// SPDX-License-Identifier: GPL-2.0-only /* * Driver for the PCM512x CODECs * * Author: Mark Brown * Copyright 2014 Linaro Ltd */ #include #include #include #include #include #include #include #include #include #include #include #include #include "pcm512x.h" #define PCM512x_NUM_SUPPLIES 3 static const char * const pcm512x_supply_names[PCM512x_NUM_SUPPLIES] = { "AVDD", "DVDD", "CPVDD", }; struct pcm512x_priv { struct regmap *regmap; struct clk *sclk; struct regulator_bulk_data supplies[PCM512x_NUM_SUPPLIES]; struct notifier_block supply_nb[PCM512x_NUM_SUPPLIES]; int fmt; int pll_in; int pll_out; int pll_r; int pll_j; int pll_d; int pll_p; unsigned long real_pll; unsigned long overclock_pll; unsigned long overclock_dac; unsigned long overclock_dsp; int mute; struct mutex mutex; unsigned int bclk_ratio; }; /* * We can't use the same notifier block for more than one supply and * there's no way I can see to get from a callback to the caller * except container_of(). */ #define PCM512x_REGULATOR_EVENT(n) \ static int pcm512x_regulator_event_##n(struct notifier_block *nb, \ unsigned long event, void *data) \ { \ struct pcm512x_priv *pcm512x = container_of(nb, struct pcm512x_priv, \ supply_nb[n]); \ if (event & REGULATOR_EVENT_DISABLE) { \ regcache_mark_dirty(pcm512x->regmap); \ regcache_cache_only(pcm512x->regmap, true); \ } \ return 0; \ } PCM512x_REGULATOR_EVENT(0) PCM512x_REGULATOR_EVENT(1) PCM512x_REGULATOR_EVENT(2) static const struct reg_default pcm512x_reg_defaults[] = { { PCM512x_RESET, 0x00 }, { PCM512x_POWER, 0x00 }, { PCM512x_MUTE, 0x00 }, { PCM512x_DSP, 0x00 }, { PCM512x_PLL_REF, 0x00 }, { PCM512x_DAC_REF, 0x00 }, { PCM512x_DAC_ROUTING, 0x11 }, { PCM512x_DSP_PROGRAM, 0x01 }, { PCM512x_CLKDET, 0x00 }, { PCM512x_AUTO_MUTE, 0x00 }, { PCM512x_ERROR_DETECT, 0x00 }, { PCM512x_DIGITAL_VOLUME_1, 0x00 }, { PCM512x_DIGITAL_VOLUME_2, 0x30 }, { PCM512x_DIGITAL_VOLUME_3, 0x30 }, { PCM512x_DIGITAL_MUTE_1, 0x22 }, { PCM512x_DIGITAL_MUTE_2, 0x00 }, { PCM512x_DIGITAL_MUTE_3, 0x07 }, { PCM512x_OUTPUT_AMPLITUDE, 0x00 }, { PCM512x_ANALOG_GAIN_CTRL, 0x00 }, { PCM512x_UNDERVOLTAGE_PROT, 0x00 }, { PCM512x_ANALOG_MUTE_CTRL, 0x00 }, { PCM512x_ANALOG_GAIN_BOOST, 0x00 }, { PCM512x_VCOM_CTRL_1, 0x00 }, { PCM512x_VCOM_CTRL_2, 0x01 }, { PCM512x_BCLK_LRCLK_CFG, 0x00 }, { PCM512x_MASTER_MODE, 0x7c }, { PCM512x_GPIO_DACIN, 0x00 }, { PCM512x_GPIO_PLLIN, 0x00 }, { PCM512x_SYNCHRONIZE, 0x10 }, { PCM512x_PLL_COEFF_0, 0x00 }, { PCM512x_PLL_COEFF_1, 0x00 }, { PCM512x_PLL_COEFF_2, 0x00 }, { PCM512x_PLL_COEFF_3, 0x00 }, { PCM512x_PLL_COEFF_4, 0x00 }, { PCM512x_DSP_CLKDIV, 0x00 }, { PCM512x_DAC_CLKDIV, 0x00 }, { PCM512x_NCP_CLKDIV, 0x00 }, { PCM512x_OSR_CLKDIV, 0x00 }, { PCM512x_MASTER_CLKDIV_1, 0x00 }, { PCM512x_MASTER_CLKDIV_2, 0x00 }, { PCM512x_FS_SPEED_MODE, 0x00 }, { PCM512x_IDAC_1, 0x01 }, { PCM512x_IDAC_2, 0x00 }, }; static bool pcm512x_readable(struct device *dev, unsigned int reg) { switch (reg) { case PCM512x_RESET: case PCM512x_POWER: case PCM512x_MUTE: case PCM512x_PLL_EN: case PCM512x_SPI_MISO_FUNCTION: case PCM512x_DSP: case PCM512x_GPIO_EN: case PCM512x_BCLK_LRCLK_CFG: case PCM512x_DSP_GPIO_INPUT: case PCM512x_MASTER_MODE: case PCM512x_PLL_REF: case PCM512x_DAC_REF: case PCM512x_GPIO_DACIN: case PCM512x_GPIO_PLLIN: case PCM512x_SYNCHRONIZE: case PCM512x_PLL_COEFF_0: case