/* * Back-end of the driver for virtual network devices. This portion of the * driver exports a 'unified' network-device interface that can be accessed * by any operating system that implements a compatible front end. A * reference front-end implementation can be found in: * drivers/net/xen-netfront.c * * Copyright (c) 2002-2005, K A Fraser * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License version 2 * as published by the Free Software Foundation; or, when distributed * separately from the Linux kernel or incorporated into other * software packages, subject to the following license: * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this source file (the "Software"), to deal in the Software without * restriction, including without limitation the rights to use, copy, modify, * merge, publish, distribute, sublicense, and/or sell copies of the Software, * and to permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include "common.h" #include #include #include #include #include #include #include #include #include #include /* Provide an option to disable split event channels at load time as * event channels are limited resource. Split event channels are * enabled by default. */ bool separate_tx_rx_irq = true; module_param(separate_tx_rx_irq, bool, 0644); /* The time that packets can stay on the guest Rx internal queue * before they are dropped. */ unsigned int rx_drain_timeout_msecs = 10000; module_param(rx_drain_timeout_msecs, uint, 0444); /* The length of time before the frontend is considered unresponsive * because it isn't providing Rx slots. */ unsigned int rx_stall_timeout_msecs = 60000; module_param(rx_stall_timeout_msecs, uint, 0444); #define MAX_QUEUES_DEFAULT 8 unsigned int xenvif_max_queues; module_param_named(max_queues, xenvif_max_queues, uint, 0644); MODULE_PARM_DESC(max_queues, "Maximum number of queues per virtual interface"); /* * This is the maximum slots a skb can have. If a guest sends a skb * which exceeds this limit it is considered malicious. */ #define FATAL_SKB_SLOTS_DEFAULT 20 static unsigned int fatal_skb_slots = FATAL_SKB_SLOTS_DEFAULT; module_param(fatal_skb_slots, uint, 0444); /* The amount to copy out of the first guest Tx slot into the skb's * linear area. If the first slot has more data, it will be mapped * and put into the first frag. * * This is sized to avoid pulling headers from the frags for most * TCP/IP packets. */ #define XEN_NETBACK_TX_COPY_LEN 128 /* This is the maximum number of flows in the hash cache. */ #define XENVIF_HASH_CACHE_SIZE_DEFAULT 64 unsigned int xenvif_hash_cache_size = XENVIF_HASH_CACHE_SIZE_DEFAULT; module_param_named(hash_cache_size, xenvif_hash_cache_size, uint, 0644); MODULE_PARM_DESC(hash_cache_size, "Number of flows in the hash cache"); /* The module parameter tells that we have to put data * for xen-netfront with the XDP_PACKET_HEADROOM offset * needed for XDP processing */ bool provides_xdp_headroom = true; module_param(provides_xdp_headroom, bool, 0644); static void xenvif_idx_release(struct xenvif_queue *queue, u16 pending_idx, u8 status); static void make_tx_response(struct xenvif_queue *queue, struct xen_netif_tx_request *txp, unsigned int extra_count, s8 st); static void push_tx_responses(struct xenvif_queue *queue); static void xenvif_idx_unmap(struct xenvif_queue *queue, u16 pending_idx); static inline int tx_work_todo(struct xenvif_queue *queue); static inline unsigned long idx_to_pfn(struct xenvif_queue *queue, u16 idx) { return page_to_pfn(queue->mmap_pages[idx]); } static inline unsigned long idx_to_kaddr(struct xenvif_queue *queue, u16 idx) { return (unsigned long)pfn_to_kaddr(idx_to_pfn(queue, idx)); } #define callback_param(vif, pending_idx) \ (vif->pending_tx_info[pending_idx].callback_struct) /* Find the containing VIF's structure from a pointer in pending_tx_info array */ static inline struct xenvif_queue *ubuf_to_queue(const struct ubuf_info *ubuf) { u16 pending_idx = ubuf->desc; struct pending_tx_info *temp = container_of(ubuf, struct pending_tx_info, callback_struct); return container_of(temp - pending_idx, struct xenvif_queue, pending_tx_info[0]); } static u16 frag_get_pending_idx(skb_frag_t *frag) { return (u16)skb_frag_off(frag); } static void frag_set_pending_idx(skb_frag_t *frag, u16 pending_idx) { skb_frag_off_set(frag, pending_idx); } static inline pending_ring_idx_t pending_index(unsigned i) { return i & (MAX_PENDING_REQS-1); } void xenvif_kick_thread(struct xenvif_queue *queue) { wake_up(&queue->wq); } void xenvif_napi_schedule_or_enable_events(struct xenvif_queue *queue) { int more_to_do; RING_FINAL_CHECK_FOR_REQUESTS(&queue->tx, more_to_do); if (more_to_do) napi_schedule(&queue->napi); else if (atomic_fetch_andnot(NETBK_TX_EOI | NETBK_COMMON_EOI, &queue->eoi_pending) & (NETBK_TX_EOI | NETBK_COMMON_EOI)) xen_irq_lateeoi(queue->tx_irq, 0); } static void tx_add_credit(struct xenvif_queue *queue) { unsigned long max_burst, max_credit; /* * Allow a burst big enough to transmit a jumbo packet of up to 128kB. * Otherwise the interface can seize up due to insufficient credit. */ max_burst = max(131072UL, queue->credit_bytes); /* Take care that adding a new chunk of credit doesn't wrap to zero. */ max_credit = queue->remaining_credit + queue->credit_bytes; if (max_credit < queue->remaining_credit) max_credit = ULONG_MAX; /* wrapped: clamp to ULONG_MAX */ queue->remaining_credit = min(max_credit, max_burst); queue->rate_limited = false; } void