// SPDX-License-Identifier: GPL-2.0-only /**************************************************************************** * Driver for Solarflare network controllers and boards * Copyright 2018 Solarflare Communications Inc. * Copyright 2019-2020 Xilinx Inc. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 as published * by the Free Software Foundation, incorporated herein by reference. */ #include "ef100_nic.h" #include "efx_common.h" #include "efx_channels.h" #include "io.h" #include "selftest.h" #include "ef100_regs.h" #include "mcdi.h" #include "mcdi_pcol.h" #include "mcdi_port_common.h" #include "mcdi_functions.h" #include "mcdi_filters.h" #include "ef100_rx.h" #include "ef100_tx.h" #include "ef100_netdev.h" #define EF100_MAX_VIS 4096 #define EF100_NUM_MCDI_BUFFERS 1 #define MCDI_BUF_LEN (8 + MCDI_CTL_SDU_LEN_MAX) #define EF100_RESET_PORT ((ETH_RESET_MAC | ETH_RESET_PHY) << ETH_RESET_SHARED_SHIFT) /* MCDI */ static u8 *ef100_mcdi_buf(struct efx_nic *efx, u8 bufid, dma_addr_t *dma_addr) { struct ef100_nic_data *nic_data = efx->nic_data; if (dma_addr) *dma_addr = nic_data->mcdi_buf.dma_addr + bufid * ALIGN(MCDI_BUF_LEN, 256); return nic_data->mcdi_buf.addr + bufid * ALIGN(MCDI_BUF_LEN, 256); } static int ef100_get_warm_boot_count(struct efx_nic *efx) { efx_dword_t reg; efx_readd(efx, ®, efx_reg(efx, ER_GZ_MC_SFT_STATUS)); if (EFX_DWORD_FIELD(reg, EFX_DWORD_0) == 0xffffffff) { netif_err(efx, hw, efx->net_dev, "Hardware unavailable\n"); efx->state = STATE_DISABLED; return -ENETDOWN; } else { return EFX_DWORD_FIELD(reg, EFX_WORD_1) == 0xb007 ? EFX_DWORD_FIELD(reg, EFX_WORD_0) : -EIO; } } static void ef100_mcdi_request(struct efx_nic *efx, const efx_dword_t *hdr, size_t hdr_len, const efx_dword_t *sdu, size_t sdu_len) { dma_addr_t dma_addr; u8 *pdu = ef100_mcdi_buf(efx, 0, &dma_addr); memcpy(pdu, hdr, hdr_len); memcpy(pdu + hdr_len, sdu, sdu_len); wmb(); /* The hardware provides 'low' and 'high' (doorbell) registers * for passing the 64-bit address of an MCDI request to * firmware. However the dwords are swapped by firmware. The * least significant bits of the doorbell are then 0 for all * MCDI requests due to alignment. */ _efx_writed(efx, cpu_to_le32((u64)dma_addr >> 32), efx_reg(efx, ER_GZ_MC_DB_LWRD)); _efx_writed(efx, cpu_to_le32((u32)dma_addr), efx_reg(efx, ER_GZ_MC_DB_HWRD)); } static bool ef100_mcdi_poll_response(struct efx_nic *efx) { const efx_dword_t hdr = *(const efx_dword_t *)(ef100_mcdi_buf(efx, 0, NULL)); rmb(); return EFX_DWORD_FIELD(hdr, MCDI_HEADER_RESPONSE); } static void ef100_mcdi_read_response(struct efx_nic *efx, efx_dword_t *outbuf, size_t offset, size_t outlen) { const u8 *pdu = ef100_mcdi_buf(efx, 0, NULL); memcpy(outbuf, pdu + offset, outlen); } static int ef100_mcdi_poll_reboot(struct efx_nic *efx) { struct ef100_nic_data *nic_data = efx->nic_data; int rc; rc = ef100_get_warm_boot_count(efx); if (rc < 0) { /* The firmware is presumably in the process of * rebooting. However, we are supposed to report each * reboot just once, so we must only do that once we * can read and store the updated warm boot count. */ return 0; } if (rc == nic_data->warm_boot_count) return 0; nic_data->warm_boot_count = rc; return -EIO; } static void ef100_mcdi_reboot_detected(struct efx_nic *efx) { } /* MCDI calls */ static int ef100_get_mac_address(struct efx_nic *efx, u8 *mac_address) { MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_MAC_ADDRESSES_OUT_LEN); size_t outlen; int rc; BUILD_BUG_ON(MC_CMD_GET_MAC_ADDRESSES_IN_LEN != 0); rc = efx_mcdi_rpc(efx, MC_CMD_GET_MAC_ADDRESSES, NULL, 0, outbuf, sizeof(outbuf), &outlen); if (rc) return rc; if (outlen < MC_CMD_GET_MAC_ADDRESSES_OUT_LEN) return -EIO; ether_addr_copy(mac_address, MCDI_PTR(outbuf, GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE)); return 0; } static int efx_ef100_init_datapath_caps(struct efx_nic *efx) { MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CAPABILITIES_V7_OUT_LEN); struct ef100_nic_data *nic_data = efx->nic_data; u8 vi_window_mode; size_t outlen; int rc; BUILD_BUG_ON(MC_CMD_GET_CAPABILITIES_IN_LEN != 0); rc = efx_mcdi_rpc(efx, MC_CMD_GET_CAPABILITIES, NULL, 0, outbuf, sizeof(outbuf), &outlen); if (rc) return rc; if (outlen < MC_CMD_GET_CAPABILITIES_V4_OUT_LEN) { netif_err(efx, drv, efx->net_dev, "unable to read datapath firmware capabilities\n"); return -EIO; } nic_data->datapath_caps = MCDI_DWORD(outbuf, GET_CAPABILITIES_OUT_FLAGS1); nic_data->datapath_caps2 = MCDI_DWORD(outbuf, GET_CAPABILITIES_V2_OUT_FLAGS2); if (outlen < MC_CMD_GET_CAPABILITIES_V7_OUT_LEN) nic_data->datapath_caps3 = 0; else nic_data->datapath_caps3 = MCDI_DWORD(outbuf, GET_CAPABILITIES_V7_OUT_FLAGS3); vi_window_mode = MCDI_BYTE(outbuf, GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE); rc = efx_mcdi_window_mode_to_stride(efx, vi_window_mode); if (rc) return rc; if (efx_ef100_has_cap(nic_data->datapath_caps2, TX_TSO_V3)) efx->net_dev->features |= NETIF_F_TSO | NETIF_F_TSO6; efx->num_mac_stats = MCDI_WORD(outbuf, GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS); netif_dbg(efx, probe, efx->net_dev, "firmware reports num_mac_stats = %u\n", efx->num_mac_stats); return 0; } /* Event handling */ static int ef100_ev_probe(struct efx_channel *channel) { /* Allocate an extra descriptor for the QMDA status completion entry */ return efx_nic_alloc_buffer(channel->efx, &channel->eventq.buf, (channel->eventq_mask + 2) * sizeof(efx_qword_t), GFP_KERNEL); } static int ef100_ev_init(struct efx_channel *channel) { struct ef100_nic_data *nic_data = channel->efx->nic_data; /* initial phase is 0 */ clear_bit(channel->channel, nic_data->evq_phases); return efx_mcdi_ev_init(channel, false, false); } static void ef100_ev_read_ack(struct efx_channel *channel) { efx_dword_t evq_prime; EFX_POPULATE_DWORD_2(evq_prime, ERF_GZ_EVQ_ID, channel->channel, ERF_GZ_IDX, channel->eventq_read_ptr & channel->eventq_mask); efx_writed(channel->efx, &evq_prime, efx_reg(channel->efx, ER_GZ_EVQ_INT_PRIME)); } static int ef100_ev_process(struct efx_channel *channel, int quota) { struct efx_nic *efx = channel->efx; struct ef100_nic_data *nic_data; bool evq_phase, old_evq_phase; unsigned int read_ptr; efx_qword_t *p_event; int spent = 0; bool ev_phase; int ev_type; if (unlikely(!channel->enabled)) return 0; nic_data = efx->nic_data; evq_phase = test_bit(channel->channel, nic_data->evq_phases); old_evq_phase = evq_phase; read_ptr = channel->eventq_read_ptr; BUILD_BUG_ON(ESF_GZ_EV_RXPKTS_PHASE_LBN != ESF_GZ_EV_TXCMPL_PHASE_LBN); while (spent < quota) { p_event = efx_event(channel, read_ptr); ev_phase = !!EFX_QWORD_FIELD(*p_event, ESF_GZ_EV_RXPKTS_PHASE); if (ev_phase != evq_phase) break; netif_vdbg(efx, drv, efx->net_dev, "processing event on %d " EFX_QWORD_FMT "\n", channel->channel, EFX_QWORD_VAL(*p_event)); ev_type = EFX_QWORD_FIELD(*p_event, ESF_GZ_E_TYPE); switch (ev_type) { case ESE_GZ_EF100_EV_RX_PKTS: efx_ef100_ev_rx(channel, p_event); ++spent; break; case ESE_GZ_EF100_EV_MCDI: efx_mcdi_process_event(channel, p_event); break; case ESE_GZ_EF100_EV_TX_COMPLETION: ef100_ev_tx(channel, p_event); break; case ESE_GZ_EF100_EV_DRIVER: netif_info(efx, drv, efx->net_dev, "Driver initiated event " EFX_QWORD_FMT "\n", EFX_QWORD_VAL(*p_event)); break; default: netif_info(efx, drv, efx->net_dev, "Unhandled event " EFX_QWORD_FMT "\n", EFX_QWORD_VAL(*p_event)); } ++read_ptr; if ((read_ptr & channel->eventq_mask) == 0) evq_phase = !evq_phase; } channel->eventq_read_ptr = read_ptr; if (evq_phase != old_evq_phase) change_bit(channel->channel, nic_data->evq_phases); return spent; } static irqreturn_t ef100_msi_interrupt(int irq, void *dev_id) { struct efx_msi_context *context = dev_id; struct efx_nic *efx = context->efx; netif_vdbg(efx, intr, efx->net_dev, "IRQ %d on CPU %d\n", irq, raw_smp_processor_id()); if (likely(READ_ONCE(efx->irq_soft_enabled))) { /* Note test interrupts */ if (context->index == efx->irq_level) efx->last_irq_cpu = raw_smp_processor_id(); /* Schedule processing of the channel */ efx_schedule_channel_irq(efx->channel[context->index]); } return IRQ_HANDLED; } static int ef100_phy_probe(struct efx_nic *efx) { struct efx_mcdi_phy_data *phy_data; int rc; /* Probe for the PHY */ efx->phy_data = kzalloc(sizeof(struct efx_mcdi_phy_data), GFP_KERNEL); if (!efx->phy_data) return -ENOMEM; rc = efx_mcdi_get_phy_cfg(efx, efx->phy_data); if (rc) return rc; /* Populate driver and ethtool settings */ phy_data = efx->phy_data; mcdi_to_ethtool_linkset(phy_data->media, phy_data->supported_cap, efx->link_advertising); efx->fec_config = mcdi_fec_caps_to_ethtool(phy_data->supported_cap, false); /* Default to Autonegotiated flow control if the PHY supports it */ efx->wanted_fc = EFX_FC_RX | EFX_FC_TX; if (phy_data->supported_cap & (1 << MC_CMD_PHY_CAP_AN_LBN)) efx->wanted_fc |= EFX_FC_AUTO; efx_link_set_wanted_fc(efx, efx->wanted_fc); /* Push settings to the PHY. Failure is not fatal, the user can try to * fix it using ethtool. */ rc = efx_mcdi_port_reconfigure(efx); if (rc && rc != -EPERM) netif_warn(efx, drv, efx->net_dev, "could