// SPDX-License-Identifier: GPL-2.0 /* Multipath TCP * * Copyright (c) 2017 - 2019, Intel Corporation. */ #define pr_fmt(fmt) "MPTCP: " fmt #include #include #include #include #include #include #include #include #include #include #include #if IS_ENABLED(CONFIG_MPTCP_IPV6) #include #endif #include #include "protocol.h" #include "mib.h" #if IS_ENABLED(CONFIG_MPTCP_IPV6) struct mptcp6_sock { struct mptcp_sock msk; struct ipv6_pinfo np; }; #endif struct mptcp_skb_cb { u64 map_seq; u64 end_seq; u32 offset; }; #define MPTCP_SKB_CB(__skb) ((struct mptcp_skb_cb *)&((__skb)->cb[0])) static struct percpu_counter mptcp_sockets_allocated; /* If msk has an initial subflow socket, and the MP_CAPABLE handshake has not * completed yet or has failed, return the subflow socket. * Otherwise return NULL. */ static struct socket *__mptcp_nmpc_socket(const struct mptcp_sock *msk) { if (!msk->subflow || READ_ONCE(msk->can_ack)) return NULL; return msk->subflow; } static bool mptcp_is_tcpsk(struct sock *sk) { struct socket *sock = sk->sk_socket; if (unlikely(sk->sk_prot == &tcp_prot)) { /* we are being invoked after mptcp_accept() has * accepted a non-mp-capable flow: sk is a tcp_sk, * not an mptcp one. * * Hand the socket over to tcp so all further socket ops * bypass mptcp. */ sock->ops = &inet_stream_ops; return true; #if IS_ENABLED(CONFIG_MPTCP_IPV6) } else if (unlikely(sk->sk_prot == &tcpv6_prot)) { sock->ops = &inet6_stream_ops; return true; #endif } return false; } static struct sock *__mptcp_tcp_fallback(struct mptcp_sock *msk) { sock_owned_by_me((const struct sock *)msk); if (likely(!__mptcp_check_fallback(msk))) return NULL; return msk->first; } static int __mptcp_socket_create(struct mptcp_sock *msk) { struct mptcp_subflow_context *subflow; struct sock *sk = (struct sock *)msk; struct socket *ssock; int err; err = mptcp_subflow_create_socket(sk, &ssock); if (err) return err; msk->first = ssock->sk; msk->subflow = ssock; subflow = mptcp_subflow_ctx(ssock->sk); list_add(&subflow->node, &msk->conn_list); subflow->request_mptcp = 1; /* accept() will wait on first subflow sk_wq, and we always wakes up * via msk->sk_socket */ RCU_INIT_POINTER(msk->first->sk_wq, &sk->sk_socket->wq); return 0; } static void mptcp_drop(struct sock *sk, struct sk_buff *skb) { sk_drops_add(sk, skb); __kfree_skb(skb); } static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to, struct sk_buff *from) { bool fragstolen; int delta; if (MPTCP_SKB_CB(from)->offset || !skb_try_coalesce(to, from, &fragstolen, &delta)) return false; pr_debug("colesced seq %llx into %llx new len %d new end seq %llx", MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq, to->len, MPTCP_SKB_CB(from)->end_seq); MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq; kfree_skb_partial(from, fragstolen); atomic_add(delta, &sk->sk_rmem_alloc); sk_mem_charge(sk, delta); return true; } static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to, struct sk_buff *from) { if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq) return false; return mptcp_try_coalesce((struct sock *)msk, to, from); } /* "inspired" by tcp_data_queue_ofo(), main differences: * - use mptcp seqs * - don't cope with sacks */ static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb) { struct sock *sk = (struct sock *)msk; struct rb_node **p, *parent; u64 seq, end_seq, max_seq; struct sk_buff *skb1; int space; seq = MPTCP_SKB_CB(skb)->map_seq; end_seq = MPTCP_SKB_CB(skb)->end_seq; space = tcp_space(sk); max_seq = space > 0 ? space + msk->ack_seq : msk->ack_seq; pr_debug("msk=%p seq=%llx limit=%llx empty=%d", msk, seq, max_seq, RB_EMPTY_ROOT(&msk->out_of_order_queue)); if (after64(seq, max_seq)) { /* out of window */ mptcp_drop(sk, skb); MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW); return; } p = &msk->out_of_order_queue.rb_node; MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE); if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) { rb_link_node(&skb->rbnode, NULL, p); rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); msk->ooo_last_skb = skb; goto end; } /* with 2 subflows, adding at end of ooo queue is quite likely * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. */ if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) { MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); return; } /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) { MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); parent = &msk->ooo_last_skb->rbnode; p = &parent->rb_right; goto insert; } /* Find place to insert this segment. Handle overlaps on the way. */ parent = NULL; while (*p) { parent = *p; skb1 = rb_to_skb(parent); if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { p = &parent->rb_left; continue; } if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) { if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) { /* All the bits are present. Drop. */ mptcp_drop(sk, skb); MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); return; } if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { /* partial overlap: * | skb | * | skb1 | * continue traversing */ } else { /* skb's seq == skb1's seq and skb covers skb1. * Replace skb1 with skb. */ rb_replace_node(&skb1->rbnode, &skb->rbnode, &msk->out_of_order_queue); mptcp_drop(sk, skb1); MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); goto merge_right; } } else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) { MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); return; } p = &parent->rb_right; } insert: /* Insert segment into RB tree. */ rb_link_node(&skb->rbnode, parent, p); rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); merge_right: /* Remove other segments covered by skb. */ while ((skb1 = skb_rb_next(skb)) != NULL) { if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) break; rb_erase(&skb1->rbnode, &msk->out_of_order_queue); mptcp_drop(sk, skb1); MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); } /* If there is no skb after us, we are the last_skb ! */ if (!skb1) msk->ooo_last_skb = skb; end: skb_condense(skb); skb_set_owner_r(skb, sk); } static bool __mptcp_move_skb(struct mptcp_sock *msk, struct sock *ssk, struct sk_buff *skb, unsigned int offset, size_t copy_len) { struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); struct sock *sk = (struct sock *)msk; struct sk_buff *tail; __skb_unlink(skb, &ssk->sk_receive_queue); skb_ext_reset(skb); skb_orphan(skb); /* try to fetch required memory from subflow */ if (!sk_rmem_schedule(sk, skb, skb->truesize)) { int amount = sk_mem_pages(skb->truesize) << SK_MEM_QUANTUM_SHIFT; if (ssk->sk_forward_alloc < amount) goto drop; ssk->sk_forward_alloc -= amount; sk->sk_forward_alloc += amount; } /* the skb map_seq accounts for the skb offset: * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq * value */ MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow); MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len; MPTCP_SKB_CB(skb)->offset = offset; if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) { /* in sequence */ WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len); tail = skb_peek_tail(&sk->sk_receive_queue); if (tail && mptcp_try_coalesce(sk, tail, skb)) return true; skb_set_owner_r(skb, sk); __skb_queue_tail(&sk->sk_receive_queue, skb); return true; } else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) { mptcp_data_queue_ofo(msk, skb); return false; } /* old data, keep it simple and drop the whole pkt, sender * will retransmit as needed, if needed. */ MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); drop: mptcp_drop(sk, skb); return false; } static void mptcp_stop_timer(struct sock *sk) { struct inet_connection_sock *icsk = inet_csk(sk); sk_stop_timer(sk, &icsk->icsk_retransmit_timer); mptcp_sk(sk)->timer_ival = 0; } static void mptcp_check_data_fin_ack(struct sock *sk) { struct mptcp_sock *msk = mptcp_sk(sk); if (__mptcp_check_fallback(msk)) return; /* Look for an acknowledged DATA_FIN */ if (((1 << sk->sk_state) & (TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) && msk->write_seq == atomic64_read(&msk->snd_una)) { mptcp_stop_timer(sk); WRITE_ONCE(msk->snd_data_fin_enable, 0); switch (sk->sk_state) { case TCP_FIN_WAIT1: inet_sk_state_store(sk, TCP_FIN_WAIT2); sk->sk_state_change(sk); break; case TCP_CLOSING: case TCP_LAST_ACK: inet_sk_state_store(sk, TCP_CLOSE); sk->sk_state_change(sk); break; } if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE) sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); else sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); } } static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq) { struct mptcp_sock *msk = mptcp_sk(sk); if (READ_ONCE(msk->rcv_data_fin) && ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) { u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq); if (msk->ack_seq == rcv_data_fin_seq) { if (seq) *seq = rcv_data_fin_seq; return true; } } return false; } static void mptcp_set_timeout(const struct sock *sk, const struct sock *ssk) { long tout = ssk && inet_csk(ssk)->icsk_pending ? inet_csk(ssk)->icsk_timeout - jiffies : 0; if (tout <= 0) tout = mptcp_sk(sk)->timer_ival; mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN; } static void mptcp_check_data_fin(struct sock *sk) { struct mptcp_sock *msk = mptcp_sk(sk); u64 rcv_data_fin_seq; if (__mptcp_check_fallback(msk) || !msk->first) return; /* Need to ack a DATA_FIN received from a peer while this side * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2. * msk->rcv_data_fin was set when parsing the incoming options * at the subflow level and the msk lock was not held, so this * is the first opportunity to act on the DATA_FIN and change * the msk state. * * If we are caught up to the sequence number of the incoming * DATA_FIN, send the DATA_ACK now and do state transition. If * not caught up, do nothing and let the recv code send DATA_ACK * when catching up. */ if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) { struct mptcp_subflow_context *subflow; WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1); WRITE_ONCE(msk->rcv_data_fin, 0); sk->sk_shutdown |= RCV_SHUTDOWN; smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ set_bit(MPTCP_DATA_READY, &msk->flags); switch (sk->sk_state) { case TCP_ESTABLISHED: inet_sk_state_store(sk, TCP_CLOSE_WAIT); break; case TCP_FIN_WAIT1: inet_sk_state_store(sk, TCP_CLOSING); break; case TCP_FIN_WAIT2: inet_sk_state_store(sk, TCP_CLOSE); // @@ Close subflows now? break; default: /* Other states not expected */ WARN_ON_ONCE(1); break; } mptcp_set_timeout(sk, NULL); mptcp_for_each_subflow(msk, subflow) { struct sock *ssk = mptcp_subflow_tcp_sock(subflow); lock_sock(ssk); tcp_send_ack(ssk); release_sock(ssk); } sk->sk_state_change(sk); if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE) sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); else sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); } } static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk, struct sock *ssk, unsigned int *bytes) { struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); struct sock *sk = (struct sock *)msk; unsigned int moved = 0; bool more_data_avail; struct tcp_sock *tp; u32 old_copied_seq; bool done = false; pr_debug("msk=%p ssk=%p", msk, ssk); tp = tcp_sk(ssk); old_copied_seq = tp->copied_seq; do { u32 map_remaining, offset; u32 seq = tp->copied_seq; struct sk_buff *skb; bool fin; /* try to move as much data as available */ map_remaining = subflow->map_data_len - mptcp_subflow_get_map_offset(subflow); skb = skb_peek(&ssk->sk_receive_queue); if (!skb) { /* if no data is found, a racing workqueue/recvmsg * already processed the new data, stop here or we * can enter an infinite loop */ if (!moved) done = true; break; } if (__mptcp_check_fallback(msk)) { /* if we are running under the workqueue, TCP could have * collapsed skbs between dummy map creation and now * be sure to adjust the size */ map_remaining = skb->len; subflow->map_data_len = skb->len; } offset = seq - TCP_SKB_CB(skb)->seq; fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; if (fin) { done = true; seq++; } if (offset < skb->len) { size_t len = skb->len - offset; if (tp->urg_data) done = true; if (__mptcp_move_skb(msk, ssk, skb, offset, len)) moved += len; seq += len; if (WARN_ON_ONCE(map_remaining < len)) break; } else { WARN_ON_ONCE(!fin); sk_eat_skb(ssk, skb); done = true; } WRITE_ONCE(tp->copied_seq, seq); more_data_avail = mptcp_subflow_data_available(ssk); if (atomic_read(&sk->sk_rmem_alloc) > READ_ONCE(sk->sk_rcvbuf)) { done = true; break; } } while (more_data_avail); *bytes += moved; if (tp->copied_seq != old_copied_seq) tcp_cleanup_rbuf(ssk, 1); return done; } static bool mptcp_ofo_queue(struct mptcp_sock *msk) { struct sock *sk = (struct sock *)msk; struct sk_buff *skb, *tail; bool moved = false; struct rb_node *p; u64 end_seq; p = rb_first(&msk->out_of_order_queue); pr_debug("msk=%p empty=%d", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue)); while (p) { skb = rb_to_skb(p); if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) break; p = rb_next(p); rb_erase(&skb->rbnode, &msk->out_of_order_queue); if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq, msk->ack_seq))) { mptcp_drop(sk, skb); MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); continue; } end_seq = MPTCP_SKB_CB(skb)->end_seq; tail = skb_peek_tail(&sk->sk_receive_queue); if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) { int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq; /* skip overlapping data, if any */ pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d", MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq, delta); MPTCP_SKB_CB(skb)->offset += delta; __skb_queue_tail(&sk->sk_receive_queue, skb); } msk->ack_seq = end_seq; moved = true; } return moved; } /* In most cases we will be able to lock the mptcp socket. If its already * owned, we need to defer to the work queue to avoid ABBA deadlock. */ static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk) { struct sock *sk = (struct sock *)msk; unsigned int moved = 0; if (READ_ONCE(sk->sk_lock.owned)) return false; if (unlikely(!spin_trylock_bh(&sk->sk_lock.slock))) return false; /* must re-check after taking the lock */ if (!READ_ONCE(sk->sk_lock.owned)) { __mptcp_move_skbs_from_subflow(msk, ssk, &moved); mptcp_ofo_queue(msk); /* If the moves have caught up with the DATA_FIN sequence number * it's time to ack the DATA_FIN and change socket state, but * this is not a good place to change state. Let the workqueue * do it. */ if (mptcp_pending_data_fin(sk, NULL) && schedule_work(&msk->work)) sock_hold(sk); } spin_unlock_bh(&sk->sk_lock.slock); return moved > 0; } void mptcp_data_ready(struct sock *sk, struct sock *ssk) { struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); struct mptcp_sock *msk = mptcp_sk(sk); bool wake; /* move_skbs_to_msk below can legitly clear the data_avail flag, * but we will need later to properly woke the reader, cache its * value */ wake = subflow->data_avail == MPTCP_SUBFLOW_DATA_AVAIL; if (wake) set_bit(MPTCP_DATA_READY, &msk->flags); if (atomic_read(&sk->sk_rmem_alloc) < READ_ONCE(sk->sk_rcvbuf) && move_skbs_to_msk(msk, ssk)) goto wake; /* don't schedule if mptcp sk is (still) over limit */ if (atomic_read(&sk->sk_rmem_alloc) > READ_ONCE(sk->sk_rcvbuf)) goto wake; /* mptcp socket is owned, release_cb should retry */ if (!test_and_set_bit(TCP_DELACK_TIMER_DEFERRED, &sk->sk_tsq_flags)) { sock_hold(sk); /* need to try again, its possible release_cb() has already * been called after the test_and_set_bit() above. */ move_skbs_to_msk(msk, ssk); } wake: if (wake) sk->sk_data_ready(sk); } static void __mptcp_flush_join_list(struct mptcp_sock *msk) { if (likely(list_empty(&msk->join_list))) return; spin_lock_bh(&msk->join_list_lock); list_splice_tail_init(&msk->join_list, &msk->conn_list); spin_unlock_bh(&msk->join_list_lock); } static bool mptcp_timer_pending(struct sock *sk) { return timer_pending(&inet_csk(sk)->icsk_retransmit_timer); } static void mptcp_reset_timer(struct sock *sk) { struct inet_connection_sock *icsk = inet_csk(sk); unsigned long tout; /* should never be called with mptcp level timer cleared */ tout = READ_ONCE(mptcp_sk(sk)->timer_ival); if (WARN_ON_ONCE(!tout)) tout = TCP_RTO_MIN; sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout); } void mptcp_data_acked(struct sock *sk) { mptcp_reset_timer(sk); if ((!test_bit(MPTCP_SEND_SPACE, &mptcp_sk(sk)->flags) || (inet_sk_state_load(sk) != TCP_ESTABLISHED)) && schedule_work(&mptcp_sk(sk)->work)) sock_hold(sk); } void mptcp_subflow_eof(struct sock *sk) { struct mptcp_sock *msk = mptcp_sk(sk); if (!test_and_set_bit(MPTCP_WORK_EOF, &msk->flags) && schedule_work(&msk->work)) sock_hold(sk); } static void mptcp_check_for_eof(struct mptcp_sock *msk) { struct mptcp_subflow_context *subflow; struct sock *sk = (struct sock *)msk; int receivers = 0; mptcp_for_each_subflow(msk, subflow) receivers += !subflow->rx_eof; if (!receivers && !