xenvif_tx_credit_callback(struct timer_list *t) { struct xenvif_queue *queue = from_timer(queue, t, credit_timeout); tx_add_credit(queue); xenvif_napi_schedule_or_enable_events(queue); } static void xenvif_tx_err(struct xenvif_queue *queue, struct xen_netif_tx_request *txp, unsigned int extra_count, RING_IDX end) { RING_IDX cons = queue->tx.req_cons; unsigned long flags; do { spin_lock_irqsave(&queue->response_lock, flags); make_tx_response(queue, txp, extra_count, XEN_NETIF_RSP_ERROR); push_tx_responses(queue); spin_unlock_irqrestore(&queue->response_lock, flags); if (cons == end) break; RING_COPY_REQUEST(&queue->tx, cons++, txp); extra_count = 0; /* only the first frag can have extras */ } while (1); queue->tx.req_cons = cons; } static void xenvif_fatal_tx_err(struct xenvif *vif) { netdev_err(vif->dev, "fatal error; disabling device\n"); vif->disabled = true; /* Disable the vif from queue 0's kthread */ if (vif->num_queues) xenvif_kick_thread(&vif->queues[0]); } static int xenvif_count_requests(struct xenvif_queue *queue, struct xen_netif_tx_request *first, unsigned int extra_count, struct xen_netif_tx_request *txp, int work_to_do) { RING_IDX cons = queue->tx.req_cons; int slots = 0; int drop_err = 0; int more_data; if (!(first->flags & XEN_NETTXF_more_data)) return 0; do { struct xen_netif_tx_request dropped_tx = { 0 }; if (slots >= work_to_do) { netdev_err(queue->vif->dev, "Asked for %d slots but exceeds this limit\n", work_to_do); xenvif_fatal_tx_err(queue->vif); return -ENODATA; } /* This guest is really using too many slots and * considered malicious. */ if (unlikely(slots >= fatal_skb_slots)) { netdev_err(queue->vif->dev, "Malicious frontend using %d slots, threshold %u\n", slots, fatal_skb_slots); xenvif_fatal_tx_err(queue->vif); return -E2BIG; } /* Xen network protocol had implicit dependency on * MAX_SKB_FRAGS. XEN_NETBK_LEGACY_SLOTS_MAX is set to * the historical MAX_SKB_FRAGS value 18 to honor the * same behavior as before. Any packet using more than * 18 slots but less than fatal_skb_slots slots is * dropped */ if (!drop_err && slots >= XEN_NETBK_LEGACY_SLOTS_MAX) { if (net_ratelimit()) netdev_dbg(queue->vif->dev, "Too many slots (%d) exceeding limit (%d), dropping packet\n", slots, XEN_NETBK_LEGACY_SLOTS_MAX); drop_err = -E2BIG; } if (drop_err) txp = &dropped_tx; RING_COPY_REQUEST(&queue->tx, cons + slots, txp); /* If the guest submitted a frame >= 64 KiB then * first->size overflowed and following slots will * appear to be larger than the frame. * * This cannot be fatal error as there are buggy * frontends that do this. * * Consume all slots and drop the packet. */ if (!drop_err && txp->size > first->size) { if (net_ratelimit()) netdev_dbg(queue->vif->dev, "Invalid tx request, slot size %u > remaining size %u\n", txp->size, first->size); drop_err = -EIO; } first->size -= txp->size; slots++; if (unlikely((txp->offset + txp->size) > XEN_PAGE_SIZE)) { netdev_err(queue->vif->dev, "Cross page boundary, txp->offset: %u, size: %u\n", txp->offset, txp->size); xenvif_fatal_tx_err(queue->vif); return -EINVAL; } more_data = txp->flags & XEN_NETTXF_more_data; if (!drop_err) txp++; } while (more_data); if (drop_err) { xenvif_tx_err(queue, first, extra_count, cons + slots); return drop_err; } return slots; } struct xenvif_tx_cb { u16 copy_pending_idx[XEN_NETBK_LEGACY_SLOTS_MAX + 1]; u8 copy_count; u32 split_mask; }; #define XENVIF_TX_CB(skb) ((struct xenvif_tx_cb *)(skb)->cb) #define copy_pending_idx(skb, i) (XENVIF_TX_CB(skb)->copy_pending_idx[i]) #define copy_count(skb) (XENVIF_TX_CB(skb)->copy_count) static inline void xenvif_tx_create_map_op(struct xenvif_queue *queue, u16 pending_idx, struct xen_netif_tx_request *txp, unsigned int extra_count, struct gnttab_map_grant_ref *mop) { queue->pages_to_map[mop-queue->tx_map_ops] = queue->mmap_pages[pending_idx]; gnttab_set_map_op(mop, idx_to_kaddr(queue, pending_idx), GNTMAP_host_map | GNTMAP_readonly, txp->gref, queue->vif->domid); memcpy(&queue->pending_tx_info[pending_idx].req, txp, sizeof(*txp)); queue->pending_tx_info[pending_idx].extra_count = extra_count; } static inline struct sk_buff *xenvif_alloc_skb(unsigned int size) { struct sk_buff *skb = alloc_skb(size + NET_SKB_PAD + NET_IP_ALIGN, GFP_ATOMIC | __GFP_NOWARN); BUILD_BUG_ON(sizeof(*XENVIF_TX_CB(skb)) > sizeof(skb->cb)); if (unlikely(skb == NULL)) return NULL; /* Packets passed to netif_rx() must have some headroom. */ skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN); /* Initialize it here to avoid later surprises */ skb_shinfo(skb)->destructor_arg = NULL; return skb; } static void xenvif_get_requests(struct xenvif_queue *queue, struct sk_buff *skb, struct xen_netif_tx_request *first, struct xen_netif_tx_request *txfrags, unsigned *copy_ops, unsigned *map_ops, unsigned int frag_overflow, struct sk_buff *nskb, unsigned int extra_count, unsigned int data_len) { struct skb_shared_info *shinfo = skb_shinfo(skb); skb_frag_t *frags = shinfo->frags; u16 pending_idx; pending_ring_idx_t index; unsigned int nr_slots; struct gnttab_copy *cop = queue->tx_copy_ops + *copy_ops; struct gnttab_map_grant_ref *gop = queue->tx_map_ops + *map_ops; struct xen_netif_tx_request *txp = first; nr_slots = shinfo->nr_frags + frag_overflow + 1; copy_count(skb) = 0; XENVIF_TX_CB(skb)->split_mask = 0; /* Create copy ops for exactly data_len bytes into the skb head. */ __skb_put(skb, data_len); while (data_len > 0) { int amount = data_len > txp->size ? txp->size : data_len; bool