not initialise PHY settings\n"); return 0; } static int ef100_filter_table_probe(struct efx_nic *efx) { return efx_mcdi_filter_table_probe(efx, true); } static int ef100_filter_table_up(struct efx_nic *efx) { int rc; rc = efx_mcdi_filter_add_vlan(efx, EFX_FILTER_VID_UNSPEC); if (rc) { efx_mcdi_filter_table_down(efx); return rc; } rc = efx_mcdi_filter_add_vlan(efx, 0); if (rc) { efx_mcdi_filter_del_vlan(efx, EFX_FILTER_VID_UNSPEC); efx_mcdi_filter_table_down(efx); } return rc; } static void ef100_filter_table_down(struct efx_nic *efx) { efx_mcdi_filter_del_vlan(efx, 0); efx_mcdi_filter_del_vlan(efx, EFX_FILTER_VID_UNSPEC); efx_mcdi_filter_table_down(efx); } /* Other */ static int ef100_reconfigure_mac(struct efx_nic *efx, bool mtu_only) { WARN_ON(!mutex_is_locked(&efx->mac_lock)); efx_mcdi_filter_sync_rx_mode(efx); if (mtu_only && efx_has_cap(efx, SET_MAC_ENHANCED)) return efx_mcdi_set_mtu(efx); return efx_mcdi_set_mac(efx); } static enum reset_type ef100_map_reset_reason(enum reset_type reason) { if (reason == RESET_TYPE_TX_WATCHDOG) return reason; return RESET_TYPE_DISABLE; } static int ef100_map_reset_flags(u32 *flags) { /* Only perform a RESET_TYPE_ALL because we don't support MC_REBOOTs */ if ((*flags & EF100_RESET_PORT)) { *flags &= ~EF100_RESET_PORT; return RESET_TYPE_ALL; } if (*flags & ETH_RESET_MGMT) { *flags &= ~ETH_RESET_MGMT; return RESET_TYPE_DISABLE; } return -EINVAL; } static int ef100_reset(struct efx_nic *efx, enum reset_type reset_type) { int rc; dev_close(efx->net_dev); if (reset_type == RESET_TYPE_TX_WATCHDOG) { netif_device_attach(efx->net_dev); __clear_bit(reset_type, &efx->reset_pending); rc = dev_open(efx->net_dev, NULL); } else if (reset_type == RESET_TYPE_ALL) { rc = efx_mcdi_reset(efx, reset_type); if (rc) return rc; netif_device_attach(efx->net_dev); rc = dev_open(efx->net_dev, NULL); } else { rc = 1; /* Leave the device closed */ } return rc; } static void ef100_common_stat_mask(unsigned long *mask) { __set_bit(EF100_STAT_port_rx_packets, mask); __set_bit(EF100_STAT_port_tx_packets, mask); __set_bit(EF100_STAT_port_rx_bytes, mask); __set_bit(EF100_STAT_port_tx_bytes, mask); __set_bit(EF100_STAT_port_rx_multicast, mask); __set_bit(EF100_STAT_port_rx_bad, mask); __set_bit(EF100_STAT_port_rx_align_error, mask); __set_bit(EF100_STAT_port_rx_overflow, mask); } static void ef100_ethtool_stat_mask(unsigned long *mask) { __set_bit(EF100_STAT_port_tx_pause, mask); __set_bit(EF100_STAT_port_tx_unicast, mask); __set_bit(EF100_STAT_port_tx_multicast, mask); __set_bit(EF100_STAT_port_tx_broadcast, mask); __set_bit(EF100_STAT_port_tx_lt64, mask); __set_bit(EF100_STAT_port_tx_64, mask); __set_bit(EF100_STAT_port_tx_65_to_127, mask); __set_bit(EF100_STAT_port_tx_128_to_255, mask); __set_bit(EF100_STAT_port_tx_256_to_511, mask); __set_bit(EF100_STAT_port_tx_512_to_1023, mask); __set_bit(EF100_STAT_port_tx_1024_to_15xx, mask); __set_bit(EF100_STAT_port_tx_15xx_to_jumbo, mask); __set_bit(EF100_STAT_port_rx_good, mask); __set_bit(EF100_STAT_port_rx_pause, mask); __set_bit(EF100_STAT_port_rx_unicast, mask); __set_bit(EF100_STAT_port_rx_broadcast, mask); __set_bit(EF100_STAT_port_rx_lt64, mask); __set_bit(EF100_STAT_port_rx_64, mask); __set_bit(EF100_STAT_port_rx_65_to_127, mask); __set_bit(EF100_STAT_port_rx_128_to_255, mask); __set_bit(EF100_STAT_port_rx_256_to_511, mask); __set_bit(EF100_STAT_port_rx_512_to_1023, mask); __set_bit(EF100_STAT_port_rx_1024_to_15xx, mask); __set_bit(EF100_STAT_port_rx_15xx_to_jumbo, mask); __set_bit(EF100_STAT_port_rx_gtjumbo, mask); __set_bit(EF100_STAT_port_rx_bad_gtjumbo, mask); __set_bit(EF100_STAT_port_rx_length_error, mask); __set_bit(EF100_STAT_port_rx_nodesc_drops, mask); __set_bit(GENERIC_STAT_rx_nodesc_trunc, mask); __set_bit(GENERIC_STAT_rx_noskb_drops, mask); } #define EF100_DMA_STAT(ext_name, mcdi_name) \ [EF100_STAT_ ## ext_name] = \ { #ext_name, 64, 8 * MC_CMD_MAC_ ## mcdi_name } static const struct efx_hw_stat_desc