(sk->sk_shutdown & RCV_SHUTDOWN)) { /* hopefully temporary hack: propagate shutdown status * to msk, when all subflows agree on it */ sk->sk_shutdown |= RCV_SHUTDOWN; smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ set_bit(MPTCP_DATA_READY, &msk->flags); sk->sk_data_ready(sk); } } static bool mptcp_ext_cache_refill(struct mptcp_sock *msk) { const struct sock *sk = (const struct sock *)msk; if (!msk->cached_ext) msk->cached_ext = __skb_ext_alloc(sk->sk_allocation); return !!msk->cached_ext; } static struct sock *mptcp_subflow_recv_lookup(const struct mptcp_sock *msk) { struct mptcp_subflow_context *subflow; struct sock *sk = (struct sock *)msk; sock_owned_by_me(sk); mptcp_for_each_subflow(msk, subflow) { if (subflow->data_avail) return mptcp_subflow_tcp_sock(subflow); } return NULL; } static bool mptcp_skb_can_collapse_to(u64 write_seq, const struct sk_buff *skb, const struct mptcp_ext *mpext) { if (!tcp_skb_can_collapse_to(skb)) return false; /* can collapse only if MPTCP level sequence is in order */ return mpext && mpext->data_seq + mpext->data_len == write_seq; } /* we can append data to the given data frag if: * - there is space available in the backing page_frag * - the data frag tail matches the current page_frag free offset * - the data frag end sequence number matches the current write seq */ static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk, const struct page_frag *pfrag, const struct mptcp_data_frag *df) { return df && pfrag->page == df->page && pfrag->offset == (df->offset + df->data_len) && df->data_seq + df->data_len == msk->write_seq; } static void dfrag_uncharge(struct sock *sk, int len) { sk_mem_uncharge(sk, len); sk_wmem_queued_add(sk, -len); } static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag) { int len = dfrag->data_len + dfrag->overhead; list_del(&dfrag->list); dfrag_uncharge(sk, len); put_page(dfrag->page); } static bool mptcp_is_writeable(struct mptcp_sock *msk) { struct mptcp_subflow_context *subflow; if (!sk_stream_is_writeable((struct sock *)msk)) return false; mptcp_for_each_subflow(msk, subflow) { if (sk_stream_is_writeable(subflow->tcp_sock)) return true; } return false; } static void mptcp_clean_una(struct sock *sk) { struct mptcp_sock *msk = mptcp_sk(sk); struct mptcp_data_frag *dtmp, *dfrag; bool cleaned = false; u64 snd_una; /* on fallback we just need to ignore snd_una, as this is really * plain TCP */ if (__mptcp_check_fallback(msk)) atomic64_set(&msk->snd_una, msk->write_seq); snd_una = atomic64_read(&msk->snd_una); list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) { if (after64(dfrag->data_seq + dfrag->data_len, snd_una)) break; dfrag_clear(sk, dfrag); cleaned = true; } dfrag = mptcp_rtx_head(sk); if (dfrag && after64(snd_una, dfrag->data_seq)) { u64 delta = snd_una - dfrag->data_seq; if (WARN_ON_ONCE(delta > dfrag->data_len)) goto out; dfrag->data_seq += delta; dfrag->offset += delta; dfrag->data_len -= delta; dfrag_uncharge(sk, delta); cleaned = true; } out: if (cleaned) { sk_mem_reclaim_partial(sk); /* Only wake up writers if a subflow is ready */ if (mptcp_is_writeable(msk)) { set_bit(MPTCP_SEND_SPACE, &mptcp_sk(sk)->flags); smp_mb__after_atomic(); /* set SEND_SPACE before sk_stream_write_space clears * NOSPACE */ sk_stream_write_space(sk); } } } /* ensure we get enough memory for the frag hdr, beyond some minimal amount of * data */ static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag) { if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag), pfrag, sk->sk_allocation))) return true; sk->sk_prot->enter_memory_pressure(sk); sk_stream_moderate_sndbuf(sk); return false; } static struct mptcp_data_frag * mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag, int orig_offset) { int offset = ALIGN(orig_offset, sizeof(long)); struct mptcp_data_frag *dfrag; dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset); dfrag->data_len = 0; dfrag->data_seq = msk->write_seq; dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag); dfrag->offset = offset + sizeof(struct mptcp_data_frag); dfrag->page = pfrag->page; return dfrag; } static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk, struct msghdr *msg, struct mptcp_data_frag *dfrag, long *timeo, int *pmss_now, int *ps_goal) { int mss_now, avail_size, size_goal, offset, ret, frag_truesize = 0; bool dfrag_collapsed, can_collapse = false; struct mptcp_sock *msk = mptcp_sk(sk); struct mptcp_ext *mpext = NULL; bool retransmission = !!dfrag; struct sk_buff *skb, *tail; struct page_frag *pfrag; struct page *page; u64 *write_seq; size_t psize; /* use the mptcp page cache so that we can easily move the data * from one substream to another, but do per subflow memory accounting * Note: pfrag is used only !retransmission, but the compiler if * fooled into a warning if we don't init here */ pfrag = sk_page_frag(sk); if (!retransmission) { write_seq = &msk->write_seq; page = pfrag->page; } else { write_seq = &dfrag->data_seq; page = dfrag->page; } /* compute copy limit */ mss_now = tcp_send_mss(ssk, &size_goal, msg->msg_flags); *pmss_now = mss_now; *ps_goal = size_goal; avail_size = size_goal; skb = tcp_write_queue_tail(ssk); if (skb) { mpext = skb_ext_find(skb, SKB_EXT_MPTCP); /* Limit the write to the size available in the * current skb, if any, so that we create at most a new skb. * Explicitly tells TCP internals to avoid collapsing on later * queue management operation, to avoid breaking the ext <-> * SSN association set here */ can_collapse = (size_goal - skb->len > 0) && mptcp_skb_can_collapse_to(*write_seq, skb, mpext); if (!can_collapse) TCP_SKB_CB(skb)->eor = 1; else avail_size = size_goal - skb->len; } if (!retransmission) { /* reuse tail pfrag, if possible, or carve a new one from the * page allocator */ dfrag = mptcp_rtx_tail(sk); offset = pfrag->offset; dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag); if (!dfrag_collapsed) { dfrag = mptcp_carve_data_frag(msk, pfrag, offset); offset = dfrag->offset; frag_truesize = dfrag->overhead; } psize = min_t(size_t, pfrag->size - offset, avail_size); /* Copy to page */ pr_debug("left=%zu", msg_data_left(msg)); psize = copy_page_from_iter(pfrag->page, offset, min_t(size_t, msg_data_left(msg), psize), &msg->msg_iter); pr_debug("left=%zu", msg_data_left(msg)); if (!psize) return -EINVAL; if (!sk_wmem_schedule(sk, psize + dfrag->overhead)) { iov_iter_revert(&msg->msg_iter, psize); return -ENOMEM; } } else { offset = dfrag->offset; psize = min_t(size_t, dfrag->data_len, avail_size); } /* tell the TCP stack to delay the push so that we can safely * access the skb after the sendpages call */ ret = do_tcp_sendpages(ssk, page, offset, psize, msg->msg_flags | MSG_SENDPAGE_NOTLAST | MSG_DONTWAIT); if (ret <= 0) { if (!retransmission) iov_iter_revert(&msg->msg_iter, psize); return ret; } frag_truesize += ret; if (!retransmission) { if (unlikely(ret < psize)) iov_iter_revert(&msg->msg_iter, psize - ret); /* send successful, keep track of sent data for mptcp-level * retransmission */ dfrag->data_len += ret; if (!dfrag_collapsed) { get_page(dfrag->page); list_add_tail(&dfrag->list, &msk->rtx_queue); sk_wmem_queued_add(sk, frag_truesize); } else { sk_wmem_queued_add(sk, ret); } /* charge data on mptcp rtx queue to the master socket * Note: we charge such data both to sk and ssk */ sk->sk_forward_alloc -= frag_truesize; } /* if the tail skb extension is still the cached one, collapsing * really happened. Note: we can't check for 'same skb' as the sk_buff * hdr on tail can be transmitted, freed and re-allocated by the * do_tcp_sendpages() call */ tail = tcp_write_queue_tail(ssk); if (mpext && tail && mpext == skb_ext_find(tail, SKB_EXT_MPTCP)) { WARN_ON_ONCE(!can_collapse); mpext->data_len += ret; goto out; } skb = tcp_write_queue_tail(ssk); mpext = __skb_ext_set(skb, SKB_EXT_MPTCP, msk->cached_ext); msk->cached_ext = NULL; memset(mpext, 0, sizeof(*mpext)); mpext->data_seq = *write_seq; mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq; mpext->data_len = ret; mpext->use_map = 1; mpext->dsn64 = 1; pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d", mpext->data_seq, mpext->subflow_seq, mpext->data_len, mpext->dsn64); out: if (!retransmission) pfrag->offset += frag_truesize; WRITE_ONCE(*write_seq, *write_seq + ret); mptcp_subflow_ctx(ssk)->rel_write_seq += ret; return ret; } static void mptcp_nospace(struct mptcp_sock *msk) { struct mptcp_subflow_context *subflow; clear_bit(MPTCP_SEND_SPACE, &msk->flags); smp_mb__after_atomic(); /* msk->flags is changed by write_space cb */ mptcp_for_each_subflow(msk, subflow) { struct sock *ssk = mptcp_subflow_tcp_sock(subflow); struct socket *sock = READ_ONCE(ssk->sk_socket); /* enables ssk->write_space() callbacks */ if (sock) set_bit(SOCK_NOSPACE, &sock->flags); } } static bool mptcp_subflow_active(struct mptcp_subflow_context *subflow) { struct sock *ssk = mptcp_subflow_tcp_sock(subflow); /* can't send if JOIN hasn't completed yet (i.e. is usable for mptcp) */ if (subflow->request_join && !subflow->fully_established) return false; /* only send if our side has not closed yet */ return ((1 << ssk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)); } #define MPTCP_SEND_BURST_SIZE ((1 << 16) - \ sizeof(struct tcphdr) - \ MAX_TCP_OPTION_SPACE - \ sizeof(struct ipv6hdr) - \ sizeof(struct frag_hdr)) struct subflow_send_info { struct sock *ssk; u64 ratio; }; static struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk, u32 *sndbuf) { struct subflow_send_info send_info[2]; struct mptcp_subflow_context *subflow; int i, nr_active = 0; struct sock *ssk; u64 ratio; u32 pace; sock_owned_by_me((struct sock *)msk); *sndbuf = 0; if (!mptcp_ext_cache_refill(msk)) return NULL; if (__mptcp_check_fallback(msk)) { if (!msk->first) return NULL; *sndbuf = msk->first->sk_sndbuf; return sk_stream_memory_free(msk->first) ? msk->first : NULL; } /* re-use last subflow, if the burst allow that */ if (msk->last_snd && msk->snd_burst > 0 && sk_stream_memory_free(msk->last_snd) && mptcp_subflow_active(mptcp_subflow_ctx(msk->last_snd))) { mptcp_for_each_subflow(msk, subflow) { ssk = mptcp_subflow_tcp_sock(subflow); *sndbuf = max(tcp_sk(ssk)->snd_wnd, *sndbuf); } return msk->last_snd; } /* pick the subflow with the lower wmem/wspace ratio */ for (i = 0; i < 2; ++i) { send_info[i].ssk = NULL; send_info[i].ratio = -1; } mptcp_for_each_subflow(msk, subflow) { ssk = mptcp_subflow_tcp_sock(subflow); if (!mptcp_subflow_active(subflow)) continue; nr_active += !subflow->backup; *sndbuf = max(tcp_sk(ssk)->snd_wnd, *sndbuf); if (!sk_stream_memory_free(subflow->tcp_sock)) continue; pace = READ_ONCE(ssk->sk_pacing_rate); if (!pace) continue; ratio = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, pace); if (ratio < send_info[subflow->backup].ratio) { send_info[subflow->backup].ssk = ssk; send_info[subflow->backup].ratio = ratio; } } pr_debug("msk=%p nr_active=%d ssk=%p:%lld backup=%p:%lld", msk, nr_active, send_info[0].ssk, send_info[0].ratio, send_info[1].ssk, send_info[1].ratio); /* pick the best backup if no other subflow is active */ if (!nr_active) send_info[0].ssk = send_info[1].ssk; if (send_info[0].ssk) { msk->last_snd = send_info[0].ssk; msk->snd_burst = min_t(int, MPTCP_SEND_BURST_SIZE, sk_stream_wspace(msk->last_snd)); return msk->last_snd; } return NULL; } static void ssk_check_wmem(struct mptcp_sock *msk) { if (unlikely(!mptcp_is_writeable(msk))) mptcp_nospace(msk); } static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) { int mss_now = 0, size_goal = 0, ret = 0; struct mptcp_sock *msk = mptcp_sk(sk); struct page_frag *pfrag; size_t copied = 0; struct sock *ssk; u32 sndbuf; bool tx_ok; long timeo; if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL)) return -EOPNOTSUPP; lock_sock(sk); timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) { ret = sk_stream_wait_connect(sk, &timeo); if (ret) goto out; } pfrag = sk_page_frag(sk); restart: mptcp_clean_una(sk); if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) { ret = -EPIPE; goto out; } __mptcp_flush_join_list(msk); ssk = mptcp_subflow_get_send(msk, &sndbuf); while (!sk_stream_memory_free(sk) || !ssk || !mptcp_page_frag_refill(ssk, pfrag)) { if (ssk) { /* make sure retransmit timer is * running before we wait for memory. * * The retransmit timer might be needed * to make the peer send an up-to-date * MPTCP Ack. */ mptcp_set_timeout(sk, ssk); if (!mptcp_timer_pending(sk)) mptcp_reset_timer(sk); } mptcp_nospace(msk); ret = sk_stream_wait_memory(sk, &timeo); if (ret) goto out; mptcp_clean_una(sk); ssk = mptcp_subflow_get_send(msk, &sndbuf); if (list_empty(&msk->conn_list)) { ret = -ENOTCONN; goto out; } } /* do auto tuning */ if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK) && sndbuf > READ_ONCE(sk->sk_sndbuf)) WRITE_ONCE(sk->sk_sndbuf, sndbuf); pr_debug("conn_list->subflow=%p", ssk); lock_sock(ssk); tx_ok = msg_data_left(msg); while (tx_ok) { ret = mptcp_sendmsg_frag(sk, ssk, msg, NULL, &timeo, &mss_now, &size_goal); if (ret < 0) { if (ret == -EAGAIN && timeo > 0) { mptcp_set_timeout(sk, ssk); release_sock(ssk); goto restart; } break; } /* burst can be negative, we will try move to the next subflow * at selection time, if possible. */ msk->snd_burst -= ret; copied += ret; tx_ok = msg_data_left(msg); if (!tx_ok) break; if (!sk_stream_memory_free(ssk) || !mptcp_page_frag_refill(ssk, pfrag) || !mptcp_ext_cache_refill(msk)) { tcp_push(ssk, msg->msg_flags, mss_now, tcp_sk(ssk)->nonagle, size_goal); mptcp_set_timeout(sk, ssk); release_sock(ssk); goto restart; } /* memory is charged to mptcp level socket as well, i.e. * if msg is very large, mptcp socket may run out of buffer * space. mptcp_clean_una() will release data that has * been acked at mptcp level in the mean time, so there is * a good chance we can continue sending data right away. * * Normally, when the tcp subflow can accept more data, then * so can the MPTCP socket. However, we need to cope with * peers that might lag behind in their MPTCP-level * acknowledgements, i.e. data might have been acked at * tcp level only. So, we must also check the MPTCP socket * limits before we send more data. */ if (unlikely(!sk_stream_memory_free(sk))) { tcp_push(ssk, msg->msg_flags, mss_now, tcp_sk(ssk)->nonagle, size_goal); mptcp_clean_una(sk); if (!sk_stream_memory_free(sk)) { /* can't send more for now, need to wait for * MPTCP-level ACKs from peer. * * Wakeup will happen via mptcp_clean_una(). */ mptcp_set_timeout(sk, ssk); release_sock(ssk); goto restart; } } } mptcp_set_timeout(sk, ssk); if (copied) { tcp_push(ssk, msg->msg_flags, mss_now, tcp_sk(ssk)->nonagle, size_goal); /* start the timer, if it's not pending */ if (!mptcp_timer_pending(sk)) mptcp_reset_timer(sk); } release_sock(ssk); out: ssk_check_wmem(msk); release_sock(sk); return copied ? : ret; } static void mptcp_wait_data(struct sock *sk, long *timeo) { DEFINE_WAIT_FUNC(wait, woken_wake_function); struct mptcp_sock *msk = mptcp_sk(sk); add_wait_queue(sk_sleep(sk), &wait); sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); sk_wait_event(sk, timeo, test_and_clear_bit(MPTCP_DATA_READY, &msk->flags), &wait); sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); remove_wait_queue(sk_sleep(sk), &wait); } static int __mptcp_recvmsg_mskq(struct mptcp_sock *msk, struct msghdr *msg, size_t len) { struct sock *sk = (struct sock *)msk; struct sk_buff *skb; int copied = 0; while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { u32 offset = MPTCP_SKB_CB(skb)->offset; u32 data_len = skb->len - offset; u32 count = min_t(size_t, len - copied, data_len); int err; err = skb_copy_datagram_msg(skb, offset, msg, count); if (unlikely(err < 0)) { if (!copied) return err; break; } copied += count; if (count < data_len) { MPTCP_SKB_CB(skb)->offset += count; break; } __skb_unlink(skb, &sk->sk_receive_queue); __kfree_skb(skb); if (copied >= len) break; } return copied; } /* receive buffer autotuning. See tcp_rcv_space_adjust for more information. * * Only difference: Use highest rtt estimate of the subflows in use. */ static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied) { struct mptcp_subflow_context *subflow; struct sock *sk = (struct sock *)msk; u32 time, advmss = 1; u64 rtt_us, mstamp; sock_owned_by_me(sk); if (copied <= 0) return; msk->rcvq_space.copied += copied; mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC); time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time); rtt_us = msk->rcvq_space.rtt_us; if (rtt_us && time < (rtt_us >> 3)) return; rtt_us = 0; mptcp_for_each_subflow(msk, subflow) { const struct tcp_sock *tp; u64 sf_rtt_us; u32 sf_advmss; tp = tcp_sk(mptcp_subflow_tcp_sock(subflow)); sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us); sf_advmss = READ_ONCE(tp->advmss); rtt_us = max(sf_rtt_us, rtt_us); advmss = max(sf_advmss, advmss); } msk->rcvq_space.rtt_us = rtt_us; if (time < (rtt_us >> 3) || rtt_us == 0) return; if (msk->rcvq_space.copied <= msk->rcvq_space.space) goto new_measure; if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) && !