// SPDX-License-Identifier: GPL-2.0 /* Multipath TCP * * Copyright (c) 2017 - 2019, Intel Corporation. */ #define pr_fmt(fmt) "MPTCP: " fmt #include #include #include #include #include #include #include #include #include #include #if IS_ENABLED(CONFIG_MPTCP_IPV6) #include #endif #include #include #include "protocol.h" #include "mib.h" static void SUBFLOW_REQ_INC_STATS(struct request_sock *req, enum linux_mptcp_mib_field field) { MPTCP_INC_STATS(sock_net(req_to_sk(req)), field); } static void subflow_req_destructor(struct request_sock *req) { struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req); pr_debug("subflow_req=%p", subflow_req); if (subflow_req->msk) sock_put((struct sock *)subflow_req->msk); mptcp_token_destroy_request(req); } static void subflow_generate_hmac(u64 key1, u64 key2, u32 nonce1, u32 nonce2, void *hmac) { u8 msg[8]; put_unaligned_be32(nonce1, &msg[0]); put_unaligned_be32(nonce2, &msg[4]); mptcp_crypto_hmac_sha(key1, key2, msg, 8, hmac); } static bool mptcp_can_accept_new_subflow(const struct mptcp_sock *msk) { return mptcp_is_fully_established((void *)msk) && READ_ONCE(msk->pm.accept_subflow); } /* validate received token and create truncated hmac and nonce for SYN-ACK */ static struct mptcp_sock *subflow_token_join_request(struct request_sock *req, const struct sk_buff *skb) { struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req); u8 hmac[SHA256_DIGEST_SIZE]; struct mptcp_sock *msk; int local_id; msk = mptcp_token_get_sock(sock_net(req_to_sk(req)), subflow_req->token); if (!msk) { SUBFLOW_REQ_INC_STATS(req, MPTCP_MIB_JOINNOTOKEN); return NULL; } local_id = mptcp_pm_get_local_id(msk, (struct sock_common *)req); if (local_id < 0) { sock_put((struct sock *)msk); return NULL; } subflow_req->local_id = local_id; get_random_bytes(&subflow_req->local_nonce, sizeof(u32)); subflow_generate_hmac(msk->local_key, msk->remote_key, subflow_req->local_nonce, subflow_req->remote_nonce, hmac); subflow_req->thmac = get_unaligned_be64(hmac); return msk; } static int __subflow_init_req(struct request_sock *req, const struct sock *sk_listener) { struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req); subflow_req->mp_capable = 0; subflow_req->mp_join = 0; subflow_req->msk = NULL; mptcp_token_init_request(req); #ifdef CONFIG_TCP_MD5SIG /* no MPTCP if MD5SIG is enabled on this socket or we may run out of * TCP option space. */ if (rcu_access_pointer(tcp_sk(sk_listener)->md5sig_info)) return -EINVAL; #endif return 0; } static void subflow_init_req(struct request_sock *req, const struct sock *sk_listener, struct sk_buff *skb) { struct mptcp_subflow_context *listener = mptcp_subflow_ctx(sk_listener); struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req); struct mptcp_options_received mp_opt; int ret; pr_debug("subflow_req=%p, listener=%p", subflow_req, listener); ret = __subflow_init_req(req, sk_listener); if (ret) return; mptcp_get_options(skb, &mp_opt); if (mp_opt.mp_capable) { SUBFLOW_REQ_INC_STATS(req, MPTCP_MIB_MPCAPABLEPASSIVE); if (mp_opt.mp_join) return; } else if (mp_opt.mp_join) { SUBFLOW_REQ_INC_STATS(req, MPTCP_MIB_JOINSYNRX); } if (mp_opt.mp_capable && listener->request_mptcp) { int err, retries = 4; subflow_req->ssn_offset = TCP_SKB_CB(skb)->seq; again: do { get_random_bytes(&subflow_req->local_key, sizeof(subflow_req->local_key)); } while (subflow_req->local_key == 0); if (unlikely(req->syncookie)) { mptcp_crypto_key_sha(subflow_req->local_key, &subflow_req->token, &subflow_req->idsn); if (mptcp_token_exists(subflow_req->token)) { if (retries-- > 0) goto again; } else { subflow_req->mp_capable = 1; } return; } err = mptcp_token_new_request(req); if (err == 0) subflow_req->mp_capable = 1; else if (retries-- > 0) goto again; } else if (mp_opt.mp_join && listener->request_mptcp) { subflow_req->ssn_offset = TCP_SKB_CB(skb)->seq; subflow_req->mp_join = 1; subflow_req->backup = mp_opt.backup; subflow_req->remote_id = mp_opt.join_id; subflow_req->token = mp_opt.token; subflow_req->remote_nonce = mp_opt.nonce; subflow_req->msk = subflow_token_join_request(req, skb); if (unlikely(req->syncookie) && subflow_req->msk) { if (mptcp_can_accept_new_subflow(subflow_req->msk)) subflow_init_req_cookie_join_save(subflow_req, skb); } pr_debug("token=%u, remote_nonce=%u msk=%p", subflow_req->token, subflow_req->remote_nonce, subflow_req->msk); } } int mptcp_subflow_init_cookie_req(struct request_sock *req, const struct sock *sk_listener, struct sk_buff *skb) { struct mptcp_subflow_context *listener = mptcp_subflow_ctx(sk_listener); struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req); struct mptcp_options_received mp_opt; int err; err = __subflow_init_req(req, sk_listener); if (err) return err; mptcp_get_options(skb, &mp_opt); if (mp_opt.mp_capable && mp_opt.mp_join) return -EINVAL; if (mp_opt.mp_capable && listener->request_mptcp) { if (mp_opt.sndr_key == 0) return -EINVAL; subflow_req->local_key = mp_opt.rcvr_key; err = mptcp_token_new_request(req); if (err) return err; subflow_req->mp_capable = 1; subflow_req->ssn_offset = TCP_SKB_CB(skb)->seq - 1; } else if (mp_opt.mp_join && listener->request_mptcp) { if (!mptcp_token_join_cookie_init_state(subflow_req, skb)) return -EINVAL; if (mptcp_can_accept_new_subflow(subflow_req->msk)) subflow_req->mp_join = 1; subflow_req->ssn_offset = TCP_SKB_CB(skb)->seq - 1; } return 0; } EXPORT_SYMBOL_GPL(mptcp_subflow_init_cookie_req); static void subflow_v4_init_req(struct request_sock *req, const struct sock *sk_listener, struct sk_buff *skb) { tcp_rsk(req)->is_mptcp = 1; tcp_request_sock_ipv4_ops.init_req(req, sk_listener, skb); subflow_init_req(req, sk_listener, skb); } #if IS_ENABLED(CONFIG_MPTCP_IPV6) static void subflow_v6_init_req(struct request_sock *req, const struct sock *sk_listener, struct sk_buff *skb) { tcp_rsk(req)->is_mptcp = 1; tcp_request_sock_ipv6_ops.init_req(req, sk_listener, skb); subflow_init_req(req, sk_listener, skb); } #endif /* validate received truncated hmac and create hmac for third ACK */ static bool subflow_thmac_valid(struct mptcp_subflow_context *subflow) { u8 hmac[SHA256_DIGEST_SIZE]; u64 thmac; subflow_generate_hmac(subflow->remote_key, subflow->local_key, subflow->remote_nonce, subflow->local_nonce, hmac); thmac = get_unaligned_be64(hmac); pr_debug("subflow=%p, token=%u, thmac=%llu, subflow->thmac=%llu\n", subflow, subflow->token, (unsigned long long)thmac, (unsigned long long)subflow->thmac); return thmac == subflow->thmac; } void mptcp_subflow_reset(struct sock *ssk) { struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); struct sock *sk = subflow->conn; tcp_send_active_reset(ssk, GFP_ATOMIC); tcp_done(ssk); if (!test_and_set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &mptcp_sk(sk)->flags) && schedule_work(&mptcp_sk(sk)->work)) sock_hold(sk); } static void subflow_finish_connect(struct sock *sk, const struct sk_buff *skb) { struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(sk); struct mptcp_options_received mp_opt; struct sock *parent = subflow->conn; subflow->icsk_af_ops->sk_rx_dst_set(sk, skb); if (inet_sk_state_load(parent) == TCP_SYN_SENT) { inet_sk_state_store(parent, TCP_ESTABLISHED); parent->sk_state_change(parent); } /* be sure no special action on any packet other than syn-ack */ if (subflow->conn_finished) return; subflow->rel_write_seq = 1; subflow->conn_finished = 1; subflow->ssn_offset = TCP_SKB_CB(skb)->seq; pr_debug("subflow=%p synack seq=%x", subflow, subflow->ssn_offset); mptcp_get_options(skb, &mp_opt); if (subflow->request_mptcp) { if (!mp_opt.mp_capable) { MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEACTIVEFALLBACK); mptcp_do_fallback(sk); pr_fallback(mptcp_sk(subflow->conn)); goto fallback; } subflow->mp_capable = 1; subflow->can_ack = 1; subflow->remote_key = mp_opt.sndr_key; pr_debug("subflow=%p, remote_key=%llu", subflow, subflow->remote_key); mptcp_finish_connect(sk); } else if (subflow->request_join) { u8 hmac[SHA256_DIGEST_SIZE]; if (!mp_opt.mp_join) goto do_reset; subflow->thmac = mp_opt.thmac; subflow->remote_nonce = mp_opt.nonce; pr_debug("subflow=%p, thmac=%llu, remote_nonce=%u", subflow, subflow->thmac, subflow->remote_nonce); if (!subflow_thmac_valid(subflow)) { MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_JOINACKMAC); goto do_reset; } if (!mptcp_finish_join(sk)) goto do_reset; subflow_generate_hmac(subflow->local_key, subflow->remote_key, subflow->local_nonce, subflow->remote_nonce, hmac); memcpy(subflow->hmac, hmac, MPTCPOPT_HMAC_LEN); subflow->mp_join = 1; MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_JOINSYNACKRX); } else if (mptcp_check_fallback(sk)) { fallback: mptcp_rcv_space_init(mptcp_sk(parent), sk); } return; do_reset: mptcp_subflow_reset(sk); } static struct request_sock_ops mptcp_subflow_v4_request_sock_ops __ro_after_init; static struct tcp_request_sock_ops subflow_request_sock_ipv4_ops __ro_after_init; static int subflow_v4_conn_request(struct sock *sk, struct sk_buff *skb) { struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(sk); pr_debug("subflow=%p", subflow); /* Never answer to SYNs sent to broadcast or multicast */ if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST)) goto drop; return tcp_conn_request(&mptcp_subflow_v4_request_sock_ops, &subflow_request_sock_ipv4_ops, sk, skb); drop: tcp_listendrop(sk); return 0; } static void subflow_v4_req_destructor(struct request_sock *req) { subflow_req_destructor(req); tcp_request_sock_ops.destructor(req); } #if IS_ENABLED(CONFIG_MPTCP_IPV6) static struct request_sock_ops mptcp_subflow_v6_request_sock_ops __ro_after_init; static struct tcp_request_sock_ops subflow_request_sock_ipv6_ops __ro_after_init; static struct inet_connection_sock_af_ops subflow_v6_specific __ro_after_init; static struct inet_connection_sock_af_ops subflow_v6m_specific __ro_after_init; static int subflow_v6_conn_request(struct sock *sk, struct sk_buff *skb) { struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(sk); pr_debug("subflow=%p", subflow); if (skb->protocol == htons(ETH_P_IP)) return subflow_v4_conn_request(sk, skb); if (!ipv6_unicast_destination(skb)) goto drop; if (ipv6_addr_v4mapped(&ipv6_hdr(skb)->saddr)) { __IP6_INC_STATS(sock_net(sk), NULL, IPSTATS_MIB_INHDRERRORS); return 0; } return tcp_conn_request(&mptcp_subflow_v6_request_sock_ops, &subflow_request_sock_ipv6_ops, sk, skb); drop: tcp_listendrop(sk); return 0; /* don't send reset */ } static void subflow_v6_req_destructor(struct request_sock *req) { subflow_req_destructor(req); tcp6_request_sock_ops.destructor(req); } #endif struct request_sock *mptcp_subflow_reqsk_alloc(const struct request_sock_ops *ops, struct sock *sk_listener, bool attach_listener) { if (ops->family == AF_INET) ops = &mptcp_subflow_v4_request_sock_ops; #if IS_ENABLED(CONFIG_MPTCP_IPV6) else if (ops->family == AF_INET6) ops = &mptcp_subflow_v6_request_sock_ops; #endif return inet_reqsk_alloc(ops, sk_listener, attach_listener); } EXPORT_SYMBOL(mptcp_subflow_reqsk_alloc); /* validate hmac received in third ACK */ static bool subflow_hmac_valid(const struct request_sock *req, const struct mptcp_options_received *mp_opt) { const struct mptcp_subflow_request_sock *subflow_req; u8 hmac[SHA256_DIGEST_SIZE]; struct mptcp_sock *msk; subflow_req = mptcp_subflow_rsk(req); msk = subflow_req->msk; if (!msk) return false; subflow_generate_hmac(msk->remote_key, msk->local_key, subflow_req->remote_nonce, subflow_req->local_nonce, hmac); return !crypto_memneq(hmac, mp_opt->hmac, MPTCPOPT_HMAC_LEN); } static void mptcp_sock_destruct(struct sock *sk) { /* if new mptcp socket isn't accepted, it is free'd * from the tcp listener sockets request queue, linked * from req->sk. The tcp socket is released. * This calls the ULP release function which will * also remove the mptcp socket, via * sock_put(ctx->conn). * * Problem is that the mptcp socket will be in * ESTABLISHED state and will not have the SOCK_DEAD flag. * Both result in warnings from inet_sock_destruct. */ if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) { sk->sk_state = TCP_CLOSE; WARN_ON_ONCE(sk->sk_socket); sock_orphan(sk); } mptcp_destroy_common(mptcp_sk(sk)); inet_sock_destruct(sk); } static void mptcp_force_close(struct sock *sk) { inet_sk_state_store(sk, TCP_CLOSE); sk_common_release(sk); } static void subflow_ulp_fallback(struct sock *sk, struct mptcp_subflow_context *old_ctx) { struct inet_connection_sock *icsk = inet_csk(sk); mptcp_subflow_tcp_fallback(sk, old_ctx); icsk->icsk_ulp_ops = NULL; rcu_assign_pointer(icsk->icsk_ulp_data, NULL); tcp_sk(sk)->is_mptcp = 0; } static void subflow_drop_ctx(struct sock *ssk) { struct mptcp_subflow_context *ctx = mptcp_subflow_ctx(ssk); if (!ctx) return; subflow_ulp_fallback(ssk, ctx); if (ctx->conn) sock_put(ctx->conn); kfree_rcu(ctx, rcu); } void mptcp_subflow_fully_established(struct mptcp_subflow_context *subflow, struct mptcp_options_received *mp_opt) { struct mptcp_sock *msk = mptcp_sk(subflow->conn); subflow->remote_key = mp_opt->sndr_key; subflow->fully_established = 1; subflow->can_ack = 1; WRITE_ONCE(msk->fully_established, true); } static struct sock *subflow_syn_recv_sock(const struct sock *sk, struct sk_buff *skb, struct request_sock *req, struct dst_entry *dst, struct request_sock *req_unhash, bool *own_req) { struct mptcp_subflow_context *listener = mptcp_subflow_ctx(sk); struct mptcp_subflow_request_sock *subflow_req; struct mptcp_options_received mp_opt; bool fallback, fallback_is_fatal; struct sock *new_msk = NULL; struct sock *child; pr_debug("listener=%p, req=%p, conn=%p", listener, req, listener->conn); /* After child creation we must look for 'mp_capable' even when options * are not parsed */ mp_opt.mp_capable = 0; /* hopefully temporary handling for MP_JOIN+syncookie */ subflow_req = mptcp_subflow_rsk(req); fallback_is_fatal = tcp_rsk(req)->is_mptcp && subflow_req->mp_join; fallback = !tcp_rsk(req)->is_mptcp; if (fallback) goto create_child; /* if the sk is MP_CAPABLE, we try to fetch the client key */ if (subflow_req->mp_capable) { /* we can receive and accept an in-window, out-of-order pkt, * which may not carry the MP_CAPABLE opt even on mptcp enabled * paths: always try to extract the peer key, and fallback * for packets missing it. * Even OoO DSS packets coming legitly after dropped or * reordered MPC will cause fallback, but we don't