// SPDX-License-Identifier: GPL-2.0+ /* * Copyright IBM Corp. 2006, 2012 * Author(s): Cornelia Huck * Martin Schwidefsky * Ralph Wuerthner * Felix Beck * Holger Dengler * * Adjunct processor bus. */ #define KMSG_COMPONENT "ap" #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ap_bus.h" #include "ap_debug.h" /* * Module parameters; note though this file itself isn't modular. */ int ap_domain_index = -1; /* Adjunct Processor Domain Index */ static DEFINE_SPINLOCK(ap_domain_lock); module_param_named(domain, ap_domain_index, int, 0440); MODULE_PARM_DESC(domain, "domain index for ap devices"); EXPORT_SYMBOL(ap_domain_index); static int ap_thread_flag; module_param_named(poll_thread, ap_thread_flag, int, 0440); MODULE_PARM_DESC(poll_thread, "Turn on/off poll thread, default is 0 (off)."); static char *apm_str; module_param_named(apmask, apm_str, charp, 0440); MODULE_PARM_DESC(apmask, "AP bus adapter mask."); static char *aqm_str; module_param_named(aqmask, aqm_str, charp, 0440); MODULE_PARM_DESC(aqmask, "AP bus domain mask."); static struct device *ap_root_device; /* Hashtable of all queue devices on the AP bus */ DEFINE_HASHTABLE(ap_queues, 8); /* lock used for the ap_queues hashtable */ DEFINE_SPINLOCK(ap_queues_lock); /* Default permissions (ioctl, card and domain masking) */ struct ap_perms ap_perms; EXPORT_SYMBOL(ap_perms); DEFINE_MUTEX(ap_perms_mutex); EXPORT_SYMBOL(ap_perms_mutex); static struct ap_config_info *ap_qci_info; /* * AP bus related debug feature things. */ debug_info_t *ap_dbf_info; /* * Workqueue timer for bus rescan. */ static struct timer_list ap_config_timer; static int ap_config_time = AP_CONFIG_TIME; static void ap_scan_bus(struct work_struct *); static DECLARE_WORK(ap_scan_work, ap_scan_bus); /* * Tasklet & timer for AP request polling and interrupts */ static void ap_tasklet_fn(unsigned long); static DECLARE_TASKLET_OLD(ap_tasklet, ap_tasklet_fn); static DECLARE_WAIT_QUEUE_HEAD(ap_poll_wait); static struct task_struct *ap_poll_kthread; static DEFINE_MUTEX(ap_poll_thread_mutex); static DEFINE_SPINLOCK(ap_poll_timer_lock); static struct hrtimer ap_poll_timer; /* * In LPAR poll with 4kHz frequency. Poll every 250000 nanoseconds. * If z/VM change to 1500000 nanoseconds to adjust to z/VM polling. */ static unsigned long long poll_timeout = 250000; /* Maximum domain id, if not given via qci */ static int ap_max_domain_id = 15; /* Maximum adapter id, if not given via qci */ static int ap_max_adapter_id = 63; static struct bus_type ap_bus_type; /* Adapter interrupt definitions */ static void ap_interrupt_handler(struct airq_struct *airq, bool floating); static bool ap_irq_flag; static struct airq_struct ap_airq = { .handler = ap_interrupt_handler, .isc = AP_ISC, }; /** * ap_airq_ptr() - Get the address of the adapter interrupt indicator * * Returns the address of the local-summary-indicator of the adapter * interrupt handler for AP, or NULL if adapter interrupts are not * available. */ void *ap_airq_ptr(void) { if (ap_irq_flag) return ap_airq.lsi_ptr; return NULL; } /** * ap_interrupts_available(): Test if AP interrupts are available. * * Returns 1 if AP interrupts are available. */ static int ap_interrupts_available(void) { return test_facility(65); } /** * ap_qci_available(): Test if AP configuration * information can be queried via QCI subfunction. * * Returns 1 if subfunction PQAP(QCI) is available. */ static int ap_qci_available(void) { return test_facility(12); } /** * ap_apft_available(): Test if AP facilities test (APFT) * facility is available. * * Returns 1 if APFT is is available. */ static int ap_apft_available(void) { return test_facility(15); } /* * ap_qact_available(): Test if the PQAP(QACT) subfunction is available. * * Returns 1 if the QACT subfunction is available. */ static inline int ap_qact_available(void) { if (ap_qci_info) return ap_qci_info->qact; return 0; } /* * ap_fetch_qci_info(): Fetch cryptographic config info * * Returns the ap configuration info fetched via PQAP(QCI). * On success 0 is returned, on failure a negative errno * is returned, e.g. if the PQAP(QCI) instruction is not * available, the return value will be -EOPNOTSUPP. */ static inline int ap_fetch_qci_info(struct ap_config_info *info) { if (!ap_qci_available()) return -EOPNOTSUPP; if (!info) return -EINVAL; return ap_qci(info); } /** * ap_init_qci_info(): Allocate and query qci config info. * Does also update the static variables ap_max_domain_id * and ap_max_adapter_id if this info is available. */ static void __init ap_init_qci_info(void) { if (!ap_qci_available()) { AP_DBF_INFO("%s QCI not supported\n", __func__); return; } ap_qci_info = kzalloc(sizeof(*ap_qci_info), GFP_KERNEL); if (!ap_qci_info) return; if (ap_fetch_qci_info(ap_qci_info) != 0) { kfree(ap_qci_info); ap_qci_info = NULL; return; } AP_DBF_INFO("%s successful fetched initial qci info\n", __func__); if (ap_qci_info->apxa) { if (ap_qci_info->Na) { ap_max_adapter_id = ap_qci_info->Na; AP_DBF_INFO("%s new ap_max_adapter_id is %d\n", __func__, ap_max_adapter_id); } if (ap_qci_info->Nd) { ap_max_domain_id = ap_qci_info->Nd; AP_DBF_INFO("%s new ap_max_domain_id is %d\n", __func__, ap_max_domain_id); } } } /* * ap_test_config(): helper function to extract the nrth bit * within the unsigned int array field. */ static inline int ap_test_config(unsigned int *field, unsigned int nr) { return ap_test_bit((field + (nr >> 5)), (nr & 0x1f)); } /* * ap_test_config_card_id(): Test, whether an AP card ID is configured. * * Returns 0 if the card is not configured * 1 if the card is configured or * if the configuration information is not available */ static inline int ap_test_config_card_id(unsigned int id) { if (id > ap_max_adapter_id) return 0; if (ap_qci_info) return ap_test_config(ap_qci_info->apm, id); return 1; } /* * ap_test_config_usage_domain(): Test, whether an AP usage domain * is configured. * * Returns 0 if the usage domain is not configured * 1 if the usage domain is configured or * if the configuration information is not available */ int ap_test_config_usage_domain(unsigned int domain) { if (domain > ap_max_domain_id) return 0; if (ap_qci_info) return ap_test_config(ap_qci_info->aqm, domain); return 1; } EXPORT_SYMBOL(ap_test_config_usage_domain); /* * ap_test_config_ctrl_domain(): Test, whether an AP control domain * is configured. * @domain AP control domain ID * * Returns 1 if the control domain is configured * 0 in all other cases */ int ap_test_config_ctrl_domain(unsigned int domain) { if (!ap_qci_info || domain > ap_max_domain_id) return 0; return ap_test_config(ap_qci_info->adm, domain); } EXPORT_SYMBOL(ap_test_config_ctrl_domain); /* * ap_queue_info(): Check and get AP queue info. * Returns true if TAPQ succeeded and the info is filled or * false otherwise. */ static bool ap_queue_info(ap_qid_t qid, int *q_type, unsigned int *q_fac, int *q_depth, bool *q_decfg) { struct ap_queue_status status; unsigned long info = 0; /* make sure we don't run into a specifiation exception */ if (AP_QID_CARD(qid) > ap_max_adapter_id || AP_QID_QUEUE(qid) > ap_max_domain_id) return false; /* call TAPQ on this APQN */ status = ap_test_queue(qid, ap_apft_available(), &info); switch (status.response_code) { case AP_RESPONSE_NORMAL: case AP_RESPONSE_RESET_IN_PROGRESS: case AP_RESPONSE_DECONFIGURED: case AP_RESPONSE_CHECKSTOPPED: case AP_RESPONSE_BUSY: /* * According to the architecture in all these cases the * info should be filled. All bits 0 is not possible as * there is at least one of the mode bits set. */ if (WARN_ON_ONCE(!info)) return false; *q_type = (int)((info >> 24) & 0xff); *q_fac = (unsigned int)(info >> 32); *q_depth = (int)(info & 0xff); *q_decfg = status.response_code == AP_RESPONSE_DECONFIGURED; switch (*q_type) { /* For CEX2 and CEX3 the available functions * are not reflected by the facilities bits. * Instead it is coded into the type. So here * modify the function bits based on the type. */ case AP_DEVICE_TYPE_CEX2A: case AP_DEVICE_TYPE_CEX3A: *q_fac |= 0x08000000; break; case AP_DEVICE_TYPE_CEX2C: case AP_DEVICE_TYPE_CEX3C: *q_fac |= 0x10000000; break; default: break; } return true; default: /* * A response code which indicates, there is no info available. */ return false; } } void ap_wait(enum ap_sm_wait wait) { ktime_t hr_time; switch (wait) { case AP_SM_WAIT_AGAIN: case AP_SM_WAIT_INTERRUPT: if (ap_irq_flag) break; if (ap_poll_kthread) { wake_up(&ap_poll_wait); break; } fallthrough; case AP_SM_WAIT_TIMEOUT: spin_lock_bh(&ap_poll_timer_lock); if (!hrtimer_is_queued(&ap_poll_timer)) { hr_time = poll_timeout; hrtimer_forward_now(&ap_poll_timer, hr_time); hrtimer_restart(&ap_poll_timer); } spin_unlock_bh(&ap_poll_timer_lock); break; case AP_SM_WAIT_NONE: default: break; } } /** * ap_request_timeout(): Handling of request timeouts * @t: timer making this callback * * Handles request timeouts. */ void ap_request_timeout(struct timer_list *t) { struct ap_queue *aq = from_timer(aq, t, timeout); spin_lock_bh(&aq->lock); ap_wait(ap_sm_event(aq, AP_SM_EVENT_TIMEOUT)); spin_unlock_bh(&aq->lock); } /** * ap_poll_timeout(): AP receive polling for finished AP requests. * @unused: Unused pointer. * * Schedules the AP tasklet using a high resolution timer. */ static enum hrtimer_restart ap_poll_timeout(struct hrtimer *unused) { tasklet_schedule(&ap_tasklet); return HRTIMER_NORESTART; } /** * ap_interrupt_handler() - Schedule ap_tasklet on interrupt * @airq: pointer to adapter interrupt descriptor */ static void ap_interrupt_handler(struct airq_struct *airq, bool floating) { inc_irq_stat(IRQIO_APB); tasklet_schedule(&ap_tasklet); } /** * ap_tasklet_fn(): Tasklet to poll all AP devices. * @dummy: Unused variable * * Poll all AP devices on the bus. */ static void ap_tasklet_fn(unsigned long dummy) { int bkt; struct ap_queue *aq; enum ap_sm_wait wait = AP_SM_WAIT_NONE; /* Reset the indicator if interrupts are used. Thus new interrupts can * be received. Doing it in the beginning of the tasklet is therefor * important that no requests on any AP get lost. */ if (ap_irq_flag) xchg(ap_airq.lsi_ptr, 0); spin_lock_bh(&ap_queues_lock); hash_for_each(ap_queues, bkt, aq, hnode) { spin_lock_bh(&aq->lock); wait = min(wait, ap_sm_event_loop(aq, AP_SM_EVENT_POLL)); spin_unlock_bh(&aq->lock); } spin_unlock_bh(&ap_queues_lock); ap_wait(wait); } static int ap_pending_requests(void) { int bkt; struct ap_queue *aq; spin_lock_bh(&ap_queues_lock); hash_for_each(ap_queues, bkt, aq, hnode) { if (aq->queue_count == 0) continue; spin_unlock_bh(&ap_queues_lock); return 1; } spin_unlock_bh(&ap_queues_lock); return 0; } /** * ap_poll_thread(): Thread that polls for finished requests. * @data: Unused pointer * * AP bus poll thread. The purpose of this thread is to poll for * finished requests in a loop if there is a "free" cpu - that is * a cpu that doesn't have anything better to do. The polling stops * as soon as there is another task or if all messages have been * delivered. */ static int ap_poll_thread(void *data) { DECLARE_WAITQUEUE(wait, current); set_user_nice(current, MAX_NICE); set_freezable(); while (!kthread_should_stop()) { add_wait_queue(&ap_poll_wait, &wait); set_current_state(TASK_INTERRUPTIBLE); if (!ap_pending_requests()) { schedule(); try_to_freeze(); } set_current_state(TASK_RUNNING); remove_wait_queue(&ap_poll_wait, &wait); if (need_resched()) { schedule(); try_to_freeze(); continue; } ap_tasklet_fn(0); } return 0; } static int ap_poll_thread_start(void) { int rc; if (ap_irq_flag || ap_poll_kthread) return 0; mutex_lock(&ap_poll_thread_mutex); ap_poll_kthread = kthread_run(ap_poll_thread, NULL, "appoll"); rc = PTR_ERR_OR_ZERO(ap_poll_kthread); if (rc) ap_poll_kthread = NULL; mutex_unlock(&ap_poll_thread_mutex); return rc; } static void ap_poll_thread_stop(void) { if (!ap_poll_kthread) return; mutex_lock(&ap_poll_thread_mutex); kthread_stop(ap_poll_kthread); ap_poll_kthread = NULL; mutex_unlock(&ap_poll_thread_mutex); } #define is_card_dev(x) ((x)->parent == ap_root_device) #define is_queue_dev(x) ((x)->parent != ap_root_device) /** * ap_bus_match() * @dev: Pointer to device * @drv: Pointer to device_driver * * AP bus driver registration/unregistration. */ static int ap_bus_match(struct device *dev, struct device_driver *drv) { struct ap_driver *ap_drv = to_ap_drv(drv); struct ap_device_id *id; /* * Compare device type of the device with the list of * supported types of the device_driver. */ for (id = ap_drv->ids; id->match_flags; id++) { if (is_card_dev(dev) && id->match_flags & AP_DEVICE_ID_MATCH_CARD_TYPE && id->dev_type == to_ap_dev(dev)->device_type) return 1; if (is_queue_dev(dev) && id->match_flags & AP_DEVICE_ID_MATCH_QUEUE_TYPE && id->dev_type == to_ap_dev(dev)->device_type) return 1; } return 0; } /** * ap_uevent(): Uevent function for AP devices. * @dev: Pointer to device * @env: Pointer to kobj_uevent_env * * It sets up a single environment variable DEV_TYPE which contains the * hardware device type. */ static int ap_uevent(struct device *dev, struct kobj_uevent_env *env) { struct ap_device *ap_dev = to_ap_dev(dev); int retval = 0; if (!ap_dev) return -ENODEV; /* Set up DEV_TYPE environment variable. */ retval = add_uevent_var(env, "DEV_TYPE=%04X", ap_dev->device_type); if (retval) return retval; /* Add MODALIAS= */ retval = add_uevent_var(env, "MODALIAS=ap:t%02X", ap_dev->device_type); return retval; } static int __ap_queue_devices_with_id_unregister(struct device *dev, void *data) { if (is_queue_dev(dev) && AP_QID_CARD(to_ap_queue(dev)->qid) == (int)(long) data) device_unregister(dev); return 0; } static struct bus_type ap_bus_type = { .name = "ap", .match = &ap_bus_match, .uevent = &ap_uevent, }; static int __ap_revise_reserved(struct device *dev, void *dummy) { int rc, card, queue, devres, drvres; if (is_queue_dev(dev)) { card = AP_QID_CARD(to_ap_queue(dev)->qid); queue = AP_QID_QUEUE(to_ap_queue(dev)->qid); mutex_lock(&ap_perms_mutex); devres = test_bit_inv(card, ap_perms.apm) && test_bit_inv(queue, ap_perms.aqm); mutex_unlock(&ap_perms_mutex); drvres = to_ap_drv(dev->driver)->flags & AP_DRIVER_FLAG_DEFAULT; if (!!devres != !!drvres) { AP_DBF_DBG("reprobing queue=%02x.%04x\n", card, queue); rc = device_reprobe(dev); } } return 0; } static void ap_bus_revise_bindings(void) { bus_for_each_dev(&ap_bus_type, NULL, NULL, __ap_revise_reserved); } int ap_owned_by_def_drv(int card, int queue) { int rc = 0; if (card < 0 || card >= AP_DEVICES || queue < 0 || queue >= AP_DOMAINS) return -EINVAL; mutex_lock(&ap_perms_mutex); if (test_bit_inv(card, ap_perms.apm) && test_bit_inv(queue, ap_perms.aqm)) rc = 1; mutex_unlock(&ap_perms_mutex); return rc; } EXPORT_SYMBOL(ap_owned_by_def_drv); int ap_apqn_in_matrix_owned_by_def_drv(unsigned long *apm, unsigned long *aqm) { int card, queue, rc = 0; mutex_lock(&ap_perms_mutex); for (card = 0; !rc && card < AP_DEVICES; card++) if (test_bit_inv(card, apm) && test_bit_inv(card, ap_perms.apm)) for (queue = 0; !rc && queue < AP_DOMAINS; queue++) if (test_bit_inv(queue, aqm) && test_bit_inv(queue, ap_perms.aqm)) rc = 1; mutex_unlock(&ap_perms_mutex); return rc; } EXPORT_SYMBOL(ap_apqn_in_matrix_owned_by_def_drv); static int ap_device_probe(struct device *dev) { struct ap_device *ap_dev = to_ap_dev(dev); struct ap_driver *ap_drv = to_ap_drv(dev->driver); int card, queue, devres, drvres, rc = -ENODEV; if (!get_device(dev)) return rc; if (is_queue_dev(dev)) { /* * If the apqn is marked as reserved/used by ap bus and * default drivers, only probe with drivers with the default * flag set. If it is not marked, only probe with drivers * with the default flag not set. */ card = AP_QID_CARD(to_ap_queue(dev)->qid); queue = AP_QID_QUEUE(to_ap_queue(dev)->qid); mutex_lock(&ap_perms_mutex); devres = test_bit_inv(card, ap_perms.apm) && test_bit_inv(queue, ap_perms.aqm); mutex_unlock(&ap_perms_mutex); drvres = ap_drv->flags & AP_DRIVER_FLAG_DEFAULT; if (!!devres != !!drvres) goto out; } /* Add queue/card to list of active queues/cards */ spin_lock_bh(&ap_queues_lock); if (is_queue_dev(dev)) hash_add(ap_queues, &to_ap_queue(dev)->hnode, to_ap_queue(dev)->qid); spin_unlock_bh(&ap_queues_lock); ap_dev->drv = ap_drv; rc = ap_drv->probe ? ap_drv->probe(ap_dev) : -ENODEV; if (rc) { spin_lock_bh(&ap_queues_lock); if (is_queue_dev(dev)) hash_del(&to_ap_queue(dev)->hnode); spin_unlock_bh(&ap_queues_lock); ap_dev->drv = NULL; } out: if (rc) put_device(dev); return rc; } static int ap_device_remove(struct device *dev) { struct ap_device *ap_dev = to_ap_dev(dev); struct ap_driver *ap_drv = ap_dev->drv; /* prepare ap queue device removal */ if (is_queue_dev(dev)) ap_queue_prepare_remove(to_ap_queue(dev)); /* driver's chance to clean up gracefully */ if (ap_drv->remove) ap_drv->remove(ap_dev); /* now do the ap queue device remove */ if (is_queue_dev(dev)) ap_queue_remove(to_ap_queue(dev)); /* Remove queue/card from list of active queues/cards */ spin_lock_bh(&ap_queues_lock); if (is_queue_dev(dev)) hash_del(&to_ap_queue(dev)->hnode); spin_unlock_bh(&ap_queues_lock); put_device(dev); return 0; } struct ap_queue *ap_get_qdev(ap_qid_t qid) { int bkt; struct ap_queue *aq; spin_lock_bh(&ap_queues_lock); hash_for_each(ap_queues, bkt, aq, hnode) { if (aq->qid == qid) { get_device(&aq->ap_dev.device); spin_unlock_bh(&ap_queues_lock); return aq; } } spin_unlock_bh(&ap_queues_lock); return NULL; } EXPORT_SYMBOL(ap_get_qdev); int ap_driver_register(struct ap_driver *ap_drv, struct module *owner, char *name) { struct device_driver *drv = &ap_drv->driver; drv->bus = &ap_bus_type; drv->probe = ap_device_probe; drv->remove = ap_device_remove; drv->owner = owner; drv->name = name; return driver_register(drv); } EXPORT_SYMBOL(ap_driver_register); void ap_driver_unregister(struct ap_driver *ap_drv) { driver_unregister(&ap_drv->driver); } EXPORT_SYMBOL(ap_driver_unregister); void ap_bus_force_rescan(void) { /* processing a asynchronous bus rescan */ del_timer(&ap_config_timer); queue_work(system_long_wq, &ap_scan_work); flush_work(&ap_scan_work); } EXPORT_SYMBOL(ap_bus_force_rescan); /* * A config change has happened, force an ap bus rescan. */ void ap_bus_cfg_chg(void) { AP_DBF_DBG("%s config change, forcing bus rescan\n", __func__); ap_bus_force_rescan(); } /* * hex2bitmap() - parse hex mask string and set bitmap. * Valid strings are "0x012345678" with at least one valid hex number. * Rest of the bitmap to the right is padded with 0. No spaces allowed * within the string, the leading 0x may be omitted. * Returns the bitmask with exactly the bits set as given by the hex * string (both in big endian order). */ static int hex2bitmap(const char *str, unsigned long *bitmap, int bits) { int i, n, b; /* bits needs to be a multiple of 8 */ if (bits & 0x07) return -EINVAL; if (str[0] == '0' && str[1] == 'x') str++; if (*str == 'x') str++; for (i = 0; isxdigit(*str) && i < bits; str++) { b = hex_to_bin(*str); for (n = 0; n < 4; n++) if (b & (0x08 >> n)) set_bit_inv(i + n, bitmap); i += 4; } if (*str == '\n') str++; if (*str) return -EINVAL; return 0; } /* * modify_bitmap() - parse bitmask argument and modify an existing * bit mask accordingly. A concatenation (done with ',') of these * terms is recognized: * +[-] or -[-] * may be any valid number (hex, decimal or octal) in the range * 0...bits-1; the leading + or - is required. Here are some examples: * +0-15,+32,-128,-0xFF * -0-255,+1-16,+0x128 * +1,+2,+3,+4,-5,-7-10 * Returns the new bitmap after all changes have been applied. Every * positive value in the string will set a bit and every negative value * in the string will clear a bit. As a bit may be touched more than once, * the last 'operation' wins: * +0-255,-128 = first bits 0-255 will be set, then bit 128 will be * cleared again. All other bits are unmodified. */ static int modify_bitmap(const char *str, unsigned long *bitmap, int bits) { int a, i, z; char *np, sign; /* bits needs to be a multiple of 8 */ if (bits & 0x07) return -EINVAL; while (*str) { sign = *str++; if (sign != '+' && sign != '-') return -EINVAL; a = z = simple_strtoul(str, &np, 0); if (str == np || a >= bits) return -EINVAL; str = np; if (*str == '-') { z = simple_strtoul(++str, &np, 0); if (str == np || a > z || z >= bits) return -EINVAL; str = np; } for (i = a; i <= z; i++) if (sign == '+') set_bit_inv(i, bitmap); else clear_bit_inv(i, bitmap); while (*str == ',' || *str == '\n') str++; } return 0; } int ap_parse_mask_str(const char *str, unsigned long *bitmap, int bits, struct mutex *lock) { unsigned long *newmap, size; int rc; /* bits needs to be a multiple of 8 */ if (bits & 0x07) return -EINVAL; size = BITS_TO_LONGS(bits)*sizeof(unsigned long); newmap = kmalloc(size, GFP_KERNEL); if (!newmap) return -ENOMEM; if (mutex_lock_interruptible(lock)) { kfree(newmap); return -ERESTARTSYS; } if (*str == '+' || *str == '-') { memcpy(newmap, bitmap, size); rc = modify_bitmap(str, newmap, bits); } else { memset(newmap, 0, size); rc = hex2bitmap(str, newmap, bits); } if (rc == 0) memcpy(bitmap, newmap, size); mutex_unlock(lock); kfree(newmap); return rc; } EXPORT_SYMBOL(ap_parse_mask_str); /* * AP bus attributes. */ static ssize_t ap_domain_show(struct bus_type *bus, char *buf) { return scnprintf(buf, PAGE_SIZE, "%d\n", ap_domain_index); } static ssize_t ap_domain_store(struct bus_type *bus, const char *buf, size_t count) { int domain; if (sscanf(buf, "%i\n", &domain) != 1 || domain < 0 || domain > ap_max_domain_id || !test_bit_inv(domain, ap_perms.aqm)) return -EINVAL; spin_lock_bh(&ap_domain_lock); ap_domain_index = domain; spin_unlock_bh(&ap_domain_lock); AP_DBF_INFO("stored new default domain=%d\n", domain); return count; } static BUS_ATTR_RW(ap_domain); static ssize_t ap_control_domain_mask_show(struct bus_type *bus, char *buf) { if (!ap_qci_info) /* QCI not supported */ return scnprintf(buf, PAGE_SIZE, "not supported\n"); return scnprintf(buf, PAGE_SIZE, "0x%08x%08x%08x%08x%08x%08x%08x%08x\n", ap_qci_info->adm[0], ap_qci_info->adm[1], ap_qci_info->adm[2], ap_qci_info->adm[3], ap_qci_info->adm[4], ap_qci_info->adm[5], ap_qci_info->adm[6], ap_qci_info->adm[7]); } static BUS_ATTR_RO(ap_control_domain_mask); static ssize_t ap_usage_domain_mask_show(struct bus_type *bus, char *buf) { if (!ap_qci_info) /* QCI not supported */ return scnprintf(buf, PAGE_SIZE, "not supported\n"); return scnprintf(buf, PAGE_SIZE, "0x%08x%08x%08x%08x%08x%08x%08x%08x\n", ap_qci_info->aqm[0], ap_qci_info->aqm[1], ap_qci_info->aqm[2], ap_qci_info->aqm[3], ap_qci_info->aqm[4], ap_qci_info->aqm[5], ap_qci_info->aqm[6], ap_qci_info->aqm[7]); } static BUS_ATTR_RO(ap_usage_domain_mask); static ssize_t ap_adapter_mask_show(struct bus_type *bus, char *buf) { if (!ap_qci_info) /* QCI not supported */ return scnprintf(buf, PAGE_SIZE, "not supported\n"); return scnprintf(buf, PAGE_SIZE, "0x%08x%08x%08x%08x%08x%08x%08x%08x\n", ap_qci_info->apm[0], ap_qci_info->apm[1], ap_qci_info->apm[2], ap_qci_info->apm[3], ap_qci_info->apm[4], ap_qci_info->apm[5], ap_qci_info->apm[6], ap_qci_info->apm[7]); } static BUS_ATTR_RO(ap_adapter_mask); static ssize_t ap_interrupts_show(struct bus_type *bus, char *buf) { return scnprintf(buf, PAGE_SIZE, "%d\n", ap_irq_flag ? 1 : 0); } static BUS_ATTR_RO(ap_interrupts); static ssize_t config_time_show(struct bus_type *bus, char *buf) { return scnprintf(buf, PAGE_SIZE, "%d\n", ap_config_time); } static ssize_t config_time_store(struct bus_type *bus, const char *buf, size_t count) { int time; if (sscanf(buf, "%d\n", &time) != 1 || time < 5 || time > 120) return -EINVAL; ap_config_time = time; mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ); return count; } static BUS_ATTR_RW(config_time); static ssize_t poll_thread_show(struct bus_type *bus, char *buf) { return scnprintf(buf, PAGE_SIZE, "%d\n", ap_poll_kthread ? 1 : 0); } static ssize_t poll_thread_store(struct bus_type *bus, const char *buf, size_t count) { int flag, rc; if (sscanf(buf, "%d\n", &flag) != 1) return -EINVAL; if (flag) { rc = ap_poll_thread_start(); if (rc) count = rc; } else ap_poll_thread_stop(); return count; } static BUS_ATTR_RW(poll_thread); static ssize_t poll_timeout_show(struct bus_type *bus, char *buf) { return scnprintf(buf, PAGE_SIZE, "%llu\n", poll_timeout); } static ssize_t poll_timeout_store(struct bus_type *bus, const char *buf, size_t count) { unsigned long long time; ktime_t hr_time; /* 120 seconds = maximum poll interval */ if (sscanf(buf, "%llu\n", &time) != 1 || time < 1 || time > 120000000000ULL) return -EINVAL; poll_timeout = time; hr_time = poll_timeout; spin_lock_bh(&ap_poll_timer_lock); hrtimer_cancel(&ap_poll_timer); hrtimer_set_expires(&ap_poll_timer, hr_time); hrtimer_start_expires(&ap_poll_timer, HRTIMER_MODE_ABS); spin_unlock_bh(&ap_poll_timer_lock); return count; } static BUS_ATTR_RW(poll_timeout); static ssize_t ap_max_domain_id_show(struct bus_type *bus, char *buf) { return scnprintf(buf, PAGE_SIZE, "%d\n", ap_max_domain_id); } static BUS_ATTR_RO(ap_max_domain_id); static ssize_t ap_max_adapter_id_show(struct bus_type *bus, char *buf) { return scnprintf(buf, PAGE_SIZE, "%d\n", ap_max_adapter_id); } static BUS_ATTR_RO(ap_max_adapter_id); static ssize_t apmask_show(struct bus_type *bus, char *buf) { int rc; if (mutex_lock_interruptible(&ap_perms_mutex)) return -ERESTARTSYS; rc = scnprintf(buf, PAGE_SIZE, "0x%016lx%016lx%016lx%016lx\n", ap_perms.apm[0], ap_perms.apm[1], ap_perms.apm[2], ap_perms.apm[3]); mutex_unlock(&ap_perms_mutex); return rc; } static ssize_t