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { int rcvmem, rcvbuf; u64 rcvwin, grow; rcvwin = ((u64)msk->rcvq_space.copied << 1) + 16 * advmss; grow = rcvwin * (msk->rcvq_space.copied - msk->rcvq_space.space); do_div(grow, msk->rcvq_space.space); rcvwin += (grow << 1); rcvmem = SKB_TRUESIZE(advmss + MAX_TCP_HEADER); while (tcp_win_from_space(sk, rcvmem) < advmss) rcvmem += 128; do_div(rcvwin, advmss); rcvbuf = min_t(u64, rcvwin * rcvmem, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])); if (rcvbuf > sk->sk_rcvbuf) { u32 window_clamp; window_clamp = tcp_win_from_space(sk, rcvbuf); WRITE_ONCE(sk->sk_rcvbuf, rcvbuf); /* Make subflows follow along. If we do not do this, we * get drops at subflow level if skbs can't be moved to * the mptcp rx queue fast enough (announced rcv_win can * exceed ssk->sk_rcvbuf). */ mptcp_for_each_subflow(msk, subflow) { struct sock *ssk; bool slow; ssk = mptcp_subflow_tcp_sock(subflow); slow = lock_sock_fast(ssk); WRITE_ONCE(ssk->sk_rcvbuf, rcvbuf); tcp_sk(ssk)->window_clamp = window_clamp; tcp_cleanup_rbuf(ssk, 1); unlock_sock_fast(ssk, slow); } } } msk->rcvq_space.space = msk->rcvq_space.copied; new_measure: msk->rcvq_space.copied = 0; msk->rcvq_space.time = mstamp; } static bool __mptcp_move_skbs(struct mptcp_sock *msk) { unsigned int moved = 0; bool done; /* avoid looping forever below on racing close */ if (((struct sock *)msk)->sk_state == TCP_CLOSE) return false; __mptcp_flush_join_list(msk); do { struct sock *ssk = mptcp_subflow_recv_lookup(msk); if (!ssk) break; lock_sock(ssk); done = __mptcp_move_skbs_from_subflow(msk, ssk, &moved); release_sock(ssk); } while (!done); if (mptcp_ofo_queue(msk) || moved > 0) { mptcp_check_data_fin((struct sock *)msk); return true; } return false; } static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock, int flags, int *addr_len) { struct mptcp_sock *msk = mptcp_sk(sk); int copied = 0; int target; long timeo; if (msg->msg_flags & ~(MSG_WAITALL | MSG_DONTWAIT)) return -EOPNOTSUPP; lock_sock(sk); timeo = sock_rcvtimeo(sk, nonblock); len = min_t(size_t, len, INT_MAX); target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); __mptcp_flush_join_list(msk); while (len > (size_t)copied) { int bytes_read; bytes_read = __mptcp_recvmsg_mskq(msk, msg, len - copied); if (unlikely(bytes_read < 0)) { if (!copied) copied = bytes_read; goto out_err; } copied += bytes_read; if (skb_queue_empty(&sk->sk_receive_queue) && __mptcp_move_skbs(msk)) continue; /* only the master socket status is relevant here. The exit * conditions mirror closely tcp_recvmsg() */ if (copied >= target) break; if (copied) { if (sk->sk_err || sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN) || !timeo || signal_pending(current)) break; } else { if (sk->sk_err) { copied = sock_error(sk); break; } if (test_and_clear_bit(MPTCP_WORK_EOF, &msk->flags)) mptcp_check_for_eof(msk); if (sk->sk_shutdown & RCV_SHUTDOWN) break; if (sk->sk_state == TCP_CLOSE) { copied = -ENOTCONN; break; } if (!timeo) { copied = -EAGAIN; break; } if (signal_pending(current)) { copied = sock_intr_errno(timeo); break; } } pr_debug("block timeout %ld", timeo); mptcp_wait_data(sk, &timeo); } if (skb_queue_empty(&sk->sk_receive_queue)) { /* entire backlog drained, clear DATA_READY. */ clear_bit(MPTCP_DATA_READY, &msk->flags); /* .. race-breaker: ssk might have gotten new data * after last __mptcp_move_skbs() returned false. */ if (unlikely(__mptcp_move_skbs(msk))) set_bit(MPTCP_DATA_READY, &msk->flags); } else if (unlikely(!test_bit(MPTCP_DATA_READY, &msk->flags))) { /* data to read but mptcp_wait_data() cleared DATA_READY */ set_bit(MPTCP_DATA_READY, &msk->flags); } out_err: pr_debug("msk=%p data_ready=%d rx queue empty=%d copied=%d", msk, test_bit(MPTCP_DATA_READY, &msk->flags), skb_queue_empty(&sk->sk_receive_queue), copied); mptcp_rcv_space_adjust(msk, copied); release_sock(sk); return copied; } static void mptcp_retransmit_handler(struct sock *sk) { struct mptcp_sock *msk = mptcp_sk(sk); if (atomic64_read(&msk->snd_una) == READ_ONCE(msk->write_seq)) { mptcp_stop_timer(sk); } else { set_bit(MPTCP_WORK_RTX, &msk->flags); if (schedule_work(&msk->work)) sock_hold(sk); } } static void mptcp_retransmit_timer(struct timer_list *t) { struct inet_connection_sock *icsk = from_timer(icsk, t, icsk_retransmit_timer); struct sock *sk = &icsk->icsk_inet.sk; bh_lock_sock(sk); if (!sock_owned_by_user(sk)) { mptcp_retransmit_handler(sk); } else { /* delegate our work to tcp_release_cb() */ if (!test_and_set_bit(TCP_WRITE_TIMER_DEFERRED, &sk->sk_tsq_flags)) sock_hold(sk); } bh_unlock_sock(sk); sock_put(sk); } /* Find an idle subflow. Return NULL if there is unacked data at tcp * level. * * A backup subflow is returned only if that is the only kind available. */ static struct sock *mptcp_subflow_get_retrans(const struct mptcp_sock *msk) { struct mptcp_subflow_context *subflow; struct sock *backup = NULL; sock_owned_by_me((const struct sock *)msk); if (__mptcp_check_fallback(msk)) return msk->first; mptcp_for_each_subflow(msk, subflow) { struct sock *ssk = mptcp_subflow_tcp_sock(subflow); if (!mptcp_subflow_active(subflow)) continue; /* still data outstanding at TCP level? Don't retransmit. */ if (!tcp_write_queue_empty(ssk)) { if (inet_csk(ssk)->icsk_ca_state >= TCP_CA_Loss) continue; return NULL; } if (subflow->backup) { if (!backup) backup = ssk; continue; } return ssk; } return backup; } /* subflow sockets can be either outgoing (connect) or incoming * (accept). * * Outgoing subflows use in-kernel sockets. * Incoming subflows do not have their own 'struct socket' allocated, * so we need to use tcp_close() after detaching them from the mptcp * parent socket. */ void __mptcp_close_ssk(struct sock *sk, struct sock *ssk, struct mptcp_subflow_context *subflow, long timeout) { struct socket *sock = READ_ONCE(ssk->sk_socket); list_del(&subflow->node); if (sock && sock != sk->sk_socket) { /* outgoing subflow */ sock_release(sock); } else { /* incoming subflow */ tcp_close(ssk, timeout); } } static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu) { return 0; } static void pm_work(struct mptcp_sock *msk) { struct mptcp_pm_data *pm = &msk->pm; spin_lock_bh(&msk->pm.lock); pr_debug("msk=%p status=%x", msk, pm->status); if (pm->status & BIT(MPTCP_PM_ADD_ADDR_RECEIVED)) { pm->status &= ~BIT(MPTCP_PM_ADD_ADDR_RECEIVED); mptcp_pm_nl_add_addr_received(msk); } if (pm->status & BIT(MPTCP_PM_RM_ADDR_RECEIVED)) { pm->status &= ~BIT(MPTCP_PM_RM_ADDR_RECEIVED); mptcp_pm_nl_rm_addr_received(msk); } if (pm->status & BIT(MPTCP_PM_ESTABLISHED)) { pm->status &= ~BIT(MPTCP_PM_ESTABLISHED); mptcp_pm_nl_fully_established(msk); } if (pm->status & BIT(MPTCP_PM_SUBFLOW_ESTABLISHED)) { pm->status &= ~BIT(MPTCP_PM_SUBFLOW_ESTABLISHED); mptcp_pm_nl_subflow_established(msk); } spin_unlock_bh(&msk->pm.lock); } static void __mptcp_close_subflow(struct mptcp_sock *msk) { struct mptcp_subflow_context *subflow, *tmp; list_for_each_entry_safe(subflow, tmp, &msk->conn_list, node) { struct sock *ssk = mptcp_subflow_tcp_sock(subflow); if (inet_sk_state_load(ssk) != TCP_CLOSE) continue; __mptcp_close_ssk((struct sock *)msk, ssk, subflow, 0); } } static void mptcp_worker(struct work_struct *work) { struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work); struct sock *ssk, *sk = &msk->sk.icsk_inet.sk; int orig_len, orig_offset, mss_now = 0, size_goal = 0; struct mptcp_data_frag *dfrag; u64 orig_write_seq; size_t copied = 0; struct msghdr msg = { .msg_flags = MSG_DONTWAIT, }; long timeo = 0; lock_sock(sk); mptcp_clean_una(sk); mptcp_check_data_fin_ack(sk); __mptcp_flush_join_list(msk); if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags)) __mptcp_close_subflow(msk); __mptcp_move_skbs(msk); if (msk->pm.status) pm_work(msk); if (test_and_clear_bit(MPTCP_WORK_EOF, &msk->flags)) mptcp_check_for_eof(msk); mptcp_check_data_fin(sk); if (!test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags)) goto unlock; dfrag = mptcp_rtx_head(sk); if (!dfrag) goto unlock; if (!mptcp_ext_cache_refill(msk)) goto reset_unlock; ssk = mptcp_subflow_get_retrans(msk); if (!ssk) goto reset_unlock; lock_sock(ssk); orig_len = dfrag->data_len; orig_offset = dfrag->offset; orig_write_seq = dfrag->data_seq; while (dfrag->data_len > 0) { int ret = mptcp_sendmsg_frag(sk, ssk, &msg, dfrag, &timeo, &mss_now, &size_goal); if (ret < 0) break; MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS); copied += ret; dfrag->data_len -= ret; dfrag->offset += ret; if (!mptcp_ext_cache_refill(msk)) break; } if (copied) tcp_push(ssk, msg.msg_flags, mss_now, tcp_sk(ssk)->nonagle, size_goal); dfrag->data_seq = orig_write_seq; dfrag->offset = orig_offset; dfrag->data_len = orig_len; mptcp_set_timeout(sk, ssk); release_sock(ssk); reset_unlock: if (!mptcp_timer_pending(sk)) mptcp_reset_timer(sk); unlock: release_sock(sk); sock_put(sk); } static int __mptcp_init_sock(struct sock *sk) { struct mptcp_sock *msk = mptcp_sk(sk); spin_lock_init(&msk->join_list_lock); INIT_LIST_HEAD(&msk->conn_list); INIT_LIST_HEAD(&msk->join_list); INIT_LIST_HEAD(&msk->rtx_queue); __set_bit(MPTCP_SEND_SPACE, &msk->flags); INIT_WORK(&msk->work, mptcp_worker); msk->out_of_order_queue = RB_ROOT; msk->first = NULL; inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss; mptcp_pm_data_init(msk); /* re-use the csk retrans timer for MPTCP-level retrans */ timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0); return 0; } static int mptcp_init_sock(struct sock *sk) { struct net *net = sock_net(sk); int ret; ret = __mptcp_init_sock(sk); if (ret) return ret; if (!mptcp_is_enabled(net)) return -ENOPROTOOPT; if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net)) return -ENOMEM; ret = __mptcp_socket_create(mptcp_sk(sk)); if (ret) return ret; sk_sockets_allocated_inc(sk); sk->sk_rcvbuf = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1]); sk->sk_sndbuf = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1]); return 0; } static void __mptcp_clear_xmit(struct sock *sk) { struct mptcp_sock *msk = mptcp_sk(sk); struct mptcp_data_frag *dtmp, *dfrag; sk_stop_timer(sk, &msk->sk.icsk_retransmit_timer); list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) dfrag_clear(sk, dfrag); } static void mptcp_cancel_work(struct sock *sk) { struct mptcp_sock *msk = mptcp_sk(sk); if (cancel_work_sync(&msk->work)) sock_put(sk); } void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how) { lock_sock(ssk); switch (ssk->sk_state) { case TCP_LISTEN: if (!(how & RCV_SHUTDOWN)) break; fallthrough; case TCP_SYN_SENT: tcp_disconnect(ssk, O_NONBLOCK); break; default: if (__mptcp_check_fallback(mptcp_sk(sk))) { pr_debug("Fallback"); ssk->sk_shutdown |= how; tcp_shutdown(ssk, how); } else { pr_debug("Sending DATA_FIN on subflow %p", ssk); mptcp_set_timeout(sk, ssk); tcp_send_ack(ssk); } break; } release_sock(ssk); } static const unsigned char new_state[16] = { /* current state: new state: action: */ [0 /* (Invalid) */] = TCP_CLOSE, [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, [TCP_SYN_SENT] = TCP_CLOSE, [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, [TCP_TIME_WAIT] = TCP_CLOSE, /* should not happen ! */ [TCP_CLOSE] = TCP_CLOSE, [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, [TCP_LAST_ACK] = TCP_LAST_ACK, [TCP_LISTEN] = TCP_CLOSE, [TCP_CLOSING] = TCP_CLOSING, [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ }; static int mptcp_close_state(struct sock *sk) { int next = (int)new_state[sk->sk_state]; int ns = next & TCP_STATE_MASK; inet_sk_state_store(sk, ns); return next & TCP_ACTION_FIN; } static void mptcp_close(struct sock *sk, long timeout) { struct mptcp_subflow_context *subflow, *tmp; struct mptcp_sock *msk = mptcp_sk(sk); LIST_HEAD(conn_list); lock_sock(sk); sk->sk_shutdown = SHUTDOWN_MASK; if (sk->sk_state == TCP_LISTEN) { inet_sk_state_store(sk, TCP_CLOSE); goto cleanup; } else if (sk->sk_state == TCP_CLOSE) { goto cleanup; } if (__mptcp_check_fallback(msk)) { goto update_state; } else if (mptcp_close_state(sk)) { pr_debug("Sending DATA_FIN sk=%p", sk); WRITE_ONCE(msk->write_seq, msk->write_seq + 1); WRITE_ONCE(msk->snd_data_fin_enable, 1); mptcp_for_each_subflow(msk, subflow) { struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); mptcp_subflow_shutdown(sk, tcp_sk, SHUTDOWN_MASK); } } sk_stream_wait_close(sk, timeout); update_state: inet_sk_state_store(sk, TCP_CLOSE); cleanup: /* be sure to always acquire the join list lock, to sync vs * mptcp_finish_join(). */ spin_lock_bh(&msk->join_list_lock); list_splice_tail_init(&msk->join_list, &msk->conn_list); spin_unlock_bh(&msk->join_list_lock); list_splice_init(&msk->conn_list, &conn_list); __mptcp_clear_xmit(sk); release_sock(sk); list_for_each_entry_safe(subflow, tmp, &conn_list, node) { struct sock *ssk = mptcp_subflow_tcp_sock(subflow); __mptcp_close_ssk(sk, ssk, subflow, timeout); } mptcp_cancel_work(sk); __skb_queue_purge(&sk->sk_receive_queue); sk_common_release(sk); } static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk) { #if IS_ENABLED(CONFIG_MPTCP_IPV6) const struct ipv6_pinfo *ssk6 = inet6_sk(ssk); struct ipv6_pinfo *msk6 = inet6_sk(msk); msk->sk_v6_daddr = ssk->sk_v6_daddr; msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr; if (msk6 && ssk6) { msk6->saddr = ssk6->saddr; msk6->flow_label = ssk6->flow_label; } #endif inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num; inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport; inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport; inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr; inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr; inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr; } static int mptcp_disconnect(struct sock *sk, int flags) { /* Should never be called. * inet_stream_connect() calls ->disconnect, but that * refers to the subflow socket, not the mptcp one. */ WARN_ON_ONCE(1); return 0; } #if IS_ENABLED(CONFIG_MPTCP_IPV6) static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk) { unsigned int offset = sizeof(struct mptcp6_sock) - sizeof(struct ipv6_pinfo); return (struct ipv6_pinfo *)(((u8 *)sk) + offset); } #endif struct sock *mptcp_sk_clone(const struct sock *sk, const struct mptcp_options_received *mp_opt, struct request_sock *req) { struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req); struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC); struct mptcp_sock *msk; u64 ack_seq; if (!nsk) return NULL; #if IS_ENABLED(CONFIG_MPTCP_IPV6) if (nsk->sk_family == AF_INET6) inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk); #endif __mptcp_init_sock(nsk); msk = mptcp_sk(nsk); msk->local_key = subflow_req->local_key; msk->token = subflow_req->token; msk->subflow = NULL; WRITE_ONCE(msk->fully_established, false); msk->write_seq = subflow_req->idsn + 1; atomic64_set(&msk->snd_una, msk->write_seq); if (mp_opt->mp_capable) { msk->can_ack = true; msk->remote_key = mp_opt->sndr_key; mptcp_crypto_key_sha(msk->remote_key, NULL, &ack_seq); ack_seq++; WRITE_ONCE(msk->ack_seq, ack_seq); } sock_reset_flag(nsk, SOCK_RCU_FREE); /* will be fully established after successful MPC subflow creation */ inet_sk_state_store(nsk, TCP_SYN_RECV); security_inet_csk_clone(nsk, req); bh_unlock_sock(nsk); /* keep a single reference */ __sock_put(nsk); return nsk; } void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk) { const struct tcp_sock *tp = tcp_sk(ssk); msk->rcvq_space.copied = 0; msk->rcvq_space.rtt_us = 0; msk->rcvq_space.time = tp->tcp_mstamp; /* initial rcv_space offering made to peer */ msk->rcvq_space.space = min_t(u32, tp->rcv_wnd, TCP_INIT_CWND * tp->advmss); if (msk->rcvq_space.space == 0) msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT; } static struct sock *mptcp_accept(struct sock *sk, int flags, int *err, bool kern) { struct mptcp_sock *msk = mptcp_sk(sk); struct socket *listener; struct sock *newsk; listener = __mptcp_nmpc_socket(msk); if (WARN_ON_ONCE(!listener)) { *err = -EINVAL; return NULL; } pr_debug("msk=%p, listener=%p", msk, mptcp_subflow_ctx(listener->sk)); newsk = inet_csk_accept(listener->sk, flags, err, kern); if (!newsk) return NULL; pr_debug("msk=%p, subflow is mptcp=%d", msk, sk_is_mptcp(newsk)); if (sk_is_mptcp(newsk)) { struct mptcp_subflow_context *subflow; struct sock *new_mptcp_sock; struct sock *ssk = newsk; subflow = mptcp_subflow_ctx(newsk); new_mptcp_sock = subflow->conn; /* is_mptcp should be false if subflow->conn is missing, see * subflow_syn_recv_sock() */ if (WARN_ON_ONCE(!new_mptcp_sock)) { tcp_sk(newsk)->is_mptcp = 0; goto out; } /* acquire the 2nd reference for the owning socket */ sock_hold(new_mptcp_sock); local_bh_disable(); bh_lock_sock(new_mptcp_sock); msk = mptcp_sk(new_mptcp_sock); msk->first = newsk; newsk = new_mptcp_sock; mptcp_copy_inaddrs(newsk, ssk); list_add(&subflow->node, &msk->conn_list); mptcp_rcv_space_init(msk, ssk); bh_unlock_sock(new_mptcp_sock); __MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEPASSIVEACK); local_bh_enable(); } else { MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEPASSIVEFALLBACK); } out: newsk->sk_kern_sock = kern; return newsk; } void mptcp_destroy_common(struct mptcp_sock *msk) { skb_rbtree_purge(&msk->out_of_order_queue); mptcp_token_destroy(msk); mptcp_pm_free_anno_list(msk); } static void mptcp_destroy(struct sock *sk) { struct mptcp_sock *msk = mptcp_sk(sk); if (msk->cached_ext) __skb_ext_put(msk->cached_ext); mptcp_destroy_common(msk); sk_sockets_allocated_dec(sk); } static int mptcp_setsockopt_sol_socket(struct mptcp_sock *msk, int optname, sockptr_t optval, unsigned int optlen) { struct sock *sk = (struct sock *)msk; struct socket *ssock; int ret; switch (optname) { case SO_REUSEPORT: case SO_REUSEADDR: lock_sock(sk); ssock = __mptcp_nmpc_socket(msk); if (!ssock) { release_sock(sk); return -EINVAL; } ret = sock_setsockopt(ssock, SOL_SOCKET, optname, optval, optlen); if (ret == 0) { if (optname == SO_REUSEPORT) sk->sk_reuseport = ssock->sk->sk_reuseport; else if (optname == SO_REUSEADDR) sk->sk_reuse = ssock->sk->sk_reuse; } release_sock(sk); return ret; } return sock_setsockopt(sk->sk_socket, SOL_SOCKET, optname, optval, optlen); } static int mptcp_setsockopt_v6(struct mptcp_sock *msk, int optname, sockptr_t optval, unsigned int optlen) { struct sock *sk = (struct sock *)msk; int ret = -EOPNOTSUPP; struct socket *ssock; switch (optname) { case IPV6_V6ONLY: lock_sock(sk); ssock = __mptcp_nmpc_socket(msk); if (!ssock) { release_sock(sk); return -EINVAL; } ret = tcp_setsockopt(ssock->sk, SOL_IPV6, optname, optval, optlen); if (ret == 0) sk->sk_ipv6only = ssock->sk->sk_ipv6only; release_sock(sk); break; } return ret; } static bool mptcp_unsupported(int level, int optname) { if (level == SOL_IP) { switch (optname) { case IP_ADD_MEMBERSHIP: case IP_ADD_SOURCE_MEMBERSHIP: case IP_DROP_MEMBERSHIP: case IP_DROP_SOURCE_MEMBERSHIP: case IP_BLOCK_SOURCE: case IP_UNBLOCK_SOURCE: case MCAST_JOIN_GROUP: case MCAST_LEAVE_GROUP: case MCAST_JOIN_SOURCE_GROUP: case MCAST_LEAVE_SOURCE_GROUP: case MCAST_BLOCK_SOURCE: case MCAST_UNBLOCK_SOURCE: case MCAST_MSFILTER: return true; } return false; } if (level == SOL_IPV6) { switch (optname) { case IPV6_ADDRFORM: case IPV6_ADD_MEMBERSHIP: case IPV6_DROP_MEMBERSHIP: case IPV6_JOIN_ANYCAST: case IPV6_LEAVE_ANYCAST: case MCAST_JOIN_GROUP: case MCAST_LEAVE_GROUP: case MCAST_JOIN_SOURCE_GROUP: case MCAST_LEAVE_SOURCE_GROUP: case MCAST_BLOCK_SOURCE: case MCAST_UNBLOCK_SOURCE: case MCAST_MSFILTER: return true; } return false; } return false; } static int mptcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, unsigned int optlen) { struct mptcp_sock *msk = mptcp_sk(sk); struct sock *ssk; pr_debug("msk=%p", msk); if (mptcp_unsupported(level, optname)) return -ENOPROTOOPT; if (level == SOL_SOCKET) return mptcp_setsockopt_sol_socket(msk, optname, optval, optlen); /* @@ the meaning of setsockopt() when the socket is connected and * there are multiple subflows is not yet defined. It is up to the * MPTCP-level socket to configure the subflows until the subflow * is in TCP fallback, when TCP socket options are passed through * to the one remaining subflow. */ lock_sock(sk); ssk = __mptcp_tcp_fallback(msk); release_sock(sk); if (ssk) return tcp_setsockopt(ssk, level, optname, optval, optlen); if (level == SOL_IPV6) return mptcp_setsockopt_v6(msk, optname, optval, optlen); return -EOPNOTSUPP; } static int mptcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, int __user *option) { struct mptcp_sock *msk = mptcp_sk(sk); struct sock *ssk; pr_debug("msk=%p", msk); /* @@ the meaning of setsockopt() when the socket is connected and * there are multiple subflows is not yet defined. It is up to the * MPTCP-level socket to configure the subflows until the subflow * is in TCP fallback, when socket options are passed through * to the one remaining subflow. */ lock_sock(sk); ssk = __mptcp_tcp_fallback(msk); release_sock(sk); if (ssk) return tcp_getsockopt(ssk, level, optname, optval, option); return -EOPNOTSUPP; } #define MPTCP_DEFERRED_ALL (TCPF_DELACK_TIMER_DEFERRED | \ TCPF_WRITE_TIMER_DEFERRED) /* this is very alike tcp_release_cb() but we must handle differently a * different set of events */ static void mptcp_release_cb(struct sock *sk) { unsigned long flags, nflags; do { flags = sk->sk_tsq_flags; if (!(flags & MPTCP_DEFERRED_ALL)) return; nflags = flags & ~MPTCP_DEFERRED_ALL; } while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags); sock_release_ownership(sk); if (flags & TCPF_DELACK_TIMER_DEFERRED) { struct mptcp_sock *msk = mptcp_sk(sk); struct sock *ssk; ssk = mptcp_subflow_recv_lookup(msk); if (!ssk || !schedule_work(&msk->work)) __sock_put(sk); } if (flags & TCPF_WRITE_TIMER_DEFERRED) { mptcp_retransmit_handler(sk); __sock_put(sk); } } static int mptcp_hash(struct sock *sk) { /* should never be called, * we hash the TCP subflows not the master socket */ WARN_ON_ONCE(1); return 0; } static void mptcp_unhash(struct sock *sk) { /* called from sk_common_release(), but nothing to do here */ } static int mptcp_get_port(struct sock *sk, unsigned short snum) { struct mptcp_sock *msk = mptcp_sk(sk); struct socket *ssock; ssock = __mptcp_nmpc_socket(msk); pr_debug("msk=%p, subflow=%p", msk, ssock); if (WARN_ON_ONCE(!ssock)) return -EINVAL; return inet_csk_get_port(ssock->sk, snum); } void mptcp_finish_connect(struct sock *ssk) { struct mptcp_subflow_context *subflow; struct mptcp_sock *msk; struct sock *sk; u64 ack_seq; subflow = mptcp_subflow_ctx(ssk); sk = subflow->conn; msk = mptcp_sk(sk); pr_debug("msk=%p, token=%u", sk, subflow->token); mptcp_crypto_key_sha(subflow->remote_key, NULL, &ack_seq); ack_seq++; subflow->map_seq = ack_seq; subflow->map_subflow_seq = 1; /* the socket is not connected yet, no msk/subflow ops can access/race * accessing the field below */ WRITE_ONCE(msk->remote_key, subflow->remote_key); WRITE_ONCE(msk->local_key, subflow->local_key); WRITE_ONCE(msk->write_seq, subflow->idsn + 1); WRITE_ONCE(msk->ack_seq, ack_seq); WRITE_ONCE(msk->can_ack, 1); atomic64_set(&msk->snd_una, msk->write_seq); mptcp_pm_new_connection(msk, 0); mptcp_rcv_space_init(msk, ssk); } static void mptcp_sock_graft(struct sock *sk, struct socket *parent) { write_lock_bh(&sk->sk_callback_lock); rcu_assign_pointer(sk->sk_wq, &parent->wq); sk_set_socket(sk, parent); sk->sk_uid = SOCK_INODE(parent)->i_uid; write_unlock_bh(&sk->sk_callback_lock); } bool mptcp_finish_join(struct sock *sk) { struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(sk); struct mptcp_sock *msk = mptcp_sk(subflow->conn); struct sock *parent = (void *)msk; struct socket *parent_sock; bool ret; pr_debug("msk=%p, subflow=%p", msk, subflow); /* mptcp socket already closing? */ if (!mptcp_is_fully_established(parent)) return false; if (!msk->pm.server_side) return true; if (!mptcp_pm_allow_new_subflow(msk)) return false; /* active connections are already on conn_list, and we can't acquire * msk lock here. * use the join list lock as synchronization point and double-check * msk status to avoid racing with mptcp_close() */ spin_lock_bh(&msk->join_list_lock); ret = inet_sk_state_load(parent) == TCP_ESTABLISHED; if (ret && !WARN_ON_ONCE(!list_empty(&subflow->node))) list_add_tail(&subflow->node, &msk->join_list); spin_unlock_bh(&msk->join_list_lock); if (!ret) return false; /* attach to msk socket only after we are sure he will deal with us * at close time */ parent_sock = READ_ONCE(parent->sk_socket); if (parent_sock && !sk->sk_socket) mptcp_sock_graft(sk, parent_sock); subflow->map_seq = READ_ONCE(msk->ack_seq); return true; } static bool mptcp_memory_free(const struct sock *sk, int wake) { struct mptcp_sock *msk = mptcp_sk(sk); return wake ? test_bit(MPTCP_SEND_SPACE, &msk->flags) : true; } static struct proto mptcp_prot = { .name = "MPTCP", .owner = THIS_MODULE, .init = mptcp_init_sock, .disconnect = mptcp_disconnect, .close = mptcp_close, .accept = mptcp_accept, .setsockopt = mptcp_setsockopt, .getsockopt = mptcp_getsockopt, .shutdown = tcp_shutdown, .destroy = mptcp_destroy, .sendmsg = mptcp_sendmsg, .recvmsg = mptcp_recvmsg, .release_cb = mptcp_release_cb, .hash = mptcp_hash, .unhash = mptcp_unhash, .get_port = mptcp_get_port, .sockets_allocated = &mptcp_sockets_allocated, .memory_allocated = &tcp_memory_allocated, .memory_pressure = &tcp_memory_pressure, .stream_memory_free = mptcp_memory_free, .