have other * options. */ mptcp_get_options(skb, &mp_opt); if (!mp_opt.mp_capable) { fallback = true; goto create_child; } new_msk = mptcp_sk_clone(listener->conn, &mp_opt, req); if (!new_msk) fallback = true; } else if (subflow_req->mp_join) { mptcp_get_options(skb, &mp_opt); if (!mp_opt.mp_join || !subflow_hmac_valid(req, &mp_opt) || !mptcp_can_accept_new_subflow(subflow_req->msk)) { SUBFLOW_REQ_INC_STATS(req, MPTCP_MIB_JOINACKMAC); fallback = true; } } create_child: child = listener->icsk_af_ops->syn_recv_sock(sk, skb, req, dst, req_unhash, own_req); if (child && *own_req) { struct mptcp_subflow_context *ctx = mptcp_subflow_ctx(child); tcp_rsk(req)->drop_req = false; /* we need to fallback on ctx allocation failure and on pre-reqs * checking above. In the latter scenario we additionally need * to reset the context to non MPTCP status. */ if (!ctx || fallback) { if (fallback_is_fatal) goto dispose_child; subflow_drop_ctx(child); goto out; } if (ctx->mp_capable) { /* this can't race with mptcp_close(), as the msk is * not yet exposted to user-space */ inet_sk_state_store((void *)new_msk, TCP_ESTABLISHED); /* new mpc subflow takes ownership of the newly * created mptcp socket */ new_msk->sk_destruct = mptcp_sock_destruct; mptcp_pm_new_connection(mptcp_sk(new_msk), 1); mptcp_token_accept(subflow_req, mptcp_sk(new_msk)); ctx->conn = new_msk; new_msk = NULL; /* with OoO packets we can reach here without ingress * mpc option */ if (mp_opt.mp_capable) mptcp_subflow_fully_established(ctx, &mp_opt); } else if (ctx->mp_join) { struct mptcp_sock *owner; owner = subflow_req->msk; if (!owner) goto dispose_child; /* move the msk reference ownership to the subflow */ subflow_req->msk = NULL; ctx->conn = (struct sock *)owner; if (!mptcp_finish_join(child)) goto dispose_child; SUBFLOW_REQ_INC_STATS(req, MPTCP_MIB_JOINACKRX); tcp_rsk(req)->drop_req = true; } } out: /* dispose of the left over mptcp master, if any */ if (unlikely(new_msk)) mptcp_force_close(new_msk); /* check for expected invariant - should never trigger, just help * catching eariler subtle bugs */ WARN_ON_ONCE(child && *own_req && tcp_sk(child)->is_mptcp && (!mptcp_subflow_ctx(child) || !mptcp_subflow_ctx(child)->conn)); return child; dispose_child: subflow_drop_ctx(child); tcp_rsk(req)->drop_req = true; inet_csk_prepare_for_destroy_sock(child); tcp_done(child); req->rsk_ops->send_reset(sk, skb); /* The last child reference will be released by the caller */ return child; } static struct inet_connection_sock_af_ops subflow_specific __ro_after_init; enum mapping_status { MAPPING_OK, MAPPING_INVALID, MAPPING_EMPTY, MAPPING_DATA_FIN, MAPPING_DUMMY }; static u64 expand_seq(u64 old_seq, u16 old_data_len, u64 seq) { if ((u32)seq == (u32)old_seq) return old_seq; /* Assume map covers data not mapped yet. */ return seq | ((old_seq + old_data_len + 1) & GENMASK_ULL(63, 32)); } static void dbg_bad_map(struct mptcp_subflow_context *subflow, u32 ssn) { pr_debug("Bad mapping: ssn=%d map_seq=%d map_data_len=%d", ssn, subflow->map_subflow_seq, subflow->map_data_len); } static bool skb_is_fully_mapped(struct sock *ssk, struct sk_buff *skb) { struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); unsigned int skb_consumed; skb_consumed = tcp_sk(ssk)->copied_seq - TCP_SKB_CB(skb)->seq; if (WARN_ON_ONCE(skb_consumed >= skb->len)) return true; return skb->len - skb_consumed <= subflow->map_data_len - mptcp_subflow_get_map_offset(subflow); } static bool validate_mapping(struct sock *ssk, struct sk_buff *skb) { struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); u32 ssn = tcp_sk(ssk)->copied_seq - subflow->ssn_offset; if (unlikely(before(ssn, subflow->map_subflow_seq))) { /* Mapping covers data later in the subflow stream, * currently unsupported. */ dbg_bad_map(subflow, ssn); return false; } if (unlikely(!before(ssn, subflow->map_subflow_seq + subflow->map_data_len))) { /* Mapping does covers past subflow data, invalid */ dbg_bad_map(subflow, ssn); return false; } return true; } static enum mapping_status get_mapping_status(struct sock *ssk, struct mptcp_sock *msk) { struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); struct mptcp_ext *mpext; struct sk_buff *skb; u16 data_len; u64 map_seq; skb = skb_peek(&ssk->sk_receive_queue); if (!skb) return MAPPING_EMPTY; if (mptcp_check_fallback(ssk)) return MAPPING_DUMMY; mpext = mptcp_get_ext(skb); if (!mpext || !mpext->use_map) { if (!subflow->map_valid && !skb->len) { /* the TCP stack deliver 0 len FIN pkt to the receive * queue, that is the only 0len pkts ever expected here, * and we can admit no mapping only for 0 len pkts */ if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) WARN_ONCE(1, "0len seq %d:%d flags %x", TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq, TCP_SKB_CB(skb)->tcp_flags); sk_eat_skb(ssk, skb); return