apmask_store(struct bus_type *bus, const char *buf, size_t count) { int rc; rc = ap_parse_mask_str(buf, ap_perms.apm, AP_DEVICES, &ap_perms_mutex); if (rc) return rc; ap_bus_revise_bindings(); return count; } static BUS_ATTR_RW(apmask); static ssize_t aqmask_show(struct bus_type *bus, char *buf) { int rc; if (mutex_lock_interruptible(&ap_perms_mutex)) return -ERESTARTSYS; rc = scnprintf(buf, PAGE_SIZE, "0x%016lx%016lx%016lx%016lx\n", ap_perms.aqm[0], ap_perms.aqm[1], ap_perms.aqm[2], ap_perms.aqm[3]); mutex_unlock(&ap_perms_mutex); return rc; } static ssize_t aqmask_store(struct bus_type *bus, const char *buf, size_t count) { int rc; rc = ap_parse_mask_str(buf, ap_perms.aqm, AP_DOMAINS, &ap_perms_mutex); if (rc) return rc; ap_bus_revise_bindings(); return count; } static BUS_ATTR_RW(aqmask); static struct bus_attribute *const ap_bus_attrs[] = { &bus_attr_ap_domain, &bus_attr_ap_control_domain_mask, &bus_attr_ap_usage_domain_mask, &bus_attr_ap_adapter_mask, &bus_attr_config_time, &bus_attr_poll_thread, &bus_attr_ap_interrupts, &bus_attr_poll_timeout, &bus_attr_ap_max_domain_id, &bus_attr_ap_max_adapter_id, &bus_attr_apmask, &bus_attr_aqmask, NULL, }; /** * ap_select_domain(): Select an AP domain if possible and we haven't * already done so before. */ static void ap_select_domain(void) { struct ap_queue_status status; int card, dom; /* * Choose the default domain. Either the one specified with * the "domain=" parameter or the first domain with at least * one valid APQN. */ spin_lock_bh(&ap_domain_lock); if (ap_domain_index >= 0) { /* Domain has already been selected. */ goto out; } for (dom = 0; dom <= ap_max_domain_id; dom++) { if (!ap_test_config_usage_domain(dom) || !test_bit_inv(dom, ap_perms.aqm)) continue; for (card = 0; card <= ap_max_adapter_id; card++) { if (!ap_test_config_card_id(card) || !test_bit_inv(card, ap_perms.apm)) continue; status = ap_test_queue(AP_MKQID(card, dom), ap_apft_available(), NULL); if (status.response_code == AP_RESPONSE_NORMAL) break; } if (card <= ap_max_adapter_id) break; } if (dom <= ap_max_domain_id) { ap_domain_index = dom; AP_DBF_INFO("%s new default domain is %d\n", __func__, ap_domain_index); } out: spin_unlock_bh(&ap_domain_lock); } /* * This function checks the type and returns either 0 for not * supported or the highest compatible type value (which may * include the input type value). */ static int ap_get_compatible_type(ap_qid_t qid, int rawtype, unsigned int func) { int comp_type = 0; /* < CEX2A is not supported */ if (rawtype < AP_DEVICE_TYPE_CEX2A) { AP_DBF_WARN("get_comp_type queue=%02x.%04x unsupported type %d\n", AP_QID_CARD(qid), AP_QID_QUEUE(qid), rawtype); return 0; } /* up to CEX7 known and fully supported */ if (rawtype <= AP_DEVICE_TYPE_CEX7) return rawtype; /* * unknown new type > CEX7, check for compatibility * to the highest known and supported type which is * currently CEX7 with the help of the QACT function. */ if (ap_qact_available()) { struct ap_queue_status status; union ap_qact_ap_info apinfo = {0}; apinfo.mode = (func >> 26) & 0x07; apinfo.cat = AP_DEVICE_TYPE_CEX7; status = ap_qact(qid, 0, &apinfo); if (status.response_code == AP_RESPONSE_NORMAL && apinfo.cat >= AP_DEVICE_TYPE_CEX2A && apinfo.cat <= AP_DEVICE_TYPE_CEX7) comp_type = apinfo.cat; } if (!comp_type) AP_DBF_WARN("get_comp_type queue=%02x.%04x unable to map type %d\n", AP_QID_CARD(qid), AP_QID_QUEUE(qid), rawtype); else if (comp_type != rawtype) AP_DBF_INFO("get_comp_type queue=%02x.%04x map type %d to %d\n", AP_QID_CARD(qid), AP_QID_QUEUE(qid), rawtype, comp_type); return comp_type; } /* * Helper function to be used with bus_find_dev * matches for the card device with the given id */ static int __match_card_device_with_id(struct device *dev, const void *data) { return is_card_dev(dev) && to_ap_card(dev)->id == (int)(long)(void *) data; } /* * Helper function to be used with bus_find_dev * matches for the queue device with a given qid */ static int __match_queue_device_with_qid(struct device *dev, const void *data) { return is_queue_dev(dev) && to_ap_queue(dev)->qid == (int)(long) data; } /* * Helper function to be used with bus_find_dev * matches any queue device with given queue id */ static int __match_queue_device_with_queue_id(struct device *dev, const void *data) { return is_queue_dev(dev) && AP_QID_QUEUE(to_ap_queue(dev)->qid) == (int)(long) data; } /* * Helper function for ap_scan_bus(). * Remove card device and associated queue devices. */ static inline void ap_scan_rm_card_dev_and_queue_devs(struct ap_card *ac) { bus_for_each_dev(&ap_bus_type, NULL, (void *)(long) ac->id, __ap_queue_devices_with_id_unregister); device_unregister(&ac->ap_dev.device); } /* * Helper function for ap_scan_bus(). * Does the scan bus job for all the domains within * a valid adapter given by an ap_card ptr. */ static inline void ap_scan_domains(struct ap_card *ac) { bool decfg; ap_qid_t qid; unsigned int func; struct device *dev; struct ap_queue *aq; int rc, dom, depth, type; /* * Go through the configuration for the domains and compare them * to the existing queue