split = false; cop->source.u.ref = txp->gref; cop->source.domid = queue->vif->domid; cop->source.offset = txp->offset; cop->dest.domid = DOMID_SELF; cop->dest.offset = (offset_in_page(skb->data + skb_headlen(skb) - data_len)) & ~XEN_PAGE_MASK; cop->dest.u.gmfn = virt_to_gfn(skb->data + skb_headlen(skb) - data_len); /* Don't cross local page boundary! */ if (cop->dest.offset + amount > XEN_PAGE_SIZE) { amount = XEN_PAGE_SIZE - cop->dest.offset; XENVIF_TX_CB(skb)->split_mask |= 1U << copy_count(skb); split = true; } cop->len = amount; cop->flags = GNTCOPY_source_gref; index = pending_index(queue->pending_cons); pending_idx = queue->pending_ring[index]; callback_param(queue, pending_idx).ctx = NULL; copy_pending_idx(skb, copy_count(skb)) = pending_idx; if (!split) copy_count(skb)++; cop++; data_len -= amount; if (amount == txp->size) { /* The copy op covered the full tx_request */ memcpy(&queue->pending_tx_info[pending_idx].req, txp, sizeof(*txp)); queue->pending_tx_info[pending_idx].extra_count = (txp == first) ? extra_count : 0; if (txp == first) txp = txfrags; else txp++; queue->pending_cons++; nr_slots--; } else { /* The copy op partially covered the tx_request. * The remainder will be mapped or copied in the next * iteration. */ txp->offset += amount; txp->size -= amount; } } for (shinfo->nr_frags = 0; nr_slots > 0 && shinfo->nr_frags < MAX_SKB_FRAGS; nr_slots--) { if (unlikely(!txp->size)) { unsigned long flags; spin_lock_irqsave(&queue->response_lock, flags); make_tx_response(queue, txp, 0, XEN_NETIF_RSP_OKAY); push_tx_responses(queue); spin_unlock_irqrestore(&queue->response_lock, flags); ++txp; continue; } index = pending_index(queue->pending_cons++); pending_idx = queue->pending_ring[index]; xenvif_tx_create_map_op(queue, pending_idx, txp, txp == first ? extra_count : 0, gop); frag_set_pending_idx(&frags[shinfo->nr_frags], pending_idx); ++shinfo->nr_frags; ++gop; if (txp == first) txp = txfrags; else txp++; } if (nr_slots > 0) { shinfo = skb_shinfo(nskb); frags = shinfo->frags; for (shinfo->nr_frags = 0; shinfo->nr_frags < nr_slots; ++txp) { if (unlikely(!txp->size)) { unsigned long flags; spin_lock_irqsave(&queue->response_lock, flags); make_tx_response(queue, txp, 0, XEN_NETIF_RSP_OKAY); push_tx_responses(queue); spin_unlock_irqrestore(&queue->response_lock, flags); continue; } index = pending_index(queue->pending_cons++); pending_idx = queue->pending_ring[index]; xenvif_tx_create_map_op(queue, pending_idx, txp, 0, gop); frag_set_pending_idx(&frags[shinfo->nr_frags], pending_idx); ++shinfo->nr_frags; ++gop; } if (shinfo->nr_frags) { skb_shinfo(skb)->frag_list = nskb; nskb = NULL; } } if (nskb) { /* A frag_list skb was allocated but it is no longer needed * because enough slots were converted to copy ops above or some * were empty. */ kfree_skb(nskb); } (*copy_ops) = cop - queue->tx_copy_ops; (*map_ops) = gop - queue->tx_map_ops; } static inline void xenvif_grant_handle_set(struct xenvif_queue *queue, u16 pending_idx, grant_handle_t handle) { if (unlikely(queue->grant_tx_handle[pending_idx] != NETBACK_INVALID_HANDLE)) { netdev_err(queue->vif->dev, "Trying to overwrite active handle! pending_idx: 0x%x\n", pending_idx); BUG(); } queue->grant_tx_handle[pending_idx] = handle; } static inline void xenvif_grant_handle_reset(struct xenvif_queue *queue, u16 pending_idx) { if (unlikely(queue->grant_tx_handle[pending_idx] == NETBACK_INVALID_HANDLE)) { netdev_err(queue->vif->dev, "Trying to unmap invalid handle! pending_idx: 0x%x\n", pending_idx); BUG(); } queue->grant_tx_handle[pending_idx] = NETBACK_INVALID_HANDLE; } static int xenvif_tx_check_gop(struct xenvif_queue *queue, struct sk_buff *skb, struct gnttab_map_grant_ref **gopp_map, struct gnttab_copy **gopp_copy) { struct gnttab_map_grant_ref *gop_map = *gopp_map; u16 pending_idx; /* This always points to the shinfo of the skb being checked, which * could be either the first or the one on the frag_list */ struct skb_shared_info *shinfo = skb_shinfo(skb); /* If this is non-NULL, we are currently checking the frag_list skb, and * this points to the shinfo of the first one */ struct skb_shared_info *first_shinfo = NULL; int nr_frags = shinfo->nr_frags; const bool sharedslot = nr_frags && frag_get_pending_idx(&shinfo->frags[0]) == copy_pending_idx(skb, copy_count(skb) - 1); int i, err = 0; for (i = 0; i < copy_count(skb); i++) { int newerr; /* Check status of header. */ pending_idx = copy_pending_idx(skb, i); newerr = (*gopp_copy)->status; /* Split copies need to be handled together. */ if (XENVIF_TX_CB(skb)->split_mask & (1U << i)) { (*gopp_copy)++; if (!newerr) newerr = (*gopp_copy)->status; } if (likely(!newerr)) { /* The first frag might still have this slot mapped */ if (i < copy_count(skb) - 1 || !sharedslot) xenvif_idx_release(queue, pending_idx, XEN_NETIF_RSP_OKAY); } else { err = newerr; if (net_ratelimit()) netdev_dbg(queue->vif->dev, "Grant copy of header failed! status: %d pending_idx: %u ref: %u\n", (*gopp_copy)->status, pending_idx, (*gopp_copy)->source.u.ref); /* The first frag might still have this slot mapped */ if (i < copy_count(skb) - 1 || !sharedslot) xenvif_idx_release(queue, pending_idx, XEN_NETIF_RSP_ERROR); } (*gopp_copy)++; } check_frags: for (i = 0; i < nr_frags; i++, gop_map++) { int j, newerr; pending_idx = frag_get_pending_idx(&shinfo->frags[i]); /* Check error status: if okay then remember grant handle. */ newerr = gop_map->status; if (likely(!newerr)) { xenvif_grant_handle_set(queue, pending_idx, gop_map->handle); /* Had a previous error? Invalidate this fragment. */ if (unlikely(err)) { xenvif_idx_unmap(queue, pending_idx); /* If the mapping of the first frag was OK, but * the header's copy failed, and they are * sharing a slot, send an error */ if (i == 0 && !first_shinfo && sharedslot) xenvif_idx_release(queue, pending_idx, XEN_NETIF_RSP_ERROR); else xenvif_idx_release(queue, pending_idx, XEN_NETIF_RSP_OKAY); } continue; } /* Error on this fragment: respond to client with an error. */ if (net_ratelimit()) netdev_dbg(queue->vif->dev, "Grant map of %d. frag failed! status: %d pending_idx: %u ref: %u\n", i, gop_map->status, pending_idx, gop_map->ref); xenvif_idx_release(queue, pending_idx, XEN_NETIF_RSP_ERROR); /* Not the first error? Preceding frags already invalidated. */ if (err) continue; /* Invalidate preceding fragments of this skb. */ for (j = 0; j < i; j++) { pending_idx = frag_get_pending_idx(&shinfo->frags[j]); xenvif_idx_unmap(queue, pending_idx); xenvif_idx_release(queue, pending_idx, XEN_NETIF_RSP_OKAY); } /* And if we found the error while checking the frag_list, unmap * the first skb's frags */ if (first_shinfo) { for (j = 0; j < first_shinfo->nr_frags; j++) { pending_idx = frag_get_pending_idx(&first_shinfo->frags[j]); xenvif_idx_unmap(queue, pending_idx); xenvif_idx_release(queue, pending_idx, XEN_NETIF_RSP_OKAY); } } /* Remember the error: invalidate all subsequent fragments. */ err = newerr; } if (skb_has_frag_list(skb) && !first_shinfo) { first_shinfo = skb_shinfo(skb); shinfo = skb_shinfo(skb_shinfo(skb)->frag_list); nr_frags = shinfo->nr_frags; goto check_frags; } *gopp_map = gop_map; return err; } static void xenvif_fill_frags(struct xenvif_queue *queue, struct sk_buff *skb) { struct skb_shared_info *shinfo = skb_shinfo(skb); int nr_frags = shinfo->nr_frags; int i; u16 prev_pending_idx = INVALID_PENDING_IDX; for (i = 0; i < nr_frags; i++) { skb_frag_t *frag = shinfo->frags + i; struct xen_netif_tx_request *txp; struct page *page; u16 pending_idx; pending_idx = frag_get_pending_idx(frag); /* If this is not the first frag, chain it to the previous*/ if (prev_pending_idx == INVALID_PENDING_IDX) skb_shinfo(skb)->destructor_arg = &callback_param(queue, pending_idx); else callback_param(queue, prev_pending_idx).ctx = &callback_param(queue, pending_idx); callback_param(queue, pending_idx).ctx = NULL; prev_pending_idx = pending_idx; txp = &queue->pending_tx_info[pending_idx].req; page = virt_to_page(idx_to_kaddr(queue, pending_idx)); __skb_fill_page_desc(skb, i, page, txp->offset, txp->size); skb->len += txp->size; skb->data_len += txp->size; skb->truesize += txp->size; /* Take an extra reference to offset network stack's put_page */ get_page(queue->mmap_pages[pending_idx]); } } static int xenvif_get_extras(struct xenvif_queue *queue, struct xen_netif_extra_info *extras, unsigned int *extra_count, int work_to_do) { struct xen_netif_extra_info extra; RING_IDX cons = queue->tx.req_cons; do { if (unlikely(work_to_do-- <= 0)) { netdev_err(queue->vif->dev, "Missing extra info\n"); xenvif_fatal_tx_err(queue->vif); return -EBADR; } RING_COPY_REQUEST(&queue->tx, cons, &extra); queue->tx.req_cons = ++cons; (*extra_count)++; if (unlikely(!extra.type || extra.type >= XEN_NETIF_EXTRA_TYPE_MAX)) { netdev_err(queue->vif->dev, "Invalid extra type: %d\n", extra.type); xenvif_fatal_tx_err(queue->vif); return -EINVAL; } memcpy(&extras[extra.type - 1], &extra, sizeof(extra)); } while (extra.flags & XEN_NETIF_EXTRA_FLAG_MORE); return work_to_do; } static int xenvif_set_skb_gso(struct xenvif *vif, struct sk_buff *skb, struct xen_netif_extra_info *gso) { if (!gso->u.gso.size) { netdev_err(vif->dev, "GSO size must not be zero.\n"); xenvif_fatal_tx_err(vif); return -EINVAL; } switch (gso->u.gso.type) { case XEN_NETIF_GSO_TYPE_TCPV4: skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4; break; case XEN_NETIF_GSO_TYPE_TCPV6: skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6; break; default: netdev_err(vif->dev, "Bad GSO type %d.\n", gso->u.gso.type); xenvif_fatal_tx_err(vif); return -EINVAL; } skb_shinfo(skb)->gso_size = gso->u.gso.size; /* gso_segs will be calculated later */ return 0; } static int checksum_setup(struct xenvif_queue *queue, struct sk_buff *skb) { bool recalculate_partial_csum = false; /* A GSO SKB must be CHECKSUM_PARTIAL. However some buggy * peers can fail to set NETRXF_csum_blank when sending a GSO * frame. In this case force the SKB to CHECKSUM_PARTIAL and * recalculate the partial checksum. */ if (skb->ip_summed != CHECKSUM_PARTIAL && skb_is_gso(skb)) { queue->stats.rx_gso_checksum_fixup++; skb->ip_summed = CHECKSUM_PARTIAL; recalculate_partial_csum = true; } /* A non-CHECKSUM_PARTIAL SKB does not require setup. */ if (skb->ip_summed != CHECKSUM_PARTIAL) return 0; return skb_checksum_setup(skb, recalculate_partial_csum); } static bool tx_credit_exceeded(struct xenvif_queue *queue, unsigned size) { u64 now = get_jiffies_64(); u64 next_credit = queue->credit_window_start + msecs_to_jiffies(queue->credit_usec / 1000); /* Timer could already be pending in rare cases. */ if (timer_pending(&queue->credit_timeout)) { queue->rate_limited = true; return true; } /* Passed the point where we can replenish credit? */ if (time_after_eq64(now, next_credit)) { queue->credit_window_start = now; tx_add_credit(queue); } /* Still too big to send right now? Set a callback. */ if (size > queue->remaining_credit) { mod_timer(&queue->credit_timeout, next_credit); queue->credit_window_start = next_credit; queue->rate_limited = true; return true; } return false; } /* No locking is required in xenvif_mcast_add/del() as they are * only ever invoked from NAPI poll. An RCU list is used because * xenvif_mcast_match() is called asynchronously, during start_xmit. */ static int xenvif_mcast_add(struct xenvif *vif, const u8 *addr) { struct xenvif_mcast_addr *mcast; if (vif->fe_mcast_count == XEN_NETBK_MCAST_MAX) { if (net_ratelimit()) netdev_err(vif->dev, "Too many multicast addresses\n"); return -ENOSPC; } mcast = kzalloc(sizeof(*mcast), GFP_ATOMIC); if (!mcast) return -ENOMEM; ether_addr_copy(mcast->addr, addr); list_add_tail_rcu(&mcast->entry, &vif->fe_mcast_addr); vif->fe_mcast_count++; return 0; } static void xenvif_mcast_del(struct xenvif *vif, const u8 *addr) { struct xenvif_mcast_addr *mcast; list_for_each_entry_rcu(mcast, &vif->fe_mcast_addr, entry) { if (ether_addr_equal(addr, mcast->addr)) { --vif->fe_mcast_count; list_del_rcu(&mcast->entry); kfree_rcu(mcast, rcu); break; } } } bool xenvif_mcast_match(struct xenvif *vif, const u8 *addr) { struct xenvif_mcast_addr *mcast; rcu_read_lock(); list_for_each_entry_rcu(mcast, &vif->fe_mcast_addr, entry) { if (ether_addr_equal(addr, mcast->addr)) { rcu_read_unlock(); return true; } } rcu_read_unlock(); return false; } void xenvif_mcast_addr_list_free(struct xenvif *vif) { /* No need for locking or RCU here. NAPI poll and TX queue * are stopped. */ while (!list_empty(&vif->fe_mcast_addr)) { struct xenvif_mcast_addr *mcast; mcast = list_first_entry(&vif->fe_mcast_addr, struct xenvif_mcast_addr, entry); --vif->fe_mcast_count; list_del(&mcast->entry); kfree(mcast); } } static void xenvif_tx_build_gops(struct xenvif_queue *queue, int budget, unsigned *copy_ops, unsigned *map_ops) { struct sk_buff *skb, *nskb; int ret; unsigned int frag_overflow; while (skb_queue_len(&queue->tx_queue) < budget) { struct xen_netif_tx_request txreq; struct xen_netif_tx_request txfrags[XEN_NETBK_LEGACY_SLOTS_MAX]; struct xen_netif_extra_info extras[XEN_NETIF_EXTRA_TYPE_MAX-1]; unsigned int extra_count; u16 pending_idx; RING_IDX idx; int work_to_do; unsigned int data_len; pending_ring_idx_t index; if (queue->tx.sring->req_prod - queue->tx.req_cons > XEN_NETIF_TX_RING_SIZE) { netdev_err(queue->vif->dev, "Impossible number of requests. " "req_prod %d, req_cons %d, size %ld\n", queue->tx.sring->req_prod, queue->tx.req_cons, XEN_NETIF_TX_RING_SIZE); xenvif_fatal_tx_err(queue->vif); break; } work_to_do = RING_HAS_UNCONSUMED_REQUESTS(&queue->tx); if (!work_to_do) break; idx = queue->tx.req_cons; rmb(); /* Ensure that we see the request before we copy it. */ RING_COPY_REQUEST(&queue->tx, idx, &txreq); /* Credit-based scheduling. */ if (txreq.size > queue->remaining_credit && tx_credit_exceeded(queue, txreq.size)) break; queue->remaining_credit -= txreq.size; work_to_do--; queue->tx.req_cons = ++idx; memset(extras, 0, sizeof(extras)); extra_count = 0; if (txreq.flags & XEN_NETTXF_extra_info) { work_to_do = xenvif_get_extras(queue, extras, &extra_count, work_to_do); idx = queue->tx.req_cons; if (unlikely(work_to_do < 0)) break; } if (extras[XEN_NETIF_EXTRA_TYPE_MCAST_ADD - 1].type) { struct xen_netif_extra_info *extra; extra = &extras[XEN_NETIF_EXTRA_TYPE_MCAST_ADD - 1]; ret = xenvif_mcast_add(queue->vif, extra->u.mcast.addr); make_tx_response(queue, &txreq, extra_count, (ret == 0) ? XEN_NETIF_RSP_OKAY : XEN_NETIF_RSP_ERROR); push_tx_responses(queue); continue; } if (extras[XEN_NETIF_EXTRA_TYPE_MCAST_DEL - 1].type) { struct xen_netif_extra_info *extra; extra = &extras[XEN_NETIF_EXTRA_TYPE_MCAST_DEL - 1]; xenvif_mcast_del(queue->vif, extra->u.mcast.addr); make_tx_response(queue, &txreq, extra_count, XEN_NETIF_RSP_OKAY); push_tx_responses(queue); continue; } data_len = (txreq.size > XEN_NETBACK_TX_COPY_LEN) ? XEN_NETBACK_TX_COPY_LEN : txreq.size; ret = xenvif_count_requests(queue, &txreq, extra_count, txfrags, work_to_do); if (unlikely(ret < 0)) break; idx += ret; if (unlikely(txreq.size < ETH_HLEN)) { netdev_dbg(queue->vif->dev, "Bad packet size: %d\n", txreq.size); xenvif_tx_err(queue, &txreq, extra_count, idx); break; } /* No crossing a page as the payload mustn't fragment. */ if (unlikely((txreq.offset + txreq.size) > XEN_PAGE_SIZE)) { netdev_err(queue->vif->dev, "Cross page boundary, txreq.offset: %u, size: %u\n", txreq.offset, txreq.size); xenvif_fatal_tx_err(queue->vif); break; } index = pending_index(queue->pending_cons); pending_idx = queue->pending_ring[index]; if (ret >= XEN_NETBK_LEGACY_SLOTS_MAX - 1 && data_len < txreq.size) data_len = txreq.size; skb = xenvif_alloc_skb(data_len); if (unlikely(skb == NULL)) { netdev_dbg(queue->vif->dev, "Can't allocate a skb in start_xmit.\n"); xenvif_tx_err(queue, &txreq, extra_count, idx); break; } skb_shinfo(skb)->nr_frags = ret; /* At this point shinfo->nr_frags is in fact the number of * slots, which can be as large as XEN_NETBK_LEGACY_SLOTS_MAX. */ frag_overflow = 0; nskb = NULL; if (skb_shinfo(skb)->nr_frags > MAX_SKB_FRAGS) { frag_overflow = skb_shinfo(skb)->nr_frags - MAX_SKB_FRAGS; BUG_ON(frag_overflow > MAX_SKB_FRAGS); skb_shinfo(skb)->nr_frags = MAX_SKB_FRAGS; nskb = xenvif_alloc_skb(0); if (unlikely(nskb == NULL)) { skb_shinfo(skb)->nr_frags = 0; kfree_skb(skb); xenvif_tx_err(queue, &txreq, extra_count, idx); if (net_ratelimit()) netdev_err(queue->vif->dev, "Can't allocate the frag_list skb.