ef100_stat_desc[EF100_STAT_COUNT] = { EF100_DMA_STAT(port_tx_bytes, TX_BYTES), EF100_DMA_STAT(port_tx_packets, TX_PKTS), EF100_DMA_STAT(port_tx_pause, TX_PAUSE_PKTS), EF100_DMA_STAT(port_tx_unicast, TX_UNICAST_PKTS), EF100_DMA_STAT(port_tx_multicast, TX_MULTICAST_PKTS), EF100_DMA_STAT(port_tx_broadcast, TX_BROADCAST_PKTS), EF100_DMA_STAT(port_tx_lt64, TX_LT64_PKTS), EF100_DMA_STAT(port_tx_64, TX_64_PKTS), EF100_DMA_STAT(port_tx_65_to_127, TX_65_TO_127_PKTS), EF100_DMA_STAT(port_tx_128_to_255, TX_128_TO_255_PKTS), EF100_DMA_STAT(port_tx_256_to_511, TX_256_TO_511_PKTS), EF100_DMA_STAT(port_tx_512_to_1023, TX_512_TO_1023_PKTS), EF100_DMA_STAT(port_tx_1024_to_15xx, TX_1024_TO_15XX_PKTS), EF100_DMA_STAT(port_tx_15xx_to_jumbo, TX_15XX_TO_JUMBO_PKTS), EF100_DMA_STAT(port_rx_bytes, RX_BYTES), EF100_DMA_STAT(port_rx_packets, RX_PKTS), EF100_DMA_STAT(port_rx_good, RX_GOOD_PKTS), EF100_DMA_STAT(port_rx_bad, RX_BAD_FCS_PKTS), EF100_DMA_STAT(port_rx_pause, RX_PAUSE_PKTS), EF100_DMA_STAT(port_rx_unicast, RX_UNICAST_PKTS), EF100_DMA_STAT(port_rx_multicast, RX_MULTICAST_PKTS), EF100_DMA_STAT(port_rx_broadcast, RX_BROADCAST_PKTS), EF100_DMA_STAT(port_rx_lt64, RX_UNDERSIZE_PKTS), EF100_DMA_STAT(port_rx_64, RX_64_PKTS), EF100_DMA_STAT(port_rx_65_to_127, RX_65_TO_127_PKTS), EF100_DMA_STAT(port_rx_128_to_255, RX_128_TO_255_PKTS), EF100_DMA_STAT(port_rx_256_to_511, RX_256_TO_511_PKTS), EF100_DMA_STAT(port_rx_512_to_1023, RX_512_TO_1023_PKTS), EF100_DMA_STAT(port_rx_1024_to_15xx, RX_1024_TO_15XX_PKTS), EF100_DMA_STAT(port_rx_15xx_to_jumbo, RX_15XX_TO_JUMBO_PKTS), EF100_DMA_STAT(port_rx_gtjumbo, RX_GTJUMBO_PKTS), EF100_DMA_STAT(port_rx_bad_gtjumbo, RX_JABBER_PKTS), EF100_DMA_STAT(port_rx_align_error, RX_ALIGN_ERROR_PKTS), EF100_DMA_STAT(port_rx_length_error, RX_LENGTH_ERROR_PKTS), EF100_DMA_STAT(port_rx_overflow, RX_OVERFLOW_PKTS), EF100_DMA_STAT(port_rx_nodesc_drops, RX_NODESC_DROPS), EFX_GENERIC_SW_STAT(rx_nodesc_trunc), EFX_GENERIC_SW_STAT(rx_noskb_drops), }; static size_t ef100_describe_stats(struct efx_nic *efx, u8 *names) { DECLARE_BITMAP(mask, EF100_STAT_COUNT) = {}; ef100_ethtool_stat_mask(mask); return efx_nic_describe_stats(ef100_stat_desc, EF100_STAT_COUNT, mask, names); } static size_t ef100_update_stats_common(struct efx_nic *efx, u64 *full_stats, struct rtnl_link_stats64 *core_stats) { struct ef100_nic_data *nic_data = efx->nic_data; DECLARE_BITMAP(mask, EF100_STAT_COUNT) = {}; size_t stats_count = 0, index; u64 *stats = nic_data->stats; ef100_ethtool_stat_mask(mask); if (full_stats) { for_each_set_bit(index, mask, EF100_STAT_COUNT) { if (ef100_stat_desc[index].name) { *full_stats++ = stats[index]; ++stats_count; } } } if (!core_stats) return stats_count; core_stats->rx_packets = stats[EF100_STAT_port_rx_packets]; core_stats->tx_packets = stats[EF100_STAT_port_tx_packets]; core_stats->rx_bytes = stats[EF100_STAT_port_rx_bytes]; core_stats->tx_bytes = stats[EF100_STAT_port_tx_bytes]; core_stats->rx_dropped = stats[EF100_STAT_port_rx_nodesc_drops] + stats[GENERIC_STAT_rx_nodesc_trunc] + stats[GENERIC_STAT_rx_noskb_drops]; core_stats->multicast = stats[EF100_STAT_port_rx_multicast]; core_stats->rx_length_errors = stats[EF100_STAT_port_rx_gtjumbo] + stats[EF100_STAT_port_rx_length_error]; core_stats->rx_crc_errors = stats[EF100_STAT_port_rx_bad]; core_stats->rx_frame_errors = stats[EF100_STAT_port_rx_align_error]; core_stats->rx_fifo_errors = stats[EF100_STAT_port_rx_overflow]; core_stats->rx_errors = (core_stats->rx_length_errors + core_stats->rx_crc_errors + core_stats->rx_frame_errors); return stats_count; } static size_t ef100_update_stats(struct efx_nic *efx, u64 *full_stats, struct rtnl_link_stats64 *core_stats) { __le64 *mc_stats = kmalloc(array_size(efx->num_mac_stats, sizeof(__le64)), GFP_ATOMIC); struct ef100_nic_data *nic_data = efx->nic_data; DECLARE_BITMAP(mask, EF100_STAT_COUNT) = {}; u64 *stats = nic_data->stats; ef100_common_stat_mask(mask); ef100_ethtool_stat_mask(mask); if (!mc_stats) return 0; efx_nic_copy_stats(efx, mc_stats); efx_nic_update_stats(ef100_stat_desc, EF100_STAT_COUNT, mask, stats, mc_stats, false); kfree(mc_stats); return ef100_update_stats_common(efx, full_stats, core_stats); } static int efx_ef100_get_phys_port_id(struct efx_nic *efx, struct netdev_phys_item_id *ppid) { struct ef100_nic_data *nic_data = efx->nic_data; if (!is_valid_ether_addr(nic_data->port_id)) return -EOPNOTSUPP; ppid->id_len = ETH_ALEN; memcpy(ppid->id, nic_data->port_id, ppid->id_len); return 0; } static int efx_ef100_irq_test_generate(struct efx_nic *efx) { MCDI_DECLARE_BUF(inbuf, MC_CMD_TRIGGER_INTERRUPT_IN_LEN); BUILD_BUG_ON(MC_CMD_TRIGGER_INTERRUPT_OUT_LEN != 0); MCDI_SET_DWORD(inbuf, TRIGGER_INTERRUPT_IN_INTR_LEVEL, efx->irq_level); return efx_mcdi_rpc_quiet(efx, MC_CMD_TRIGGER_INTERRUPT, inbuf, sizeof(inbuf), NULL, 0, NULL); } #define EFX_EF100_TEST 1 static void efx_ef100_ev_test_generate(struct efx_channel *channel) { MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN); struct efx_nic *efx = channel->efx; efx_qword_t event; int