devices. Also take care of the config * and error state for the queue devices. */ for (dom = 0; dom <= ap_max_domain_id; dom++) { qid = AP_MKQID(ac->id, dom); dev = bus_find_device(&ap_bus_type, NULL, (void *)(long) qid, __match_queue_device_with_qid); aq = dev ? to_ap_queue(dev) : NULL; if (!ap_test_config_usage_domain(dom)) { if (dev) { AP_DBF_INFO("%s(%d,%d) not in config any more, rm queue device\n", __func__, ac->id, dom); device_unregister(dev); put_device(dev); } continue; } /* domain is valid, get info from this APQN */ if (!ap_queue_info(qid, &type, &func, &depth, &decfg)) { if (aq) { AP_DBF_INFO( "%s(%d,%d) ap_queue_info() not successful, rm queue device\n", __func__, ac->id, dom); device_unregister(dev); put_device(dev); } continue; } /* if no queue device exists, create a new one */ if (!aq) { aq = ap_queue_create(qid, ac->ap_dev.device_type); if (!aq) { AP_DBF_WARN("%s(%d,%d) ap_queue_create() failed\n", __func__, ac->id, dom); continue; } aq->card = ac; aq->config = !decfg; dev = &aq->ap_dev.device; dev->bus = &ap_bus_type; dev->parent = &ac->ap_dev.device; dev_set_name(dev, "%02x.%04x", ac->id, dom); /* register queue device */ rc = device_register(dev); if (rc) { AP_DBF_WARN("%s(%d,%d) device_register() failed\n", __func__, ac->id, dom); goto put_dev_and_continue; } /* get it and thus adjust reference counter */ get_device(dev); if (decfg) AP_DBF_INFO("%s(%d,%d) new (decfg) queue device created\n", __func__, ac->id, dom); else AP_DBF_INFO("%s(%d,%d) new queue device created\n", __func__, ac->id, dom); goto put_dev_and_continue; } /* Check config state on the already existing queue device */ spin_lock_bh(&aq->lock); if (decfg && aq->config) { /* config off this queue device */ aq->config = false; if (aq->dev_state > AP_DEV_STATE_UNINITIATED) { aq->dev_state = AP_DEV_STATE_ERROR; aq->last_err_rc = AP_RESPONSE_DECONFIGURED; } spin_unlock_bh(&aq->lock); AP_DBF_INFO("%s(%d,%d) queue device config off\n", __func__, ac->id, dom); /* 'receive' pending messages with -EAGAIN */ ap_flush_queue(aq); goto put_dev_and_continue; } if (!decfg && !aq->config) { /* config on this queue device */ aq->config = true; if (aq->dev_state > AP_DEV_STATE_UNINITIATED) { aq->dev_state = AP_DEV_STATE_OPERATING; aq->sm_state = AP_SM_STATE_RESET_START; } spin_unlock_bh(&aq->lock); AP_DBF_INFO("%s(%d,%d) queue device config on\n", __func__, ac->id, dom); goto put_dev_and_continue; } /* handle other error states */ if (!decfg && aq->dev_state == AP_DEV_STATE_ERROR) { spin_unlock_bh(&aq->lock); /* 'receive' pending messages with -EAGAIN */ ap_flush_queue(aq); /* re-init (with reset) the queue device */ ap_queue_init_state(aq); AP_DBF_INFO("%s(%d,%d) queue device reinit enforced\n", __func__, ac->id, dom); goto put_dev_and_continue; } spin_unlock_bh(&aq->lock); put_dev_and_continue: put_device(dev); } } /* * Helper function for ap_scan_bus(). * Does the scan bus job for the given adapter id. */ static inline void ap_scan_adapter(int ap) { bool decfg; ap_qid_t qid; unsigned int func; struct device *dev; struct ap_card *ac; int rc, dom, depth, type, comp_type; /* Is there currently a card device for this adapter ? */ dev = bus_find_device(&ap_bus_type, NULL, (void *)(long) ap, __match_card_device_with_id); ac = dev ? to_ap_card(dev) : NULL; /* Adapter not in configuration ? */ if (!ap_test_config_card_id(ap)) { if (ac) { AP_DBF_INFO("%s(%d) ap not in config any more, rm card and queue devices\n", __func__, ap); ap_scan_rm_card_dev_and_queue_devs(ac); put_device(dev); } return; } /* * Adapter ap is valid in the current configuration. So do some checks: * If no card device exists, build one. If a card device exists, check * for type and functions changed. For all this we need to find a valid * APQN first. */ for (dom = 0; dom <= ap_max_domain_id; dom++) if (ap_test_config_usage_domain(dom)) { qid = AP_MKQID(ap, dom); if (ap_queue_info(qid, &type, &func, &depth, &decfg)) break; } if (dom > ap_max_domain_id) { /* Could not find a valid APQN for this adapter */ if (ac) { AP_DBF_INFO( "%s(%d) no type info (no APQN found), rm card and queue devices\n", __func__, ap); ap_scan_rm_card_dev_and_queue_devs(ac); put_device(dev); } else { AP_DBF_DBG("%s(%d) no type info (no APQN found), ignored\n", __func__, ap); } return; } if (!type) { /* No apdater type info available, an unusable adapter */ if (ac) { AP_DBF_INFO("%s(%d) no valid type (0) info, rm card and queue devices\n", __func__, ap); ap_scan_rm_card_dev_and_queue_devs(ac); put_device(dev); } else { AP_DBF_DBG("%s(%d) no valid type (0) info, ignored\n", __func__, ap); } return; } if (ac) { /* Check APQN against existing card device for changes */ if (ac->raw_hwtype != type) { AP_DBF_INFO("%s(%d) hwtype %d changed, rm card and queue devices\n", __func__, ap, type); ap_scan_rm_card_dev_and_queue_devs(ac); put_device(dev); ac = NULL; } else if (ac->functions != func) { AP_DBF_INFO("%s(%d) functions 0x%08x changed, rm card and queue devices\n", __func__, ap, type); ap_scan_rm_card_dev_and_queue_devs(ac); put_device(dev); ac = NULL; } else { if (decfg && ac->config) { ac->config = false; AP_DBF_INFO("%s(%d) card device config off\n", __func__, ap); } if (!decfg && !ac->config) { ac->config = true; AP_DBF_INFO("%s(%d) card device config on\n", __func__, ap); } } } if (!ac) { /* Build a new card device */ comp_type = ap_get_compatible_type(qid, type, func); if (!comp_type) { AP_DBF_WARN("%s(%d) type %d, can't get compatibility type\n", __func__, ap, type); return; } ac = ap_card_create(ap, depth, type, comp_type, func); if (!ac) { AP_DBF_WARN("%s(%d) ap_card_create() failed\n", __func__, ap); return; } ac->config = !decfg; dev = &ac->ap_dev.device; dev->bus = &ap_bus_type; dev->parent = ap_root_device; dev_set_name(dev, "card%02x", ap); /* Register the new card device with AP bus */ rc = device_register(dev); if (rc) { AP_DBF_WARN("%s(%d) device_register() failed\n", __func__, ap); put_device(dev); return; } /* get it and thus adjust reference counter */ get_device(dev); if (decfg) AP_DBF_INFO("%s(%d) new (decfg) card device type=%d func=0x%08x created\n", __func__, ap, type, func); else AP_DBF_INFO("%s(%d) new card device type=%d func=0x%08x created\n", __func__, ap, type, func); } /* Verify the domains and the queue devices for this card */ ap_scan_domains(ac); /* release the card device */ put_device(&ac->ap_dev.device); } /** * ap_scan_bus(): Scan the AP bus for new devices * Runs periodically, workqueue timer (ap_config_time) */ static void ap_scan_bus(struct work_struct *unused) { int ap; ap_fetch_qci_info(ap_qci_info); ap_select_domain(); AP_DBF_DBG("%s running\n", __func__); /* loop over all possible adapters */ for (ap = 0; ap <= ap_max_adapter_id; ap++) ap_scan_adapter(ap); /* check if there is at least one queue available with default domain */ if (ap_domain_index >= 0) { struct device *dev = bus_find_device(&ap_bus_type, NULL, (void *)(long) ap_domain_index, __match_queue_device_with_queue_id); if (dev) put_device(dev); else AP_DBF_INFO("no queue device with default domain %d available\n", ap_domain_index); } mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ); } static void ap_config_timeout(struct timer_list *unused) { queue_work(system_long_wq, &ap_scan_work); } static int __init ap_debug_init(void) { ap_dbf_info = debug_register("ap", 1, 1, DBF_MAX_SPRINTF_ARGS * sizeof(long)); debug_register_view(ap_dbf_info, &debug_sprintf_view); debug_set_level(ap_dbf_info, DBF_ERR); return 0; } static void __init ap_perms_init(void) { /* all resources useable if no kernel parameter string given */ memset(&ap_perms.ioctlm, 0xFF, sizeof(ap_perms.ioctlm)); memset(&ap_perms.apm, 0xFF, sizeof(ap_perms.apm)); memset(&ap_perms.aqm, 0xFF, sizeof(ap_perms.aqm)); /* apm kernel parameter string */ if (apm_str) { memset(&ap_perms.apm, 0, sizeof(ap_perms.apm)); ap_parse_mask_str(apm_str, ap_perms.apm, AP_DEVICES, &ap_perms_mutex); } /* aqm kernel parameter string */ if (aqm_str) { memset(&ap_perms.aqm, 0, sizeof(ap_perms.aqm)); ap_parse_mask_str(aqm_str, ap_perms.aqm, AP_DOMAINS, &ap_perms_mutex); } } /** * ap_module_init(): The module initialization code. * * Initializes the module. */ static int __init ap_module_init(void) { int rc, i; rc = ap_debug_init(); if (rc) return rc; if (!ap_instructions_available()) { pr_warn("The hardware system does not support AP instructions\n"); return -ENODEV; } /* init ap_queue hashtable */ hash_init(ap_queues); /* set up the AP permissions (ioctls, ap and aq masks) */ ap_perms_init(); /* Get AP configuration data if available */ ap_init_qci_info(); /* check default domain setting */ if (ap_domain_index < -1 || ap_domain_index > ap_max_domain_id || (ap_domain_index >= 0 && !test_bit_inv(ap_domain_index, ap_perms.aqm))) { pr_warn("%d is not a valid cryptographic domain\n", ap_domain_index); ap_domain_index = -1; } /* enable interrupts if available */ if (ap_interrupts_available()) { rc = register_adapter_interrupt(&ap_airq); ap_irq_flag = (rc == 0); } /* Create /sys/bus/ap. */ rc = bus_register(&ap_bus_type); if (rc) goto out; for (i = 0; ap_bus_attrs[i]; i++) { rc = bus_create_file(&ap_bus_type, ap_bus_attrs[i]); if (rc) goto out_bus; } /* Create /sys/devices/ap. */ ap_root_device = root_device_register("ap"); rc = PTR_ERR_OR_ZERO(ap_root_device); if (rc) goto out_bus; /* Setup the AP bus rescan timer. */ timer_setup(&ap_config_timer, ap_config_timeout, 0); /* * Setup the high resultion poll timer. * If we are running under z/VM adjust polling to z/VM polling rate. */ if (MACHINE_IS_VM) poll_timeout = 1500000; hrtimer_init(&ap_poll_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); ap_poll_timer.function = ap_poll_timeout; /* Start the low priority AP bus poll thread. */ if (ap_thread_flag) { rc = ap_poll_thread_start(); if (rc) goto out_work; } queue_work(system_long_wq, &ap_scan_work); return 0; out_work: hrtimer_cancel(&ap_poll_timer); root_device_unregister(ap_root_device); out_bus: while (i--) bus_remove_file(&ap_bus_type, ap_bus_attrs[i]); bus_unregister(&ap_bus_type); out: if (ap_irq_flag) unregister_adapter_interrupt(&ap_airq); kfree(ap_qci_info); return rc; } device_initcall(ap_module_init);