\n"); break; } } if (extras[XEN_NETIF_EXTRA_TYPE_GSO - 1].type) { struct xen_netif_extra_info *gso; gso = &extras[XEN_NETIF_EXTRA_TYPE_GSO - 1]; if (xenvif_set_skb_gso(queue->vif, skb, gso)) { /* Failure in xenvif_set_skb_gso is fatal. */ skb_shinfo(skb)->nr_frags = 0; kfree_skb(skb); kfree_skb(nskb); break; } } if (extras[XEN_NETIF_EXTRA_TYPE_HASH - 1].type) { struct xen_netif_extra_info *extra; enum pkt_hash_types type = PKT_HASH_TYPE_NONE; extra = &extras[XEN_NETIF_EXTRA_TYPE_HASH - 1]; switch (extra->u.hash.type) { case _XEN_NETIF_CTRL_HASH_TYPE_IPV4: case _XEN_NETIF_CTRL_HASH_TYPE_IPV6: type = PKT_HASH_TYPE_L3; break; case _XEN_NETIF_CTRL_HASH_TYPE_IPV4_TCP: case _XEN_NETIF_CTRL_HASH_TYPE_IPV6_TCP: type = PKT_HASH_TYPE_L4; break; default: break; } if (type != PKT_HASH_TYPE_NONE) skb_set_hash(skb, *(u32 *)extra->u.hash.value, type); } xenvif_get_requests(queue, skb, &txreq, txfrags, copy_ops, map_ops, frag_overflow, nskb, extra_count, data_len); __skb_queue_tail(&queue->tx_queue, skb); queue->tx.req_cons = idx; if ((*map_ops >= ARRAY_SIZE(queue->tx_map_ops)) || (*copy_ops >= ARRAY_SIZE(queue->tx_copy_ops))) break; } return; } /* Consolidate skb with a frag_list into a brand new one with local pages on * frags. Returns 0 or -ENOMEM if can't allocate new pages. */ static int xenvif_handle_frag_list(struct xenvif_queue *queue, struct sk_buff *skb) { unsigned int offset = skb_headlen(skb); skb_frag_t frags[MAX_SKB_FRAGS]; int i, f; struct ubuf_info *uarg; struct sk_buff *nskb = skb_shinfo(skb)->frag_list; queue->stats.tx_zerocopy_sent += 2; queue->stats.tx_frag_overflow++; xenvif_fill_frags(queue, nskb); /* Subtract frags size, we will correct it later */ skb->truesize -= skb->data_len; skb->len += nskb->len; skb->data_len += nskb->len; /* create a brand new frags array and coalesce there */ for (i = 0; offset < skb->len; i++) { struct page *page; unsigned int len; BUG_ON(i >= MAX_SKB_FRAGS); page = alloc_page(GFP_ATOMIC); if (!page) { int j; skb->truesize += skb->data_len; for (j = 0; j < i; j++) put_page(skb_frag_page(&frags[j])); return -ENOMEM; } if (offset + PAGE_SIZE < skb->len) len = PAGE_SIZE; else len = skb->len - offset; if (skb_copy_bits(skb, offset, page_address(page), len)) BUG(); offset += len; __skb_frag_set_page(&frags[i], page); skb_frag_off_set(&frags[i], 0); skb_frag_size_set(&frags[i], len); } /* Release all the original (foreign) frags. */ for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) skb_frag_unref(skb, f); uarg = skb_shinfo(skb)->destructor_arg; /* increase inflight counter to offset decrement in callback */ atomic_inc(&queue->inflight_packets); uarg->callback(uarg, true); skb_shinfo(skb)->destructor_arg = NULL; /* Fill the skb with the new (local) frags. */ memcpy(skb_shinfo(skb)->frags, frags, i * sizeof(skb_frag_t)); skb_shinfo(skb)->nr_frags = i; skb->truesize += i * PAGE_SIZE; return 0; } static int xenvif_tx_submit(struct xenvif_queue *queue) { struct gnttab_map_grant_ref *gop_map = queue->tx_map_ops; struct gnttab_copy *gop_copy = queue->tx_copy_ops; struct sk_buff *skb; int work_done = 0; while ((skb = __skb_dequeue(&queue->tx_queue)) != NULL) { struct xen_netif_tx_request *txp; u16 pending_idx; pending_idx = copy_pending_idx(skb, 0); txp = &queue->pending_tx_info[pending_idx].req; /* Check the remap error code. */ if (unlikely(xenvif_tx_check_gop(queue, skb, &gop_map, &gop_copy))) { /* If there was an error, xenvif_tx_check_gop is * expected to release all the frags which were mapped, * so kfree_skb shouldn't do it again */ skb_shinfo(skb)->nr_frags = 0; if (skb_has_frag_list(skb)) { struct sk_buff *nskb = skb_shinfo(skb)->frag_list; skb_shinfo(nskb)->nr_frags = 0; } kfree_skb(skb); continue; } if (txp->flags & XEN_NETTXF_csum_blank) skb->ip_summed = CHECKSUM_PARTIAL; else if (txp->flags & XEN_NETTXF_data_validated) skb->ip_summed = CHECKSUM_UNNECESSARY; xenvif_fill_frags(queue, skb); if (unlikely(skb_has_frag_list(skb))) { struct sk_buff *nskb = skb_shinfo(skb)->frag_list; xenvif_skb_zerocopy_prepare(queue, nskb); if (xenvif_handle_frag_list(queue, skb)) { if (net_ratelimit()) netdev_err(queue->vif->dev, "Not enough memory to consolidate frag_list!\n"); xenvif_skb_zerocopy_prepare(queue, skb); kfree_skb(skb); continue; } /* Copied all the bits from the frag list -- free it. */ skb_frag_list_init(skb); kfree_skb(nskb); } skb->dev = queue->vif->dev; skb->protocol = eth_type_trans(skb, skb->dev); skb_reset_network_header(skb); if (checksum_setup(queue, skb)) { netdev_dbg(queue->vif->dev, "Can't setup checksum in net_tx_action\n"); /* We have to set this flag to trigger the callback */ if (skb_shinfo(skb)->destructor_arg) xenvif_skb_zerocopy_prepare(queue, skb); kfree_skb(skb); continue; } skb_probe_transport_header(skb); /* If the packet is GSO then we will have just set up the * transport header offset in checksum_setup so it's now * straightforward to calculate gso_segs. */ if (skb_is_gso(skb)) { int mss, hdrlen; /* GSO implies having the L4 header. */ WARN_ON_ONCE(!skb_transport_header_was_set(skb)); if (unlikely(!skb_transport_header_was_set(skb))) { kfree_skb(skb); continue; } mss = skb_shinfo(skb)->gso_size; hdrlen = skb_transport_header(skb) - skb_mac_header(skb) + tcp_hdrlen(skb); skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len - hdrlen, mss); } queue->stats.rx_bytes += skb->len; queue->stats.rx_packets++; work_done++; /* Set this flag right before netif_receive_skb, otherwise * someone might think this packet already left