/* * Copyright (c) 2006, 2018 Oracle and/or its affiliates. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * */ #include #include #include #include #include "rds.h" #include "tcp.h" void rds_tcp_keepalive(struct socket *sock) { /* values below based on xs_udp_default_timeout */ int keepidle = 5; /* send a probe 'keepidle' secs after last data */ int keepcnt = 5; /* number of unack'ed probes before declaring dead */ sock_set_keepalive(sock->sk); tcp_sock_set_keepcnt(sock->sk, keepcnt); tcp_sock_set_keepidle(sock->sk, keepidle); /* KEEPINTVL is the interval between successive probes. We follow * the model in xs_tcp_finish_connecting() and re-use keepidle. */ tcp_sock_set_keepintvl(sock->sk, keepidle); } /* rds_tcp_accept_one_path(): if accepting on cp_index > 0, make sure the * client's ipaddr < server's ipaddr. Otherwise, close the accepted * socket and force a reconneect from smaller -> larger ip addr. The reason * we special case cp_index 0 is to allow the rds probe ping itself to itself * get through efficiently. * Since reconnects are only initiated from the node with the numerically * smaller ip address, we recycle conns in RDS_CONN_ERROR on the passive side * by moving them to CONNECTING in this function. */ static struct rds_tcp_connection *rds_tcp_accept_one_path(struct rds_connection *conn) { int i; int npaths = max_t(int, 1, conn->c_npaths); /* for mprds, all paths MUST be initiated by the peer * with the smaller address. */ if (rds_addr_cmp(&conn->c_faddr, &conn->c_laddr) >= 0) { /* Make sure we initiate at least one path if this * has not already been done; rds_start_mprds() will * take care of additional paths, if necessary. */ if (npaths == 1) rds_conn_path_connect_if_down(&conn->c_path[0]); return NULL; } for (i = 0; i < npaths; i++) { struct rds_conn_path *cp = &conn->c_path[i]; if (rds_conn_path_transition(cp, RDS_CONN_DOWN, RDS_CONN_CONNECTING) || rds_conn_path_transition(cp, RDS_CONN_ERROR, RDS_CONN_CONNECTING)) { return cp->cp_transport_data; } } return NULL; } int rds_tcp_accept_one(struct socket *sock) { struct socket *new_sock = NULL; struct rds_connection *conn; int ret; struct inet_sock *inet; struct rds_tcp_connection *rs_tcp = NULL; int conn_state; struct rds_conn_path *cp; struct in6_addr *my_addr, *peer_addr; #if !IS_ENABLED(CONFIG_IPV6) struct in6_addr saddr, daddr; #endif int dev_if = 0; if (!sock) /* module unload or netns delete in progress */ return -ENETUNREACH; ret = sock_create_lite(sock->sk->sk_family, sock->sk->sk_type, sock->sk->sk_protocol, &new_sock); if (ret) goto out; ret = sock->ops->accept(sock, new_sock, O_NONBLOCK, true); if (ret < 0) goto out; /* sock_create_lite() does not get a hold on the owner module so we * need to do it here. Note that sock_release() uses sock->ops to * determine if it needs to decrement the reference count. So set * sock->ops after calling accept() in case that fails. And there's * no need to do try_module_get() as the listener should have a hold * already. */ new_sock->ops = sock->ops; __module_get(new_sock->ops->owner); rds_tcp_keepalive(new_sock); rds_tcp_tune(new_sock); inet = inet_sk(new_sock->sk); #if IS_ENABLED(CONFIG_IPV6) my_addr = &new_sock->sk->sk_v6_rcv_saddr; peer_addr = &new_sock->sk->sk_v6_daddr; #else ipv6_addr_set_v4mapped(inet->inet_saddr, &saddr); ipv6_addr_set_v4mapped(inet->inet_daddr, &daddr); my_addr = &saddr; peer_addr = &daddr; #endif rdsdebug("accepted family %d tcp %pI6c:%u -> %pI6c:%u\n", sock->sk->sk_family, my_addr, ntohs(inet->inet_sport), peer_addr, ntohs(inet->inet_dport)); #if IS_ENABLED(CONFIG_IPV6) /* sk_bound_dev_if is not set if the peer address is not link local * address. In this case, it happens that mcast_oif is set. So * just use it. */ if ((ipv6_addr_type(my_addr) & IPV6_ADDR_LINKLOCAL) && !