MAPPING_EMPTY; } if (!subflow->map_valid) return MAPPING_INVALID; goto validate_seq; } pr_debug("seq=%llu is64=%d ssn=%u data_len=%u data_fin=%d", mpext->data_seq, mpext->dsn64, mpext->subflow_seq, mpext->data_len, mpext->data_fin); data_len = mpext->data_len; if (data_len == 0) { MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_INFINITEMAPRX); return MAPPING_INVALID; } if (mpext->data_fin == 1) { if (data_len == 1) { bool updated = mptcp_update_rcv_data_fin(msk, mpext->data_seq, mpext->dsn64); pr_debug("DATA_FIN with no payload seq=%llu", mpext->data_seq); if (subflow->map_valid) { /* A DATA_FIN might arrive in a DSS * option before the previous mapping * has been fully consumed. Continue * handling the existing mapping. */ skb_ext_del(skb, SKB_EXT_MPTCP); return MAPPING_OK; } else { if (updated && schedule_work(&msk->work)) sock_hold((struct sock *)msk); return MAPPING_DATA_FIN; } } else { u64 data_fin_seq = mpext->data_seq + data_len - 1; /* If mpext->data_seq is a 32-bit value, data_fin_seq * must also be limited to 32 bits. */ if (!mpext->dsn64) data_fin_seq &= GENMASK_ULL(31, 0); mptcp_update_rcv_data_fin(msk, data_fin_seq, mpext->dsn64); pr_debug("DATA_FIN with mapping seq=%llu dsn64=%d", data_fin_seq, mpext->dsn64); } /* Adjust for DATA_FIN using 1 byte of sequence space */ data_len--; } if (!mpext->dsn64) { map_seq = expand_seq(subflow->map_seq, subflow->map_data_len, mpext->data_seq); pr_debug("expanded seq=%llu", subflow->map_seq); } else { map_seq = mpext->data_seq; } WRITE_ONCE(mptcp_sk(subflow->conn)->use_64bit_ack, !!mpext->dsn64); if (subflow->map_valid) { /* Allow replacing only with an identical map */ if (subflow->map_seq == map_seq && subflow->map_subflow_seq == mpext->subflow_seq && subflow->map_data_len == data_len) { skb_ext_del(skb, SKB_EXT_MPTCP); return MAPPING_OK; } /* If this skb data are fully covered by the current mapping, * the new map would need caching, which is not supported */ if (skb_is_fully_mapped(ssk, skb)) { MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_DSSNOMATCH); return MAPPING_INVALID; } /* will validate the next map after consuming the current one */ return MAPPING_OK; } subflow->map_seq = map_seq; subflow->map_subflow_seq = mpext->subflow_seq; subflow->map_data_len = data_len; subflow->map_valid = 1; subflow->mpc_map = mpext->mpc_map; pr_debug("new map seq=%llu subflow_seq=%u data_len=%u", subflow->map_seq, subflow->map_subflow_seq, subflow->map_data_len); validate_seq: /* we revalidate valid mapping on new skb, because we must ensure * the current skb is completely covered by the available mapping */ if (!validate_mapping(ssk, skb)) return MAPPING_INVALID; skb_ext_del(skb, SKB_EXT_MPTCP); return MAPPING_OK; } static void mptcp_subflow_discard_data(struct sock *ssk, struct sk_buff *skb, u64 limit) { struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); bool fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; u32 incr; incr = limit >= skb->len ? skb->len + fin : limit; pr_debug("discarding=%d len=%d seq=%d", incr, skb->len, subflow->map_subflow_seq); MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_DUPDATA); tcp_sk(ssk)->copied_seq += incr; if (!before(tcp_sk(ssk)->copied_seq, TCP_SKB_CB(skb)->end_seq)) sk_eat_skb(ssk, skb); if (mptcp_subflow_get_map_offset(subflow) >= subflow->map_data_len) subflow->map_valid = 0; if (incr) tcp_cleanup_rbuf(ssk, incr); } static bool subflow_check_data_avail(struct sock *ssk) { struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); enum mapping_status status; struct mptcp_sock *msk; struct sk_buff *skb; pr_debug("msk=%p ssk=%p data_avail=%d skb=%p", subflow->conn, ssk, subflow->data_avail, skb_peek(&ssk->sk_receive_queue)); if (!skb_peek(&ssk->sk_receive_queue)) subflow->data_avail = 0; if (subflow->data_avail) return true; msk = mptcp_sk(subflow->conn); for (;;) { u64 ack_seq; u64 old_ack; status = get_mapping_status(ssk, msk); pr_debug("msk=%p ssk=%p status=%d", msk, ssk, status); if (status == MAPPING_INVALID) { ssk->sk_err = EBADMSG; goto fatal; } if (status == MAPPING_DUMMY) { __mptcp_do_fallback(msk); skb = skb_peek(&ssk->sk_receive_queue); subflow->map_valid = 1; subflow->map_seq = READ_ONCE(msk->ack_seq); subflow->map_data_len = skb->len; subflow->map_subflow_seq = tcp_sk(ssk)->copied_seq - subflow->ssn_offset; subflow->data_avail = MPTCP_SUBFLOW_DATA_AVAIL; return true; } if (status != MAPPING_OK) return false; skb = skb_peek(&ssk->sk_receive_queue); if (WARN_ON_ONCE(!skb)) return false; /* if msk lacks the remote key, this subflow must provide an * MP_CAPABLE-based mapping */ if (unlikely(!READ_ONCE(msk->can_ack))) { if (!subflow->mpc_map) { ssk->sk_err = EBADMSG; goto