netback, and * do a skb_copy_ubufs while we are still in control of the * skb. E.g. the __pskb_pull_tail earlier can do such thing. */ if (skb_shinfo(skb)->destructor_arg) { xenvif_skb_zerocopy_prepare(queue, skb); queue->stats.tx_zerocopy_sent++; } netif_receive_skb(skb); } return work_done; } void xenvif_zerocopy_callback(struct ubuf_info *ubuf, bool zerocopy_success) { unsigned long flags; pending_ring_idx_t index; struct xenvif_queue *queue = ubuf_to_queue(ubuf); /* This is the only place where we grab this lock, to protect callbacks * from each other. */ spin_lock_irqsave(&queue->callback_lock, flags); do { u16 pending_idx = ubuf->desc; ubuf = (struct ubuf_info *) ubuf->ctx; BUG_ON(queue->dealloc_prod - queue->dealloc_cons >= MAX_PENDING_REQS); index = pending_index(queue->dealloc_prod); queue->dealloc_ring[index] = pending_idx; /* Sync with xenvif_tx_dealloc_action: * insert idx then incr producer. */ smp_wmb(); queue->dealloc_prod++; } while (ubuf); spin_unlock_irqrestore(&queue->callback_lock, flags); if (likely(zerocopy_success)) queue->stats.tx_zerocopy_success++; else queue->stats.tx_zerocopy_fail++; xenvif_skb_zerocopy_complete(queue); } static inline void xenvif_tx_dealloc_action(struct xenvif_queue *queue) { struct gnttab_unmap_grant_ref *gop; pending_ring_idx_t dc, dp; u16 pending_idx, pending_idx_release[MAX_PENDING_REQS]; unsigned int i = 0; dc = queue->dealloc_cons; gop = queue->tx_unmap_ops; /* Free up any grants we have finished using */ do { dp = queue->dealloc_prod; /* Ensure we see all indices enqueued by all * xenvif_zerocopy_callback(). */ smp_rmb(); while (dc != dp) { BUG_ON(gop - queue->tx_unmap_ops >= MAX_PENDING_REQS); pending_idx = queue->dealloc_ring[pending_index(dc++)]; pending_idx_release[gop - queue->tx_unmap_ops] = pending_idx; queue->pages_to_unmap[gop - queue->tx_unmap_ops] = queue->mmap_pages[pending_idx]; gnttab_set_unmap_op(gop, idx_to_kaddr(queue, pending_idx), GNTMAP_host_map, queue->grant_tx_handle[pending_idx]); xenvif_grant_handle_reset(queue, pending_idx); ++gop; } } while (dp != queue->dealloc_prod); queue->dealloc_cons = dc; if (gop - queue->tx_unmap_ops > 0) { int ret; ret = gnttab_unmap_refs(queue->tx_unmap_ops, NULL, queue->pages_to_unmap, gop - queue->tx_unmap_ops); if (ret) { netdev_err(queue->vif->dev, "Unmap fail: nr_ops %tu ret %d\n", gop - queue->tx_unmap_ops, ret); for (i = 0; i < gop - queue->tx_unmap_ops; ++i) { if (gop[i].status != GNTST_okay) netdev_err(queue->vif->dev, " host_addr: 0x%llx handle: 0x%x status: %d\n", gop[i].host_addr, gop[i].handle, gop[i].status); } BUG(); } } for (i = 0; i < gop - queue->tx_unmap_ops; ++i) xenvif_idx_release(queue, pending_idx_release[i], XEN_NETIF_RSP_OKAY); } /* Called after netfront has transmitted */ int xenvif_tx_action(struct xenvif_queue *queue, int budget) { unsigned nr_mops = 0, nr_cops = 0; int work_done, ret; if (unlikely(!tx_work_todo(queue))) return 0; xenvif_tx_build_gops(queue, budget, &nr_cops, &nr_mops); if (nr_cops == 0) return 0; gnttab_batch_copy(queue->tx_copy_ops, nr_cops); if (nr_mops != 0) { ret = gnttab_map_refs(queue->tx_map_ops, NULL, queue->pages_to_map, nr_mops); if (ret) { unsigned int i; netdev_err(queue->vif->dev, "Map fail: nr %u ret %d\n", nr_mops, ret); for (i = 0; i < nr_mops; ++i) WARN_ON_ONCE(queue->tx_map_ops[i].status == GNTST_okay); } } work_done = xenvif_tx_submit(queue); return work_done; } static void xenvif_idx_release(struct xenvif_queue *queue, u16 pending_idx, u8 status) { struct pending_tx_info *pending_tx_info; pending_ring_idx_t index; unsigned long flags; pending_tx_info = &queue->pending_tx_info[pending_idx]; spin_lock_irqsave(&queue->response_lock, flags); make_tx_response(queue, &pending_tx_info->req, pending_tx_info->extra_count, status); /* Release the pending index before pusing the Tx response so * its available before a new Tx request is pushed by the * frontend. */ index = pending_index(queue->pending_prod++); queue->pending_ring[index] = pending_idx; push_tx_responses(queue); spin_unlock_irqrestore(&queue->response_lock, flags); } static void make_tx_response(struct xenvif_queue *queue, struct xen_netif_tx_request *txp, unsigned int extra_count, s8 st) { RING_IDX i = queue->tx.rsp_prod_pvt; struct xen_netif_tx_response *resp; resp = RING_GET_RESPONSE(&queue->tx, i); resp->id = txp->id; resp->status = st; while (extra_count-- != 0) RING_GET_RESPONSE(&queue->tx, ++i)->status = XEN_NETIF_RSP_NULL; queue->tx.rsp_prod_pvt = ++i; } static void push_tx_responses(struct xenvif_queue *queue) { int notify; RING_PUSH_RESPONSES_AND_CHECK_NOTIFY(&queue->tx, notify); if (notify) notify_remote_via_irq(queue->tx_irq); } static void xenvif_idx_unmap(struct xenvif_queue *queue, u16 pending_idx) { int ret; struct gnttab_unmap_grant_ref tx_unmap_op; gnttab_set_unmap_op(&tx_unmap_op, idx_to_kaddr(queue, pending_idx), GNTMAP_host_map, queue->grant_tx_handle[pending_idx]); xenvif_grant_handle_reset(queue, pending_idx); ret = gnttab_unmap_refs(&tx_unmap_op, NULL, &queue->mmap_pages[pending_idx], 1); if (ret) { netdev_err(queue->vif->dev, "Unmap fail: ret: %d pending_idx: %d host_addr: %llx handle: 0x%x status: %d\n", ret, pending_idx, tx_unmap_op.host_addr, tx_unmap_op.handle, tx_unmap_op.status); BUG(); } } static inline int tx_work_todo(struct xenvif_queue *queue) { if (likely(RING_HAS_UNCONSUMED_REQUESTS(&queue->tx))) return 1; return 0; } static inline bool tx_dealloc_work_todo(struct xenvif_queue *queue) { return