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_tcp_wmem), .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_tcp_rmem), .sysctl_mem = sysctl_tcp_mem, .obj_size = sizeof(struct mptcp_sock), .slab_flags = SLAB_TYPESAFE_BY_RCU, .no_autobind = true, }; static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) { struct mptcp_sock *msk = mptcp_sk(sock->sk); struct socket *ssock; int err; lock_sock(sock->sk); ssock = __mptcp_nmpc_socket(msk); if (!ssock) { err = -EINVAL; goto unlock; } err = ssock->ops->bind(ssock, uaddr, addr_len); if (!err) mptcp_copy_inaddrs(sock->sk, ssock->sk); unlock: release_sock(sock->sk); return err; } static void mptcp_subflow_early_fallback(struct mptcp_sock *msk, struct mptcp_subflow_context *subflow) { subflow->request_mptcp = 0; __mptcp_do_fallback(msk); } static int mptcp_stream_connect(struct socket *sock, struct sockaddr *uaddr, int addr_len, int flags) { struct mptcp_sock *msk = mptcp_sk(sock->sk); struct mptcp_subflow_context *subflow; struct socket *ssock; int err; lock_sock(sock->sk); if (sock->state != SS_UNCONNECTED && msk->subflow) { /* pending connection or invalid state, let existing subflow * cope with that */ ssock = msk->subflow; goto do_connect; } ssock = __mptcp_nmpc_socket(msk); if (!ssock) { err = -EINVAL; goto unlock; } mptcp_token_destroy(msk); inet_sk_state_store(sock->sk, TCP_SYN_SENT); subflow = mptcp_subflow_ctx(ssock->sk); #ifdef CONFIG_TCP_MD5SIG /* no MPTCP if MD5SIG is enabled on this socket or we may run out of * TCP option space. */ if (rcu_access_pointer(tcp_sk(ssock->sk)->md5sig_info)) mptcp_subflow_early_fallback(msk, subflow); #endif if (subflow->request_mptcp && mptcp_token_new_connect(ssock->sk)) mptcp_subflow_early_fallback(msk, subflow); do_connect: err = ssock->ops->connect(ssock, uaddr, addr_len, flags); sock->state = ssock->state; /* on successful connect, the msk state will be moved to established by * subflow_finish_connect() */ if (!err || err == -EINPROGRESS) mptcp_copy_inaddrs(sock->sk, ssock->sk); else inet_sk_state_store(sock->sk, inet_sk_state_load(ssock->sk)); unlock: release_sock(sock->sk); return err; } static int mptcp_listen(struct socket *sock, int backlog) { struct mptcp_sock *msk = mptcp_sk(sock->sk); struct socket *ssock; int err; pr_debug("msk=%p", msk); lock_sock(sock->sk); ssock = __mptcp_nmpc_socket(msk); if (!ssock) { err = -EINVAL; goto unlock; } mptcp_token_destroy(msk); inet_sk_state_store(sock->sk, TCP_LISTEN); sock_set_flag(sock->sk, SOCK_RCU_FREE); err = ssock->ops->listen(ssock, backlog); inet_sk_state_store(sock->sk, inet_sk_state_load(ssock->sk)); if (!err) mptcp_copy_inaddrs(sock->sk, ssock->sk); unlock: release_sock(sock->sk); return err; } static int mptcp_stream_accept(struct socket *sock, struct socket *newsock, int flags, bool kern) { struct mptcp_sock *msk = mptcp_sk(sock->sk); struct socket *ssock; int err; pr_debug("msk=%p", msk); lock_sock(sock->sk); if (sock->sk->sk_state != TCP_LISTEN) goto unlock_fail; ssock = __mptcp_nmpc_socket(msk); if (!ssock) goto unlock_fail; clear_bit(MPTCP_DATA_READY, &msk->flags); sock_hold(ssock->sk); release_sock(sock->sk); err = ssock->ops->accept(sock, newsock, flags, kern); if (err == 0 && !mptcp_is_tcpsk(newsock->sk)) { struct mptcp_sock *msk = mptcp_sk(newsock->sk); struct mptcp_subflow_context *subflow; /* set ssk->sk_socket of accept()ed flows to mptcp socket. * This is needed so NOSPACE flag can be set from tcp stack. */ __mptcp_flush_join_list(msk); mptcp_for_each_subflow(msk, subflow) { struct sock *ssk = mptcp_subflow_tcp_sock(subflow); if (!ssk->sk_socket) mptcp_sock_graft(ssk, newsock); } } if (inet_csk_listen_poll(ssock->sk)) set_bit(MPTCP_DATA_READY, &msk->flags); sock_put(ssock->sk); return err; unlock_fail: release_sock(sock->sk); return -EINVAL; } static __poll_t mptcp_check_readable(struct mptcp_sock *msk) { return test_bit(MPTCP_DATA_READY, &msk->flags) ? EPOLLIN | EPOLLRDNORM : 0; } static __poll_t mptcp_poll(struct file *file, struct socket *sock, struct poll_table_struct *wait) { struct sock *sk = sock->sk; struct mptcp_sock *msk; __poll_t mask = 0; int state; msk = mptcp_sk(sk); sock_poll_wait(file, sock, wait); state = inet_sk_state_load(sk); pr_debug("msk=%p state=%d flags=%lx", msk, state, msk->flags); if (state == TCP_LISTEN) return mptcp_check_readable(msk); if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) { mask |= mptcp_check_readable(msk); if (test_bit(MPTCP_SEND_SPACE, &msk->flags)) mask |= EPOLLOUT | EPOLLWRNORM; } if (sk->sk_shutdown & RCV_SHUTDOWN) mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; return mask; } static int mptcp_shutdown(struct socket *sock, int how) { struct mptcp_sock *msk = mptcp_sk(sock->sk); struct mptcp_subflow_context *subflow; int ret = 0; pr_debug("sk=%p, how=%d", msk, how); lock_sock(sock->sk); how++; if ((how & ~SHUTDOWN_MASK) || !how) { ret = -EINVAL; goto out_unlock; } if (sock->state == SS_CONNECTING) { if ((1 << sock->sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE)) sock->state = SS_DISCONNECTING; else sock->state = SS_CONNECTED; } /* If we've already sent a FIN, or it's a closed state, skip this. */ if (__mptcp_check_fallback(msk)) { if (how == SHUT_WR || how == SHUT_RDWR) inet_sk_state_store(sock->sk, TCP_FIN_WAIT1); mptcp_for_each_subflow(msk, subflow) { struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); mptcp_subflow_shutdown(sock->sk, tcp_sk, how); } } else if ((how & SEND_SHUTDOWN) && ((1 << sock->sk->sk_state) & (TCPF_ESTABLISHED | TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) && mptcp_close_state(sock->sk)) { __mptcp_flush_join_list(msk); WRITE_ONCE(msk->write_seq, msk->write_seq + 1); WRITE_ONCE(msk->snd_data_fin_enable, 1); mptcp_for_each_subflow(msk, subflow) { struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); mptcp_subflow_shutdown(sock->sk, tcp_sk, how); } } /* Wake up anyone sleeping in poll. */ sock->sk->sk_state_change(sock->sk); out_unlock: release_sock(sock->sk); return ret; } static const struct proto_ops mptcp_stream_ops = { .family = PF_INET, .owner = THIS_MODULE, .release = inet_release, .bind = mptcp_bind, .connect = mptcp_stream_connect, .socketpair = sock_no_socketpair, .accept = mptcp_stream_accept, .getname = inet_getname, .poll = mptcp_poll, .ioctl = inet_ioctl, .gettstamp = sock_gettstamp, .listen = mptcp_listen, .shutdown = mptcp_shutdown, .setsockopt = sock_common_setsockopt, .getsockopt = sock_common_getsockopt, .sendmsg = inet_sendmsg, .recvmsg = inet_recvmsg, .mmap = sock_no_mmap, .sendpage = inet_sendpage, }; static struct inet_protosw mptcp_protosw = { .type = SOCK_STREAM, .protocol = IPPROTO_MPTCP, .prot = &mptcp_prot, .ops = &mptcp_stream_ops, .flags = INET_PROTOSW_ICSK, }; void __init mptcp_proto_init(void) { mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo; if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL)) panic("Failed to allocate MPTCP pcpu counter\n"); mptcp_subflow_init(); mptcp_pm_init(); mptcp_token_init(); if (proto_register(&mptcp_prot, 1) != 0) panic("Failed to register MPTCP proto.\n"); inet_register_protosw(&mptcp_protosw); BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb)); } #if IS_ENABLED(CONFIG_MPTCP_IPV6) static const struct proto_ops mptcp_v6_stream_ops = { .family = PF_INET6, .owner = THIS_MODULE, .release = inet6_release, .bind = mptcp_bind, .connect = mptcp_stream_connect, .socketpair = sock_no_socketpair, .accept = mptcp_stream_accept, .getname = inet6_getname, .poll = mptcp_poll, .ioctl = inet6_ioctl, .gettstamp = sock_gettstamp, .listen = mptcp_listen, .shutdown = mptcp_shutdown, .setsockopt = sock_common_setsockopt, .getsockopt = sock_common_getsockopt, .sendmsg = inet6_sendmsg, .recvmsg = inet6_recvmsg, .mmap = sock_no_mmap, .sendpage = inet_sendpage, #ifdef CONFIG_COMPAT .compat_ioctl = inet6_compat_ioctl, #endif }; static struct proto mptcp_v6_prot; static struct inet_protosw mptcp_v6_protosw = { .type = SOCK_STREAM, .protocol = IPPROTO_MPTCP, .prot = &mptcp_v6_prot, .ops = &mptcp_v6_stream_ops, .flags = INET_PROTOSW_ICSK, }; int __init mptcp_proto_v6_init(void) { int err; mptcp_v6_prot = mptcp_prot; strcpy(mptcp_v6_prot.name, "MPTCPv6"); mptcp_v6_prot.slab = NULL; mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock); err = proto_register(&mptcp_v6_prot, 1); if (err) return err; err = inet6_register_protosw(&mptcp_v6_protosw); if (err) proto_unregister(&mptcp_v6_prot); return err; } #endif