fatal; } WRITE_ONCE(msk->remote_key, subflow->remote_key); WRITE_ONCE(msk->ack_seq, subflow->map_seq); WRITE_ONCE(msk->can_ack, true); } old_ack = READ_ONCE(msk->ack_seq); ack_seq = mptcp_subflow_get_mapped_dsn(subflow); pr_debug("msk ack_seq=%llx subflow ack_seq=%llx", old_ack, ack_seq); if (ack_seq == old_ack) { subflow->data_avail = MPTCP_SUBFLOW_DATA_AVAIL; break; } else if (after64(ack_seq, old_ack)) { subflow->data_avail = MPTCP_SUBFLOW_OOO_DATA; break; } /* only accept in-sequence mapping. Old values are spurious * retransmission */ mptcp_subflow_discard_data(ssk, skb, old_ack - ack_seq); } return true; fatal: /* fatal protocol error, close the socket */ /* This barrier is coupled with smp_rmb() in tcp_poll() */ smp_wmb(); ssk->sk_error_report(ssk); tcp_set_state(ssk, TCP_CLOSE); tcp_send_active_reset(ssk, GFP_ATOMIC); subflow->data_avail = 0; return false; } bool mptcp_subflow_data_available(struct sock *sk) { struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(sk); /* check if current mapping is still valid */ if (subflow->map_valid && mptcp_subflow_get_map_offset(subflow) >= subflow->map_data_len) { subflow->map_valid = 0; subflow->data_avail = 0; pr_debug("Done with mapping: seq=%u data_len=%u", subflow->map_subflow_seq, subflow->map_data_len); } return subflow_check_data_avail(sk); } /* If ssk has an mptcp parent socket, use the mptcp rcvbuf occupancy, * not the ssk one. * * In mptcp, rwin is about the mptcp-level connection data. * * Data that is still on the ssk rx queue can thus be ignored, * as far as mptcp peer is concerened that data is still inflight. * DSS ACK is updated when skb is moved to the mptcp rx queue. */ void mptcp_space(const struct sock *ssk, int *space, int *full_space) { const struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); const struct sock *sk = subflow->conn; *space = tcp_space(sk); *full_space = tcp_full_space(sk); } static void subflow_data_ready(struct sock *sk) { struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(sk); u16 state = 1 << inet_sk_state_load(sk); struct sock *parent = subflow->conn; struct mptcp_sock *msk; msk = mptcp_sk(parent); if (state & TCPF_LISTEN) { /* MPJ subflow are removed from accept queue before reaching here, * avoid stray wakeups */ if (reqsk_queue_empty(&inet_csk(sk)->icsk_accept_queue)) return; set_bit(MPTCP_DATA_READY, &msk->flags); parent->sk_data_ready(parent); return; } WARN_ON_ONCE(!__mptcp_check_fallback(msk) && !subflow->mp_capable && !subflow->mp_join && !(state & TCPF_CLOSE)); if (mptcp_subflow_data_available(sk)) mptcp_data_ready(parent, sk); } static void subflow_write_space(struct sock *sk) { struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(sk); struct sock *parent = subflow->conn; if (!sk_stream_is_writeable(sk)) return; if (sk_stream_is_writeable(parent)) { set_bit(MPTCP_SEND_SPACE, &mptcp_sk(parent)->flags); smp_mb__after_atomic(); /* set SEND_SPACE before sk_stream_write_space clears NOSPACE */ sk_stream_write_space(parent); } } static const struct inet_connection_sock_af_ops * subflow_default_af_ops(struct sock *sk) { #if IS_ENABLED(CONFIG_MPTCP_IPV6) if (sk->sk_family == AF_INET6) return &subflow_v6_specific; #endif return &subflow_specific; } #if IS_ENABLED(CONFIG_MPTCP_IPV6) void mptcpv6_handle_mapped(struct sock *sk, bool mapped) { struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(sk); struct inet_connection_sock *icsk = inet_csk(sk); const struct inet_connection_sock_af_ops *target; target = mapped ? &subflow_v6m_specific : subflow_default_af_ops(sk); pr_debug("subflow=%p family=%d ops=%p target=%p mapped=%d", subflow, sk->sk_family, icsk->icsk_af_ops, target, mapped); if (likely(icsk->icsk_af_ops == target)) return; subflow->icsk_af_ops = icsk->icsk_af_ops; icsk->icsk_af_ops = target; } #endif static void mptcp_info2sockaddr(const struct mptcp_addr_info *info, struct sockaddr_storage *addr) { memset(addr, 0, sizeof(*addr)); addr->ss_family = info->family; if (addr->ss_family == AF_INET) { struct sockaddr_in *in_addr = (struct sockaddr_in *)addr; in_addr->sin_addr = info->addr; in_addr->sin_port = info->port; } #if IS_ENABLED(CONFIG_MPTCP_IPV6) else if (addr->ss_family == AF_INET6) { struct sockaddr_in6 *in6_addr = (struct sockaddr_in6 *)addr; in6_addr->sin6_addr = info->addr6; in6_addr->sin6_port = info->port; } #endif } int __mptcp_subflow_connect(struct sock *sk, const struct mptcp_addr_info *loc, const struct mptcp_addr_info *remote) { struct mptcp_sock *msk = mptcp_sk(sk); struct mptcp_subflow_context *subflow; struct sockaddr_storage addr; int remote_id = remote->id; int local_id = loc->id; struct socket *sf; struct sock *ssk; u32 remote_token; int addrlen; int err; if (!mptcp_is_fully_established(sk)) return -ENOTCONN; err = mptcp_subflow_create_socket(sk, &sf); if (err) return