rc; EFX_POPULATE_QWORD_2(event, ESF_GZ_E_TYPE, ESE_GZ_EF100_EV_DRIVER, ESF_GZ_DRIVER_DATA, EFX_EF100_TEST); MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel); /* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has * already swapped the data to little-endian order. */ memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0], sizeof(efx_qword_t)); rc = efx_mcdi_rpc(efx, MC_CMD_DRIVER_EVENT, inbuf, sizeof(inbuf), NULL, 0, NULL); if (rc && (rc != -ENETDOWN)) goto fail; return; fail: WARN_ON(true); netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); } static unsigned int ef100_check_caps(const struct efx_nic *efx, u8 flag, u32 offset) { const struct ef100_nic_data *nic_data = efx->nic_data; switch (offset) { case MC_CMD_GET_CAPABILITIES_V8_OUT_FLAGS1_OFST: return nic_data->datapath_caps & BIT_ULL(flag); case MC_CMD_GET_CAPABILITIES_V8_OUT_FLAGS2_OFST: return nic_data->datapath_caps2 & BIT_ULL(flag); case MC_CMD_GET_CAPABILITIES_V8_OUT_FLAGS3_OFST: return nic_data->datapath_caps3 & BIT_ULL(flag); default: return 0; } } /* NIC level access functions */ #define EF100_OFFLOAD_FEATURES (NETIF_F_HW_CSUM | NETIF_F_RXCSUM | \ NETIF_F_HIGHDMA | NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_NTUPLE | \ NETIF_F_RXHASH | NETIF_F_RXFCS | NETIF_F_TSO_ECN | NETIF_F_RXALL | \ NETIF_F_TSO_MANGLEID | NETIF_F_HW_VLAN_CTAG_TX) const struct efx_nic_type ef100_pf_nic_type = { .revision = EFX_REV_EF100, .is_vf = false, .probe = ef100_probe_pf, .offload_features = EF100_OFFLOAD_FEATURES, .mcdi_max_ver = 2, .mcdi_request = ef100_mcdi_request, .mcdi_poll_response = ef100_mcdi_poll_response, .mcdi_read_response = ef100_mcdi_read_response, .mcdi_poll_reboot = ef100_mcdi_poll_reboot, .mcdi_reboot_detected = ef100_mcdi_reboot_detected, .irq_enable_master = efx_port_dummy_op_void, .irq_test_generate = efx_ef100_irq_test_generate, .irq_disable_non_ev = efx_port_dummy_op_void, .push_irq_moderation = efx_channel_dummy_op_void, .min_interrupt_mode = EFX_INT_MODE_MSIX, .map_reset_reason = ef100_map_reset_reason, .map_reset_flags = ef100_map_reset_flags, .reset = ef100_reset, .check_caps = ef100_check_caps, .ev_probe = ef100_ev_probe, .ev_init = ef100_ev_init, .ev_fini = efx_mcdi_ev_fini, .ev_remove = efx_mcdi_ev_remove, .irq_handle_msi = ef100_msi_interrupt, .ev_process = ef100_ev_process, .ev_read_ack = ef100_ev_read_ack, .ev_test_generate = efx_ef100_ev_test_generate, .tx_probe = ef100_tx_probe, .tx_init = ef100_tx_init, .tx_write = ef100_tx_write, .tx_enqueue = ef100_enqueue_skb, .rx_probe = efx_mcdi_rx_probe, .rx_init = efx_mcdi_rx_init, .rx_remove = efx_mcdi_rx_remove, .rx_write = ef100_rx_write, .rx_packet = __ef100_rx_packet, .rx_buf_hash_valid = ef100_rx_buf_hash_valid, .fini_dmaq = efx_fini_dmaq, .max_rx_ip_filters = EFX_MCDI_FILTER_TBL_ROWS, .filter_table_probe = ef100_filter_table_up, .filter_table_restore = efx_mcdi_filter_table_restore, .filter_table_remove = ef100_filter_table_down, .filter_insert = efx_mcdi_filter_insert, .filter_remove_safe = efx_mcdi_filter_remove_safe, .filter_get_safe = efx_mcdi_filter_get_safe, .filter_clear_rx = efx_mcdi_filter_clear_rx, .filter_count_rx_used = efx_mcdi_filter_count_rx_used, .filter_get_rx_id_limit = efx_mcdi_filter_get_rx_id_limit, .filter_get_rx_ids = efx_mcdi_filter_get_rx_ids, #ifdef CONFIG_RFS_ACCEL .filter_rfs_expire_one = efx_mcdi_filter_rfs_expire_one, #endif .get_phys_port_id = efx_ef100_get_phys_port_id, .rx_prefix_size = ESE_GZ_RX_PKT_PREFIX_LEN, .rx_hash_offset = ESF_GZ_RX_PREFIX_RSS_HASH_LBN / 8, .rx_ts_offset = ESF_GZ_RX_PREFIX_PARTIAL_TSTAMP_LBN / 8, .rx_hash_key_size = 40, .rx_pull_rss_config = efx_mcdi_rx_pull_rss_config, .rx_push_rss_config = efx_mcdi_pf_rx_push_rss_config, .rx_push_rss_context_config = efx_mcdi_rx_push_rss_context_config, .rx_pull_rss_context_config = efx_mcdi_rx_pull_rss_context_config, .rx_restore_rss_contexts = efx_mcdi_rx_restore_rss_contexts, .reconfigure_mac = ef100_reconfigure_mac, .reconfigure_port = efx_mcdi_port_reconfigure, .test_nvram = efx_new_mcdi_nvram_test_all, .describe_stats = ef100_describe_stats, .start_stats = efx_mcdi_mac_start_stats, .update_stats = ef100_update_stats, .pull_stats = efx_mcdi_mac_pull_stats, .stop_stats = efx_mcdi_mac_stop_stats, /* Per-type bar/size configuration not used on ef100. Location of * registers is defined by extended capabilities. */ .mem_bar = NULL, .mem_map_size = NULL, }; const struct efx_nic_type ef100_vf_nic_type = { .revision = EFX_REV_EF100, .is_vf = true, .probe = ef100_probe_vf, .offload_features = EF100_OFFLOAD_FEATURES, .mcdi_max_ver = 2, .mcdi_request = ef100_mcdi_request, .mcdi_poll_response = ef100_mcdi_poll_response, .mcdi_read_response = ef100_mcdi_read_response, .mcdi_poll_reboot = ef100_mcdi_poll_reboot, .mcdi_reboot_detected = ef100_mcdi_reboot_detected, .irq_enable_master = efx_port_dummy_op_void, .irq_test_generate = efx_ef100_irq_test_generate, .irq_disable_non_ev = efx_port_dummy_op_void, .push_irq_moderation = efx_channel_dummy_op_void, .min_interrupt_mode = EFX_INT_MODE_MSIX, .map_reset_reason = ef100_map_reset_reason, .map_reset_flags = ef100_map_reset_flags, .reset = ef100_reset, .check_caps = ef100_check_caps, .ev_probe = ef100_ev_probe, .ev_init = ef100_ev_init, .ev_fini = efx_mcdi_ev_fini, .ev_remove = efx_mcdi_ev_remove, .irq_handle_msi = ef100_msi_interrupt, .ev_process = ef100_ev_process, .ev_read_ack = ef100_ev_read_ack, .ev_test_generate = efx_ef100_ev_test_generate, .tx_probe = ef100_tx_probe, .tx_init = ef100_tx_init, .tx_write = ef100_tx_write, .tx_enqueue = ef100_enqueue_skb, .rx_probe = efx_mcdi_rx_probe, .rx_init = efx_mcdi_rx_init, .rx_remove = efx_mcdi_rx_remove, .rx_write = ef100_rx_write, .rx_packet = __ef100_rx_packet, .rx_buf_hash_valid = ef100_rx_buf_hash_valid, .fini_dmaq = efx_fini_dmaq, .max_rx_ip_filters = EFX_MCDI_FILTER_TBL_ROWS, .filter_table_probe = ef100_filter_table_up, .filter_table_restore = efx_mcdi_filter_table_restore, .filter_table_remove = ef100_filter_table_down, .filter_insert = efx_mcdi_filter_insert, .filter_remove_safe = efx_mcdi_filter_remove_safe, .filter_get_safe = efx_mcdi_filter_get_safe, .filter_clear_rx = efx_mcdi_filter_clear_rx, .filter_count_rx_used = efx_mcdi_filter_count_rx_used, .filter_get_rx_id_limit = efx_mcdi_filter_get_rx_id_limit, .filter_get_rx_ids = efx_mcdi_filter_get_rx_ids, #ifdef CONFIG_RFS_ACCEL .filter_rfs_expire_one = efx_mcdi_filter_rfs_expire_one, #endif .rx_prefix_size = ESE_GZ_RX_PKT_PREFIX_LEN, .rx_hash_offset = ESF_GZ_RX_PREFIX_RSS_HASH_LBN / 8, .rx_ts_offset = ESF_GZ_RX_PREFIX_PARTIAL_TSTAMP_LBN / 8, .rx_hash_key_size = 40, .rx_pull_rss_config = efx_mcdi_rx_pull_rss_config, .rx_push_rss_config = efx_mcdi_pf_rx_push_rss_config, .rx_restore_rss_contexts = efx_mcdi_rx_restore_rss_contexts, .reconfigure_mac = ef100_reconfigure_mac, .test_nvram = efx_new_mcdi_nvram_test_all, .describe_stats = ef100_describe_stats, .start_stats = efx_mcdi_mac_start_stats, .update_stats = ef100_update_stats, .pull_stats = efx_mcdi_mac_pull_stats, .stop_stats = efx_mcdi_mac_stop_stats, .mem_bar = NULL, .mem_map_size = NULL, }; static int compare_versions(const char *a, const char *b) { int a_major, a_minor, a_point, a_patch; int b_major, b_minor, b_point, b_patch; int a_matched, b_matched; a_matched = sscanf(a, "%d.%d.%d.%d", &a_major, &a_minor, &a_point, &a_patch); b_matched = sscanf(b, "%d.%d.%d.%d", &b_major, &b_minor, &b_point, &b_patch); if (a_matched == 4 && b_matched != 4) return +1; if (a_matched != 4 && b_matched == 4) return -1; if (a_matched != 4 && b_matched != 4) return 0; if (a_major != b_major) return a_major - b_major; if (a_minor != b_minor) return a_minor - b_minor; if (a_point != b_point) return a_point - b_point; return a_patch - b_patch; } enum ef100_tlv_state_machine { EF100_TLV_TYPE, EF100_TLV_TYPE_CONT, EF100_TLV_LENGTH, EF100_TLV_VALUE }; struct ef100_tlv_state { enum ef100_tlv_state_machine state; u64 value; u32 value_offset; u16 type; u8 len; }; static int ef100_tlv_feed(struct ef100_tlv_state *state, u8 byte) { switch (state->state) { case EF100_TLV_TYPE: state->type = byte & 0x7f; state->state = (byte & 0x80) ? EF100_TLV_TYPE_CONT : EF100_TLV_LENGTH; /* Clear ready to read in a new entry */ state->value = 0; state->value_offset = 0; return 0; case EF100_TLV_TYPE_CONT: state->type |= byte << 7; state->state = EF100_TLV_LENGTH; return 0; case EF100_TLV_LENGTH: state->len = byte; /* We only handle TLVs that fit in a u64 */ if (state->len > sizeof(state->value)) return -EOPNOTSUPP; /* len may be zero, implying a value of zero */ state->state = state->len ? EF100_TLV_VALUE : EF100_TLV_TYPE; return 0; case EF100_TLV_VALUE: state->value |= ((u64)byte) << (state->value_offset * 8); state->value_offset++; if (state->value_offset >= state->len) state->state = EF100_TLV_TYPE; return 0; default: /* state machine error, can't happen */ WARN_ON_ONCE(1); return -EIO; } } static int ef100_process_design_param(struct efx_nic *efx, const struct ef100_tlv_state *reader) { struct ef100_nic_data *nic_data = efx->nic_data; switch (reader->type) { case