queue->dealloc_cons != queue->dealloc_prod; } void xenvif_unmap_frontend_data_rings(struct xenvif_queue *queue) { if (queue->tx.sring) xenbus_unmap_ring_vfree(xenvif_to_xenbus_device(queue->vif), queue->tx.sring); if (queue->rx.sring) xenbus_unmap_ring_vfree(xenvif_to_xenbus_device(queue->vif), queue->rx.sring); } int xenvif_map_frontend_data_rings(struct xenvif_queue *queue, grant_ref_t tx_ring_ref, grant_ref_t rx_ring_ref) { void *addr; struct xen_netif_tx_sring *txs; struct xen_netif_rx_sring *rxs; RING_IDX rsp_prod, req_prod; int err = -ENOMEM; err = xenbus_map_ring_valloc(xenvif_to_xenbus_device(queue->vif), &tx_ring_ref, 1, &addr); if (err) goto err; txs = (struct xen_netif_tx_sring *)addr; rsp_prod = READ_ONCE(txs->rsp_prod); req_prod = READ_ONCE(txs->req_prod); BACK_RING_ATTACH(&queue->tx, txs, rsp_prod, XEN_PAGE_SIZE); err = -EIO; if (req_prod - rsp_prod > RING_SIZE(&queue->tx)) goto err; err = xenbus_map_ring_valloc(xenvif_to_xenbus_device(queue->vif), &rx_ring_ref, 1, &addr); if (err) goto err; rxs = (struct xen_netif_rx_sring *)addr; rsp_prod = READ_ONCE(rxs->rsp_prod); req_prod = READ_ONCE(rxs->req_prod); BACK_RING_ATTACH(&queue->rx, rxs, rsp_prod, XEN_PAGE_SIZE); err = -EIO; if (req_prod - rsp_prod > RING_SIZE(&queue->rx)) goto err; return 0; err: xenvif_unmap_frontend_data_rings(queue); return err; } static bool xenvif_dealloc_kthread_should_stop(struct xenvif_queue *queue) { /* Dealloc thread must remain running until all inflight * packets complete. */ return kthread_should_stop() && !atomic_read(&queue->inflight_packets); } int xenvif_dealloc_kthread(void *data) { struct xenvif_queue *queue = data; for (;;) { wait_event_interruptible(queue->dealloc_wq, tx_dealloc_work_todo(queue) || xenvif_dealloc_kthread_should_stop(queue)); if (xenvif_dealloc_kthread_should_stop(queue)) break; xenvif_tx_dealloc_action(queue); cond_resched(); } /* Unmap anything remaining*/ if (tx_dealloc_work_todo(queue)) xenvif_tx_dealloc_action(queue); return 0; } static void make_ctrl_response(struct xenvif *vif, const struct xen_netif_ctrl_request *req, u32 status, u32 data) { RING_IDX idx = vif->ctrl.rsp_prod_pvt; struct xen_netif_ctrl_response rsp = { .id = req->id, .type = req->type, .status = status, .data = data, }; *RING_GET_RESPONSE(&vif->ctrl, idx) = rsp; vif->ctrl.rsp_prod_pvt = ++idx; } static void push_ctrl_response(struct xenvif *vif) { int notify; RING_PUSH_RESPONSES_AND_CHECK_NOTIFY(&vif->ctrl, notify); if (notify) notify_remote_via_irq(vif->ctrl_irq); } static void process_ctrl_request(struct xenvif *vif, const struct xen_netif_ctrl_request *req) { u32 status = XEN_NETIF_CTRL_STATUS_NOT_SUPPORTED; u32 data = 0; switch (req->type) { case XEN_NETIF_CTRL_TYPE_SET_HASH_ALGORITHM: status = xenvif_set_hash_alg(vif, req->data[0]); break; case XEN_NETIF_CTRL_TYPE_GET_HASH_FLAGS: status = xenvif_get_hash_flags(vif, &data); break; case XEN_NETIF_CTRL_TYPE_SET_HASH_FLAGS: status = xenvif_set_hash_flags(vif, req->data[0]); break; case XEN_NETIF_CTRL_TYPE_SET_HASH_KEY: status = xenvif_set_hash_key(vif, req->data[0], req->data[1]); break; case XEN_NETIF_CTRL_TYPE_GET_HASH_MAPPING_SIZE: status = XEN_NETIF_CTRL_STATUS_SUCCESS; data = XEN_NETBK_MAX_HASH_MAPPING_SIZE; break; case XEN_NETIF_CTRL_TYPE_SET_HASH_MAPPING_SIZE: status = xenvif_set_hash_mapping_size(vif, req->data[0]); break; case XEN_NETIF_CTRL_TYPE_SET_HASH_MAPPING: status = xenvif_set_hash_mapping(vif, req->data[0], req->data[1], req->data[2]); break; default: break; } make_ctrl_response(vif, req, status, data); push_ctrl_response(vif); } static void xenvif_ctrl_action(struct xenvif *vif) { for (;;) { RING_IDX req_prod, req_cons; req_prod = vif->ctrl.sring->req_prod; req_cons = vif->ctrl.req_cons; /* Make sure we can see requests before we process them. */ rmb(); if (req_cons == req_prod) break; while (req_cons != req_prod) { struct xen_netif_ctrl_request req; RING_COPY_REQUEST(&vif->ctrl, req_cons, &req); req_cons++; process_ctrl_request(vif, &req); } vif->ctrl.req_cons = req_cons; vif->ctrl.sring->req_event = req_cons + 1; } } static bool xenvif_ctrl_work_todo(struct xenvif *vif) { if (likely(RING_HAS_UNCONSUMED_REQUESTS(&vif->ctrl))) return true; return false; } irqreturn_t xenvif_ctrl_irq_fn(int irq, void *data) { struct xenvif *vif = data; unsigned int eoi_flag = XEN_EOI_FLAG_SPURIOUS; while (xenvif_ctrl_work_todo(vif)) { xenvif_ctrl_action(vif); eoi_flag = 0; } xen_irq_lateeoi(irq, eoi_flag); return IRQ_HANDLED; } static int __init netback_init(void) { int rc = 0; if (!xen_domain()) return -ENODEV; /* Allow as many queues as there are CPUs but max. 8 if user has not * specified a value. */ if (xenvif_max_queues == 0) xenvif_max_queues = min_t(unsigned int, MAX_QUEUES_DEFAULT, num_online_cpus()); if (fatal_skb_slots < XEN_NETBK_LEGACY_SLOTS_MAX) { pr_info("fatal_skb_slots too small (%d), bump it to XEN_NETBK_LEGACY_SLOTS_MAX (%d)\n", fatal_skb_slots, XEN_NETBK_LEGACY_SLOTS_MAX); fatal_skb_slots = XEN_NETBK_LEGACY_SLOTS_MAX; } rc = xenvif_xenbus_init(); if (rc) goto failed_init; #ifdef CONFIG_DEBUG_FS xen_netback_dbg_root = debugfs_create_dir("xen-netback", NULL); #endif /* CONFIG_DEBUG_FS */ return 0; failed_init: return rc; } module_init(netback_init); static void __exit netback_fini(void) { #ifdef CONFIG_DEBUG_FS debugfs_remove_recursive(xen_netback_dbg_root); #endif /* CONFIG_DEBUG_FS */ xenvif_xenbus_fini(); } module_exit(netback_fini); MODULE_LICENSE("Dual BSD/GPL"); MODULE_ALIAS("xen-backend:vif");