err; ssk = sf->sk; subflow = mptcp_subflow_ctx(ssk); do { get_random_bytes(&subflow->local_nonce, sizeof(u32)); } while (!subflow->local_nonce); if (!local_id) { err = mptcp_pm_get_local_id(msk, (struct sock_common *)ssk); if (err < 0) goto failed; local_id = err; } subflow->remote_key = msk->remote_key; subflow->local_key = msk->local_key; subflow->token = msk->token; mptcp_info2sockaddr(loc, &addr); addrlen = sizeof(struct sockaddr_in); #if IS_ENABLED(CONFIG_MPTCP_IPV6) if (loc->family == AF_INET6) addrlen = sizeof(struct sockaddr_in6); #endif ssk->sk_bound_dev_if = loc->ifindex; err = kernel_bind(sf, (struct sockaddr *)&addr, addrlen); if (err) goto failed; mptcp_crypto_key_sha(subflow->remote_key, &remote_token, NULL); pr_debug("msk=%p remote_token=%u local_id=%d remote_id=%d", msk, remote_token, local_id, remote_id); subflow->remote_token = remote_token; subflow->local_id = local_id; subflow->remote_id = remote_id; subflow->request_join = 1; subflow->request_bkup = !!(loc->flags & MPTCP_PM_ADDR_FLAG_BACKUP); mptcp_info2sockaddr(remote, &addr); err = kernel_connect(sf, (struct sockaddr *)&addr, addrlen, O_NONBLOCK); if (err && err != -EINPROGRESS) goto failed; spin_lock_bh(&msk->join_list_lock); list_add_tail(&subflow->node, &msk->join_list); spin_unlock_bh(&msk->join_list_lock); return err; failed: sock_release(sf); return err; } int mptcp_subflow_create_socket(struct sock *sk, struct socket **new_sock) { struct mptcp_subflow_context *subflow; struct net *net = sock_net(sk); struct socket *sf; int err; /* un-accepted server sockets can reach here - on bad configuration * bail early to avoid greater trouble later */ if (unlikely(!sk->sk_socket)) return -EINVAL; err = sock_create_kern(net, sk->sk_family, SOCK_STREAM, IPPROTO_TCP, &sf); if (err) return err; lock_sock(sf->sk); /* kernel sockets do not by default acquire net ref, but TCP timer * needs it. */ sf->sk->sk_net_refcnt = 1; get_net(net); #ifdef CONFIG_PROC_FS this_cpu_add(*net->core.sock_inuse, 1); #endif err = tcp_set_ulp(sf->sk, "mptcp"); release_sock(sf->sk); if (err) { sock_release(sf); return err; } /* the newly created socket really belongs to the owning MPTCP master * socket, even if for additional subflows the allocation is performed * by a kernel workqueue. Adjust inode references, so that the * procfs/diag interaces really show this one belonging to the correct * user. */ SOCK_INODE(sf)->i_ino = SOCK_INODE(sk->sk_socket)->i_ino; SOCK_INODE(sf)->i_uid = SOCK_INODE(sk->sk_socket)->i_uid; SOCK_INODE(sf)->i_gid = SOCK_INODE(sk->sk_socket)->i_gid; subflow = mptcp_subflow_ctx(sf->sk); pr_debug("subflow=%p", subflow); *new_sock = sf; sock_hold(sk); subflow->conn = sk; return 0; } static struct mptcp_subflow_context *subflow_create_ctx(struct sock *sk, gfp_t priority) { struct inet_connection_sock *icsk = inet_csk(sk); struct mptcp_subflow_context *ctx; ctx = kzalloc(sizeof(*ctx), priority); if (!ctx) return NULL; rcu_assign_pointer(icsk->icsk_ulp_data, ctx); INIT_LIST_HEAD(&ctx->node); pr_debug("subflow=%p", ctx); ctx->tcp_sock = sk; return ctx; } static void __subflow_state_change(struct sock *sk) { struct socket_wq *wq; rcu_read_lock(); wq = rcu_dereference(sk->sk_wq); if (skwq_has_sleeper(wq)) wake_up_interruptible_all(&wq->wait); rcu_read_unlock(); } static bool subflow_is_done(const struct sock *sk) { return sk->sk_shutdown & RCV_SHUTDOWN || sk->sk_state == TCP_CLOSE; } static void subflow_state_change(struct sock *sk) { struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(sk); struct sock *parent = subflow->conn; __subflow_state_change(sk); if (subflow_simultaneous_connect(sk)) { mptcp_do_fallback(sk); mptcp_rcv_space_init(mptcp_sk(parent), sk); pr_fallback(mptcp_sk(parent)); subflow->conn_finished = 1; if (inet_sk_state_load(parent) == TCP_SYN_SENT) { inet_sk_state_store(parent, TCP_ESTABLISHED); parent->sk_state_change(parent); } } /* as recvmsg() does not acquire the subflow socket for ssk selection * a fin packet carrying a DSS can be unnoticed if we don't trigger * the data available machinery here. */ if (mptcp_subflow_data_available(sk)) mptcp_data_ready(parent, sk); if (__mptcp_check_fallback(mptcp_sk(parent)) && !