ESE_EF100_DP_GZ_PAD: /* padding, skip it */ return 0; case ESE_EF100_DP_GZ_PARTIAL_TSTAMP_SUB_NANO_BITS: /* Driver doesn't support timestamping yet, so we don't care */ return 0; case ESE_EF100_DP_GZ_EVQ_UNSOL_CREDIT_SEQ_BITS: /* Driver doesn't support unsolicited-event credits yet, so * we don't care */ return 0; case ESE_EF100_DP_GZ_NMMU_GROUP_SIZE: /* Driver doesn't manage the NMMU (so we don't care) */ return 0; case ESE_EF100_DP_GZ_RX_L4_CSUM_PROTOCOLS: /* Driver uses CHECKSUM_COMPLETE, so we don't care about * protocol checksum validation */ return 0; case ESE_EF100_DP_GZ_TSO_MAX_HDR_LEN: nic_data->tso_max_hdr_len = min_t(u64, reader->value, 0xffff); return 0; case ESE_EF100_DP_GZ_TSO_MAX_HDR_NUM_SEGS: /* We always put HDR_NUM_SEGS=1 in our TSO descriptors */ if (!reader->value) { netif_err(efx, probe, efx->net_dev, "TSO_MAX_HDR_NUM_SEGS < 1\n"); return -EOPNOTSUPP; } return 0; case ESE_EF100_DP_GZ_RXQ_SIZE_GRANULARITY: case ESE_EF100_DP_GZ_TXQ_SIZE_GRANULARITY: /* Our TXQ and RXQ sizes are always power-of-two and thus divisible by * EFX_MIN_DMAQ_SIZE, so we just need to check that * EFX_MIN_DMAQ_SIZE is divisible by GRANULARITY. * This is very unlikely to fail. */ if (!reader->value || reader->value > EFX_MIN_DMAQ_SIZE || EFX_MIN_DMAQ_SIZE % (u32)reader->value) { netif_err(efx, probe, efx->net_dev, "%s size granularity is %llu, can't guarantee safety\n", reader->type == ESE_EF100_DP_GZ_RXQ_SIZE_GRANULARITY ? "RXQ" : "TXQ", reader->value); return -EOPNOTSUPP; } return 0; case ESE_EF100_DP_GZ_TSO_MAX_PAYLOAD_LEN: nic_data->tso_max_payload_len = min_t(u64, reader->value, GSO_MAX_SIZE); efx->net_dev->gso_max_size = nic_data->tso_max_payload_len; return 0; case ESE_EF100_DP_GZ_TSO_MAX_PAYLOAD_NUM_SEGS: nic_data->tso_max_payload_num_segs = min_t(u64, reader->value, 0xffff); efx->net_dev->gso_max_segs = nic_data->tso_max_payload_num_segs; return 0; case ESE_EF100_DP_GZ_TSO_MAX_NUM_FRAMES: nic_data->tso_max_frames = min_t(u64, reader->value, 0xffff); return 0; case ESE_EF100_DP_GZ_COMPAT: if (reader->value) { netif_err(efx, probe, efx->net_dev, "DP_COMPAT has unknown bits %#llx, driver not compatible with this hw\n", reader->value); return -EOPNOTSUPP; } return 0; case ESE_EF100_DP_GZ_MEM2MEM_MAX_LEN: /* Driver doesn't use mem2mem transfers */ return 0; case ESE_EF100_DP_GZ_EVQ_TIMER_TICK_NANOS: /* Driver doesn't currently use EVQ_TIMER */ return 0; case ESE_EF100_DP_GZ_NMMU_PAGE_SIZES: /* Driver doesn't manage the NMMU (so we don't care) */ return 0; case ESE_EF100_DP_GZ_VI_STRIDES: /* We never try to set the VI stride, and we don't rely on * being able to find VIs past VI 0 until after we've learned * the current stride from MC_CMD_GET_CAPABILITIES. * So the value of this shouldn't matter. */ if (reader->value != ESE_EF100_DP_GZ_VI_STRIDES_DEFAULT) netif_dbg(efx, probe, efx->net_dev, "NIC has other than default VI_STRIDES (mask " "%#llx), early probing might use wrong one\n", reader->value); return 0; case ESE_EF100_DP_GZ_RX_MAX_RUNT: /* Driver doesn't look at L2_STATUS:LEN_ERR bit, so we don't * care whether it indicates runt or overlength for any given * packet, so we don't care about this parameter. */ return 0; default: /* Host interface says "Drivers should ignore design parameters * that they do not recognise." */ netif_dbg(efx, probe, efx->net_dev, "Ignoring unrecognised design parameter %u\n", reader->type); return 0; } } static int ef100_check_design_params(struct efx_nic *efx) { struct ef100_tlv_state reader = {}; u32 total_len, offset = 0; efx_dword_t reg; int rc = 0, i; u32 data; efx_readd(efx, ®, ER_GZ_PARAMS_TLV_LEN); total_len = EFX_DWORD_FIELD(reg, EFX_DWORD_0); netif_dbg(efx, probe, efx->net_dev, "%u bytes of design parameters\n", total_len); while (offset < total_len) { efx_readd(efx, ®, ER_GZ_PARAMS_TLV + offset); data = EFX_DWORD_FIELD(reg, EFX_DWORD_0); for (i = 0; i < sizeof(data); i++) { rc = ef100_tlv_feed(&reader, data); /* Got a complete value? */ if (!rc && reader.state == EF100_TLV_TYPE) rc = ef100_process_design_param(efx, &reader); if (rc) goto out; data >>= 8; offset++; } } /* Check we didn't end halfway through a TLV entry, which could either * mean that the TLV stream is truncated or just that it's corrupted * and our state machine is out of sync. */ if (reader.state != EF100_TLV_TYPE) { if (reader.state == EF100_TLV_TYPE_CONT) netif_err(efx, probe, efx->net_dev, "truncated design parameter (incomplete type %u)\n", reader.type); else netif_err(efx, probe, efx->net_dev, "truncated design