(ipv6_addr_type(peer_addr) & IPV6_ADDR_LINKLOCAL)) { struct ipv6_pinfo *inet6; inet6 = inet6_sk(new_sock->sk); dev_if = inet6->mcast_oif; } else { dev_if = new_sock->sk->sk_bound_dev_if; } #endif if (!rds_tcp_laddr_check(sock_net(sock->sk), peer_addr, dev_if)) { /* local address connection is only allowed via loopback */ ret = -EOPNOTSUPP; goto out; } conn = rds_conn_create(sock_net(sock->sk), my_addr, peer_addr, &rds_tcp_transport, 0, GFP_KERNEL, dev_if); if (IS_ERR(conn)) { ret = PTR_ERR(conn); goto out; } /* An incoming SYN request came in, and TCP just accepted it. * * If the client reboots, this conn will need to be cleaned up. * rds_tcp_state_change() will do that cleanup */ rs_tcp = rds_tcp_accept_one_path(conn); if (!rs_tcp) goto rst_nsk; mutex_lock(&rs_tcp->t_conn_path_lock); cp = rs_tcp->t_cpath; conn_state = rds_conn_path_state(cp); WARN_ON(conn_state == RDS_CONN_UP); if (conn_state != RDS_CONN_CONNECTING && conn_state != RDS_CONN_ERROR) goto rst_nsk; if (rs_tcp->t_sock) { /* Duelling SYN has been handled in rds_tcp_accept_one() */ rds_tcp_reset_callbacks(new_sock, cp); /* rds_connect_path_complete() marks RDS_CONN_UP */ rds_connect_path_complete(cp, RDS_CONN_RESETTING); } else { rds_tcp_set_callbacks(new_sock, cp); rds_connect_path_complete(cp, RDS_CONN_CONNECTING); } new_sock = NULL; ret = 0; if (conn->c_npaths == 0) rds_send_ping(cp->cp_conn, cp->cp_index); goto out; rst_nsk: /* reset the newly returned accept sock and bail. * It is safe to set linger on new_sock because the RDS connection * has not been brought up on new_sock, so no RDS-level data could * be pending on it. By setting linger, we achieve the side-effect * of avoiding TIME_WAIT state on new_sock. */ sock_no_linger(new_sock->sk); kernel_sock_shutdown(new_sock, SHUT_RDWR); ret = 0; out: if (rs_tcp) mutex_unlock(&rs_tcp->t_conn_path_lock); if (new_sock) sock_release(new_sock); return ret; } void rds_tcp_listen_data_ready(struct sock *sk) { void (*ready)(struct sock *sk); rdsdebug("listen data ready sk %p\n", sk); read_lock_bh(&sk->sk_callback_lock); ready = sk->sk_user_data; if (!ready) { /* check for teardown race */ ready = sk->sk_data_ready; goto out; } /* * ->sk_data_ready is also called for a newly established child socket * before it has been accepted and the accepter has set up their * data_ready.. we only want to queue listen work for our listening * socket * * (*ready)() may be null if we are racing with netns delete, and * the listen socket is being torn down. */ if (sk->sk_state == TCP_LISTEN) rds_tcp_accept_work(sk); else ready = rds_tcp_listen_sock_def_readable(sock_net(sk)); out: read_unlock_bh(&sk->sk_callback_lock); if (ready) ready(sk); } struct socket *rds_tcp_listen_init(struct net *net, bool isv6) { struct socket *sock = NULL; struct sockaddr_storage ss; struct sockaddr_in6 *sin6; struct sockaddr_in *sin; int addr_len; int ret; ret = sock_create_kern(net, isv6 ? PF_INET6 : PF_INET, SOCK_STREAM, IPPROTO_TCP, &sock); if (ret < 0) { rdsdebug("could not create %s listener socket: %d\n", isv6 ? "IPv6" : "IPv4", ret); goto out; } sock->sk->sk_reuse = SK_CAN_REUSE; tcp_sock_set_nodelay(sock->sk); write_lock_bh(&sock->sk->sk_callback_lock); sock->sk->sk_user_data = sock->sk->sk_data_ready; sock->sk->sk_data_ready = rds_tcp_listen_data_ready; write_unlock_bh(&sock->sk->sk_callback_lock); if (isv6) { sin6 = (struct sockaddr_in6 *)&ss; sin6->sin6_family = PF_INET6; sin6->sin6_addr = in6addr_any; sin6->sin6_port = (__force u16)htons(RDS_TCP_PORT); sin6->sin6_scope_id = 0; sin6->sin6_flowinfo = 0; addr_len = sizeof(*sin6); } else { sin = (struct sockaddr_in *)&ss; sin->sin_family = PF_INET; sin->sin_addr.s_addr = INADDR_ANY; sin->sin_port = (__force u16)htons(RDS_TCP_PORT); addr_len = sizeof(*sin); } ret = kernel_bind(sock, (struct sockaddr *)&ss, addr_len); if (ret < 0) { rdsdebug("could not bind %s listener socket: %d\n", isv6 ? "IPv6" : "IPv4", ret); goto out; } ret = sock->ops->listen(sock, 64); if (ret < 0) goto out; return sock; out: if (sock) sock_release(sock); return NULL; } void rds_tcp_listen_stop(struct socket *sock, struct work_struct *acceptor) { struct sock *sk; if (!sock) return; sk = sock->sk; /* serialize with and prevent further callbacks */ lock_sock(sk); write_lock_bh(&sk->sk_callback_lock); if (sk->sk_user_data) { sk->sk_data_ready = sk->sk_user_data; sk->sk_user_data = NULL; } write_unlock_bh(&sk->sk_callback_lock); release_sock(sk); /* wait for accepts to stop and close the socket */ flush_workqueue(rds_wq); flush_work(acceptor); sock_release(sock); }