(parent->sk_shutdown & RCV_SHUTDOWN) && !subflow->rx_eof && subflow_is_done(sk)) { subflow->rx_eof = 1; mptcp_subflow_eof(parent); } } static int subflow_ulp_init(struct sock *sk) { struct inet_connection_sock *icsk = inet_csk(sk); struct mptcp_subflow_context *ctx; struct tcp_sock *tp = tcp_sk(sk); int err = 0; /* disallow attaching ULP to a socket unless it has been * created with sock_create_kern() */ if (!sk->sk_kern_sock) { err = -EOPNOTSUPP; goto out; } ctx = subflow_create_ctx(sk, GFP_KERNEL); if (!ctx) { err = -ENOMEM; goto out; } pr_debug("subflow=%p, family=%d", ctx, sk->sk_family); tp->is_mptcp = 1; ctx->icsk_af_ops = icsk->icsk_af_ops; icsk->icsk_af_ops = subflow_default_af_ops(sk); ctx->tcp_data_ready = sk->sk_data_ready; ctx->tcp_state_change = sk->sk_state_change; ctx->tcp_write_space = sk->sk_write_space; sk->sk_data_ready = subflow_data_ready; sk->sk_write_space = subflow_write_space; sk->sk_state_change = subflow_state_change; out: return err; } static void subflow_ulp_release(struct sock *sk) { struct mptcp_subflow_context *ctx = mptcp_subflow_ctx(sk); if (!ctx) return; if (ctx->conn) sock_put(ctx->conn); kfree_rcu(ctx, rcu); } static void subflow_ulp_clone(const struct request_sock *req, struct sock *newsk, const gfp_t priority) { struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req); struct mptcp_subflow_context *old_ctx = mptcp_subflow_ctx(newsk); struct mptcp_subflow_context *new_ctx; if (!tcp_rsk(req)->is_mptcp || (!subflow_req->mp_capable && !subflow_req->mp_join)) { subflow_ulp_fallback(newsk, old_ctx); return; } new_ctx = subflow_create_ctx(newsk, priority); if (!new_ctx) { subflow_ulp_fallback(newsk, old_ctx); return; } new_ctx->conn_finished = 1; new_ctx->icsk_af_ops = old_ctx->icsk_af_ops; new_ctx->tcp_data_ready = old_ctx->tcp_data_ready; new_ctx->tcp_state_change = old_ctx->tcp_state_change; new_ctx->tcp_write_space = old_ctx->tcp_write_space; new_ctx->rel_write_seq = 1; new_ctx->tcp_sock = newsk; if (subflow_req->mp_capable) { /* see comments in subflow_syn_recv_sock(), MPTCP connection * is fully established only after we receive the remote key */ new_ctx->mp_capable = 1; new_ctx->local_key = subflow_req->local_key; new_ctx->token = subflow_req->token; new_ctx->ssn_offset = subflow_req->ssn_offset; new_ctx->idsn = subflow_req->idsn; } else if (subflow_req->mp_join) { new_ctx->ssn_offset = subflow_req->ssn_offset; new_ctx->mp_join = 1; new_ctx->fully_established = 1; new_ctx->backup = subflow_req->backup; new_ctx->local_id = subflow_req->local_id; new_ctx->remote_id = subflow_req->remote_id; new_ctx->token = subflow_req->token; new_ctx->thmac = subflow_req->thmac; } } static struct tcp_ulp_ops subflow_ulp_ops __read_mostly = { .name = "mptcp", .owner = THIS_MODULE, .init = subflow_ulp_init, .release = subflow_ulp_release, .clone = subflow_ulp_clone, }; static int subflow_ops_init(struct request_sock_ops *subflow_ops) { subflow_ops->obj_size = sizeof(struct mptcp_subflow_request_sock); subflow_ops->slab = kmem_cache_create(subflow_ops->slab_name, subflow_ops->obj_size, 0, SLAB_ACCOUNT | SLAB_TYPESAFE_BY_RCU, NULL); if (!subflow_ops->slab) return -ENOMEM; return 0; } void __init mptcp_subflow_init(void) { mptcp_subflow_v4_request_sock_ops = tcp_request_sock_ops; mptcp_subflow_v4_request_sock_ops.slab_name = "request_sock_subflow_v4"; mptcp_subflow_v4_request_sock_ops.destructor = subflow_v4_req_destructor; if (subflow_ops_init(&mptcp_subflow_v4_request_sock_ops) != 0) panic("MPTCP: failed to init subflow v4 request sock ops\n"); subflow_request_sock_ipv4_ops = tcp_request_sock_ipv4_ops; subflow_request_sock_ipv4_ops.init_req = subflow_v4_init_req; subflow_specific = ipv4_specific; subflow_specific.conn_request = subflow_v4_conn_request; subflow_specific.syn_recv_sock = subflow_syn_recv_sock; subflow_specific.sk_rx_dst_set = subflow_finish_connect; #if IS_ENABLED(CONFIG_MPTCP_IPV6) /* In struct mptcp_subflow_request_sock, we assume the TCP request sock * structures for v4 and v6 have the same size. It should not changed in * the future but better to make sure to be warned if it is no longer * the case. */ BUILD_BUG_ON(sizeof(struct tcp_request_sock) != sizeof(struct tcp6_request_sock)); mptcp_subflow_v6_request_sock_ops = tcp6_request_sock_ops; mptcp_subflow_v6_request_sock_ops.slab_name = "request_sock_subflow_v6"; mptcp_subflow_v6_request_sock_ops.destructor = subflow_v6_req_destructor; if (subflow_ops_init(&mptcp_subflow_v6_request_sock_ops) != 0) panic("MPTCP: failed to init subflow v6 request sock ops\n"); subflow_request_sock_ipv6_ops = tcp_request_sock_ipv6_ops; subflow_request_sock_ipv6_ops.init_req = subflow_v6_init_req; subflow_v6_specific = ipv6_specific; subflow_v6_specific.conn_request = subflow_v6_conn_request; subflow_v6_specific.syn_recv_sock = subflow_syn_recv_sock; subflow_v6_specific.sk_rx_dst_set = subflow_finish_connect; subflow_v6m_specific = subflow_v6_specific; subflow_v6m_specific.queue_xmit = ipv4_specific.queue_xmit; subflow_v6m_specific.send_check = ipv4_specific.send_check; subflow_v6m_specific.net_header_len = ipv4_specific.net_header_len; subflow_v6m_specific.mtu_reduced = ipv4_specific.mtu_reduced; subflow_v6m_specific.net_frag_header_len = 0; #endif mptcp_diag_subflow_init(&subflow_ulp_ops); if (tcp_register_ulp(&subflow_ulp_ops) != 0) panic("MPTCP: failed to register subflows to ULP\n"); }