parameter %u\n", reader.type); rc = -EIO; } out: return rc; } /* NIC probe and remove */ static int ef100_probe_main(struct efx_nic *efx) { unsigned int bar_size = resource_size(&efx->pci_dev->resource[efx->mem_bar]); struct net_device *net_dev = efx->net_dev; struct ef100_nic_data *nic_data; char fw_version[32]; int i, rc; if (WARN_ON(bar_size == 0)) return -EIO; nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL); if (!nic_data) return -ENOMEM; efx->nic_data = nic_data; nic_data->efx = efx; net_dev->features |= efx->type->offload_features; net_dev->hw_features |= efx->type->offload_features; /* Populate design-parameter defaults */ nic_data->tso_max_hdr_len = ESE_EF100_DP_GZ_TSO_MAX_HDR_LEN_DEFAULT; nic_data->tso_max_frames = ESE_EF100_DP_GZ_TSO_MAX_NUM_FRAMES_DEFAULT; nic_data->tso_max_payload_num_segs = ESE_EF100_DP_GZ_TSO_MAX_PAYLOAD_NUM_SEGS_DEFAULT; nic_data->tso_max_payload_len = ESE_EF100_DP_GZ_TSO_MAX_PAYLOAD_LEN_DEFAULT; net_dev->gso_max_segs = ESE_EF100_DP_GZ_TSO_MAX_HDR_NUM_SEGS_DEFAULT; /* Read design parameters */ rc = ef100_check_design_params(efx); if (rc) { netif_err(efx, probe, efx->net_dev, "Unsupported design parameters\n"); goto fail; } /* we assume later that we can copy from this buffer in dwords */ BUILD_BUG_ON(MCDI_CTL_SDU_LEN_MAX_V2 % 4); /* MCDI buffers must be 256 byte aligned. */ rc = efx_nic_alloc_buffer(efx, &nic_data->mcdi_buf, MCDI_BUF_LEN, GFP_KERNEL); if (rc) goto fail; /* Get the MC's warm boot count. In case it's rebooting right * now, be prepared to retry. */ i = 0; for (;;) { rc = ef100_get_warm_boot_count(efx); if (rc >= 0) break; if (++i == 5) goto fail; ssleep(1); } nic_data->warm_boot_count = rc; /* In case we're recovering from a crash (kexec), we want to * cancel any outstanding request by the previous user of this * function. We send a special message using the least * significant bits of the 'high' (doorbell) register. */ _efx_writed(efx, cpu_to_le32(1), efx_reg(efx, ER_GZ_MC_DB_HWRD)); /* Post-IO section. */ rc = efx_mcdi_init(efx); if (!rc && efx->mcdi->fn_flags & (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_NO_ACTIVE_PORT)) { netif_info(efx, probe, efx->net_dev, "No network port on this PCI function"); rc = -ENODEV; } if (rc) goto fail; /* Reset (most) configuration for this function */ rc = efx_mcdi_reset(efx, RESET_TYPE_ALL); if (rc) goto fail; /* Enable event logging */ rc = efx_mcdi_log_ctrl(efx, true, false, 0); if (rc) goto fail; rc = efx_get_pf_index(efx, &nic_data->pf_index); if (rc) goto fail; rc = efx_ef100_init_datapath_caps(efx); if (rc < 0) goto fail; efx->max_vis = EF100_MAX_VIS; rc = efx_mcdi_port_get_number(efx); if (rc < 0) goto fail; efx->port_num = rc; efx_mcdi_print_fwver(efx, fw_version, sizeof(fw_version)); netif_dbg(efx, drv, efx->net_dev, "Firmware version %s\n", fw_version); if (compare_versions(fw_version, "1.1.0.1000") < 0) { netif_info(efx, drv, efx->net_dev, "Firmware uses old event descriptors\n"); rc = -EINVAL; goto fail; } if (efx_has_cap(efx, UNSOL_EV_CREDIT_SUPPORTED)) { netif_info(efx, drv, efx->net_dev, "Firmware uses unsolicited-event credits\n"); rc = -EINVAL; goto fail; } rc = ef100_phy_probe(efx); if (rc) goto fail; down_write(&efx->filter_sem); rc = ef100_filter_table_probe(efx); up_write(&efx->filter_sem); if (rc) goto fail; netdev_rss_key_fill(efx->rss_context.rx_hash_key, sizeof(efx->rss_context.rx_hash_key)); /* Don't fail init if RSS setup doesn't work. */ efx_mcdi_push_default_indir_table(efx, efx->n_rx_channels); rc = ef100_register_netdev(efx); if (rc) goto fail; return 0; fail: return rc; } int ef100_probe_pf(struct efx_nic *efx) { struct net_device *net_dev = efx->net_dev; struct ef100_nic_data *nic_data; int rc = ef100_probe_main(efx); if (rc) goto fail; nic_data = efx->nic_data; rc = ef100_get_mac_address(efx, net_dev->perm_addr); if (rc) goto fail; /* Assign MAC address */ memcpy(net_dev->dev_addr, net_dev->perm_addr, ETH_ALEN); memcpy(nic_data->port_id, net_dev->perm_addr, ETH_ALEN); return 0; fail: return rc; } int ef100_probe_vf(struct efx_nic *efx) { return ef100_probe_main(efx); } void ef100_remove(struct efx_nic *efx) { struct ef100_nic_data *nic_data = efx->nic_data; ef100_unregister_netdev(efx); down_write(&efx->filter_sem); efx_mcdi_filter_table_remove(efx); up_write(&efx->filter_sem); efx_fini_channels(efx); kfree(efx->phy_data); efx->phy_data = NULL; efx_mcdi_detach(efx); efx_mcdi_fini(efx); if (nic_data) efx_nic_free_buffer(efx, &nic_data->mcdi_buf); kfree(nic_data); efx->nic_data = NULL; }