warn(&interface->pdev->dev, "Device was shut down as part of suspend... Attempting to recover\n"); /* reset statistics starting values */ hw->mac.ops.rebind_hw_stats(hw, &interface->stats); err = fm10k_handle_reset(interface); if (err) return err; /* assume host is not ready, to prevent race with watchdog in case we * actually don't have connection to the switch */ interface->host_ready = false; fm10k_watchdog_host_not_ready(interface); /* force link to stay down for a second to prevent link flutter */ interface->link_down_event = jiffies + (HZ); set_bit(__FM10K_LINK_DOWN, interface->state); /* restart the service task */ fm10k_start_service_event(interface); /* Restart the MAC/VLAN request queue in-case of outstanding events */ fm10k_macvlan_schedule(interface); return 0; } /** * fm10k_resume - Generic PM resume hook * @dev: generic device structure * * Generic PM hook used when waking the device from a low power state after * suspend or hibernation. This function does not need to handle lower PCIe * device state as the stack takes care of that for us. **/ static int __maybe_unused fm10k_resume(struct device *dev) { struct fm10k_intfc *interface = dev_get_drvdata(dev); struct net_device *netdev = interface->netdev; struct fm10k_hw *hw = &interface->hw; int err; /* refresh hw_addr in case it was dropped */ hw->hw_addr = interface->uc_addr; err = fm10k_handle_resume(interface); if (err) return err; netif_device_attach(netdev); return 0; } /** * fm10k_suspend - Generic PM suspend hook * @dev: generic device structure * * Generic PM hook used when setting the device into a low power state for * system suspend or hibernation. This function does not need to handle lower * PCIe device state as the stack takes care of that for us. **/ static int __maybe_unused fm10k_suspend(struct device *dev) { struct fm10k_intfc *interface = dev_get_drvdata(dev); struct net_device *netdev = interface->netdev; netif_device_detach(netdev); fm10k_prepare_suspend(interface); return 0; } /** * fm10k_io_error_detected - called when PCI error is detected * @pdev: Pointer to PCI device * @state: The current pci connection state * * This function is called after a PCI bus error affecting * this device has been detected. */ static pci_ers_result_t fm10k_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state) { struct fm10k_intfc *interface = pci_get_drvdata(pdev); struct net_device *netdev = interface->netdev; netif_device_detach(netdev); if (state == pci_channel_io_perm_failure) return PCI_ERS_RESULT_DISCONNECT; fm10k_prepare_suspend(interface); /* Request a slot reset. */ return PCI_ERS_RESULT_NEED_RESET; } /** * fm10k_io_slot_reset - called after the pci bus has been reset. * @pdev: Pointer to PCI device * * Restart the card from scratch, as if from a cold-boot. */ static pci_ers_result_t fm10k_io_slot_reset(struct pci_dev *pdev) { pci_ers_result_t result; if (pci_reenable_device(pdev)) { dev_err(&pdev->dev, "Cannot re-enable PCI device after reset.\n"); result = PCI_ERS_RESULT_DISCONNECT; } else { pci_set_master(pdev); pci_restore_state(pdev); /* After second error pci->state_saved is false, this * resets it so EEH doesn't break. */ pci_save_state(pdev); pci_wake_from_d3(pdev, false); result = PCI_ERS_RESULT_RECOVERED; } return result; } /** * fm10k_io_resume - called when traffic can start flowing again. * @pdev: Pointer to PCI device * * This callback is called when the error recovery driver tells us that * its OK to resume normal operation. */ static void fm10k_io_resume(struct pci_dev *pdev) { struct fm10k_intfc *interface = pci_get_drvdata(pdev); struct net_device *netdev = interface->netdev; int err; err = fm10k_handle_resume(interface); if (err) dev_warn(&pdev->dev, "%s failed: %d\n", __func__, err); else netif_device_attach(netdev); } /** * fm10k_io_reset_prepare - called when PCI function is about to be reset * @pdev: Pointer to PCI device * * This callback is called when the PCI function is about to be reset, * allowing the device driver to prepare for it. */ static void fm10k_io_reset_prepare(struct pci_dev *pdev) { /* warn incase we have any active VF devices */ if (pci_num_vf(pdev)) dev_warn(&pdev->dev, "PCIe FLR may cause issues for any active VF devices\n"); fm10k_prepare_suspend(pci_get_drvdata(pdev)); } /** * fm10k_io_reset_done - called when PCI function has finished resetting * @pdev: Pointer to PCI device * * This callback is called just after the PCI function is reset, such as via * /sys/class/net//device/reset or similar. */ static void fm10k_io_reset_done(struct pci_dev *pdev) { struct fm10k_intfc *interface = pci_get_drvdata(pdev); int err = fm10k_handle_resume(interface); if (err) { dev_warn(&pdev->dev, "%s failed: %d\n", __func__, err); netif_device_detach(interface->netdev); } } static const struct pci_error_handlers fm10k_err_handler = { .error_detected = fm10k_io_error_detected, .slot_reset = fm10k_io_slot_reset, .resume = fm10k_io_resume, .reset_prepare = fm10k_io_reset_prepare, .reset_done = fm10k_io_reset_done, }; static SIMPLE_DEV_PM_OPS(fm10k_pm_ops, fm10k_suspend, fm10k_resume); static struct pci_driver fm10k_driver = { .name = fm10k_driver_name, .id_table = fm10k_pci_tbl, .probe = fm10k_probe, .remove = fm10k_remove, .driver = { .pm = &fm10k_pm_ops, }, .sriov_configure = fm10k_iov_configure, .err_handler = &fm10k_err_handler }; /** * fm10k_register_pci_driver - register driver interface * * This function is called on module load in order to register the driver. **/ int fm10k_register_pci_driver(void) { return pci_register_driver(&fm10k_driver); } /** * fm10k_unregister_pci_driver - unregister driver interface * * This function is called on module unload in order to remove the driver. **/ void fm10k_unregister_pci_driver(void) { pci_unregister_driver(&fm10k_driver); }