PCM512x_PLL_COEFF_1: case PCM512x_PLL_COEFF_2: case PCM512x_PLL_COEFF_3: case PCM512x_PLL_COEFF_4: case PCM512x_DSP_CLKDIV: case PCM512x_DAC_CLKDIV: case PCM512x_NCP_CLKDIV: case PCM512x_OSR_CLKDIV: case PCM512x_MASTER_CLKDIV_1: case PCM512x_MASTER_CLKDIV_2: case PCM512x_FS_SPEED_MODE: case PCM512x_IDAC_1: case PCM512x_IDAC_2: case PCM512x_ERROR_DETECT: case PCM512x_I2S_1: case PCM512x_I2S_2: case PCM512x_DAC_ROUTING: case PCM512x_DSP_PROGRAM: case PCM512x_CLKDET: case PCM512x_AUTO_MUTE: case PCM512x_DIGITAL_VOLUME_1: case PCM512x_DIGITAL_VOLUME_2: case PCM512x_DIGITAL_VOLUME_3: case PCM512x_DIGITAL_MUTE_1: case PCM512x_DIGITAL_MUTE_2: case PCM512x_DIGITAL_MUTE_3: case PCM512x_GPIO_OUTPUT_1: case PCM512x_GPIO_OUTPUT_2: case PCM512x_GPIO_OUTPUT_3: case PCM512x_GPIO_OUTPUT_4: case PCM512x_GPIO_OUTPUT_5: case PCM512x_GPIO_OUTPUT_6: case PCM512x_GPIO_CONTROL_1: case PCM512x_GPIO_CONTROL_2: case PCM512x_OVERFLOW: case PCM512x_RATE_DET_1: case PCM512x_RATE_DET_2: case PCM512x_RATE_DET_3: case PCM512x_RATE_DET_4: case PCM512x_CLOCK_STATUS: case PCM512x_ANALOG_MUTE_DET: case PCM512x_GPIN: case PCM512x_DIGITAL_MUTE_DET: case PCM512x_OUTPUT_AMPLITUDE: case PCM512x_ANALOG_GAIN_CTRL: case PCM512x_UNDERVOLTAGE_PROT: case PCM512x_ANALOG_MUTE_CTRL: case PCM512x_ANALOG_GAIN_BOOST: case PCM512x_VCOM_CTRL_1: case PCM512x_VCOM_CTRL_2: case PCM512x_CRAM_CTRL: case PCM512x_FLEX_A: case PCM512x_FLEX_B: return true; default: /* There are 256 raw register addresses */ return reg < 0xff; } } static bool pcm512x_volatile(struct device *dev, unsigned int reg) { switch (reg) { case PCM512x_PLL_EN: case PCM512x_OVERFLOW: case PCM512x_RATE_DET_1: case PCM512x_RATE_DET_2: case PCM512x_RATE_DET_3: case PCM512x_RATE_DET_4: case PCM512x_CLOCK_STATUS: case PCM512x_ANALOG_MUTE_DET: case PCM512x_GPIN: case PCM512x_DIGITAL_MUTE_DET: case PCM512x_CRAM_CTRL: return true; default: /* There are 256 raw register addresses */ return reg < 0xff; } } static int pcm512x_overclock_pll_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol); struct pcm512x_priv *pcm512x = snd_soc_component_get_drvdata(component); ucontrol->value.integer.value[0] = pcm512x->overclock_pll; return 0; } static int pcm512x_overclock_pll_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol); struct pcm512x_priv *pcm512x = snd_soc_component_get_drvdata(component); switch (snd_soc_component_get_bias_level(component)) { case SND_SOC_BIAS_OFF: case SND_SOC_BIAS_STANDBY: break; default: return -EBUSY; } pcm512x->overclock_pll = ucontrol->value.integer.value[0]; return 0; } static int pcm512x_overclock_dsp_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol); struct pcm512x_priv *pcm512x = snd_soc_component_get_drvdata(component); ucontrol->value.integer.value[0] = pcm512x->overclock_dsp; return 0; } static int pcm512x_overclock_dsp_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol); struct pcm512x_priv *pcm512x = snd_soc_component_get_drvdata(component); switch (snd_soc_component_get_bias_level(component)) { case SND_SOC_BIAS_OFF: case SND_SOC_BIAS_STANDBY: break; default: return -EBUSY; } pcm512x->overclock_dsp = ucontrol->value.integer.value[0]; return 0; } static int pcm512x_overclock_dac_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol); struct pcm512x_priv *pcm512x = snd_soc_component_get_drvdata(component); ucontrol->value.integer.value[0] = pcm512x->overclock_dac; return 0; } static int pcm512x_overclock_dac_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol); struct pcm512x_priv *pcm512x = snd_soc_component_get_drvdata(component); switch (snd_soc_component_get_bias_level(component)) { case SND_SOC_BIAS_OFF: case SND_SOC_BIAS_STANDBY: break; default: return -EBUSY; } pcm512x->overclock_dac = ucontrol->value.integer.value[0]; return 0; } static const DECLARE_TLV_DB_SCALE(digital_tlv, -10350, 50, 1); static const DECLARE_TLV_DB_SCALE(analog_tlv, -600, 600, 0); static const DECLARE_TLV_DB_SCALE(boost_tlv, 0, 80, 0); static const char * const pcm512x_dsp_program_texts[] = { "FIR interpolation with de-emphasis", "Low latency IIR with de-emphasis", "High attenuation with de-emphasis", "Fixed process flow", "Ringing-less low latency FIR", }; static const unsigned int pcm512x_dsp_program_values[] = { 1, 2, 3, 5, 7, }; static SOC_VALUE_ENUM_SINGLE_DECL(pcm512x_dsp_program, PCM512x_DSP_PROGRAM, 0, 0x1f, pcm512x_dsp_program_texts, pcm512x_dsp_program_values); static const char * const pcm512x_clk_missing_text[] = { "1s", "2s", "3s", "4s", "5s", "6s", "7s", "8s" }; static const struct soc_enum pcm512x_clk_missing = SOC_ENUM_SINGLE(PCM512x_CLKDET, 0, 8, pcm512x_clk_missing_text); static const char * const pcm512x_autom_text[] = { "21ms", "106ms", "213ms", "533ms", "1.07s", "2.13s", "5.33s", "10.66s" }; static const struct soc_enum pcm512x_autom_l = SOC_ENUM_SINGLE(PCM512x_AUTO_MUTE, PCM512x_ATML_SHIFT, 8, pcm512x_autom_text); static const struct soc_enum pcm512x_autom_r = SOC_ENUM_SINGLE(PCM512x_AUTO_MUTE, PCM512x_ATMR_SHIFT, 8, pcm512x_autom_text); static const char * const pcm512x_ramp_rate_text[] = { "1 sample/update", "2 samples/update", "4 samples/update", "Immediate" }; static const struct soc_enum pcm512x_vndf = SOC_ENUM_SINGLE(PCM512x_DIGITAL_MUTE_1, PCM512x_VNDF_SHIFT, 4, pcm512x_ramp_rate_text); static const struct soc_enum pcm512x_vnuf = SOC_ENUM_SINGLE(PCM512x_DIGITAL_MUTE_1, PCM512x_VNUF_SHIFT, 4, pcm512x_ramp_rate_text); static const struct soc_enum pcm512x_vedf = SOC_ENUM_SINGLE(PCM512x_DIGITAL_MUTE_2, PCM512x_VEDF_SHIFT, 4, pcm512x_ramp_rate_text); static const char * const pcm512x_ramp_step_text[] = { "4dB/step", "2dB/step", "1dB/step", "0.5dB/step" }; static const struct soc_enum pcm512x_vnds = SOC_ENUM_SINGLE(PCM512x_DIGITAL_MUTE_1, PCM512x_VNDS_SHIFT, 4, pcm512x_ramp_step_text); static const struct soc_enum pcm512x_vnus = SOC_ENUM_SINGLE(PCM512x_DIGITAL_MUTE_1, PCM512x_VNUS_SHIFT, 4, pcm512x_ramp_step_text); static const struct soc_enum pcm512x_veds = SOC_ENUM_SINGLE(PCM512x_DIGITAL_MUTE_2, PCM512x_VEDS_SHIFT, 4, pcm512x_ramp_step_text); static int pcm512x_update_mute(struct pcm512x_priv *pcm512x) { return regmap_update_bits( pcm512x->regmap, PCM512x_MUTE, PCM512x_RQML | PCM512x_RQMR, (!!(pcm512x->mute & 0x5) << PCM512x_RQML_SHIFT) | (!!(pcm512x->mute & 0x3) << PCM512x_RQMR_SHIFT)); } static int pcm512x_digital_playback_switch_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol); struct pcm512x_priv *pcm512x = snd_soc_component_get_drvdata(component); mutex_lock(&pcm512x->mutex); ucontrol->value.integer.value[0] = !(pcm512x->mute & 0x4); ucontrol->value.integer.value[1] = !(pcm512x->mute & 0x2); mutex_unlock(&pcm512x->mutex); return 0; } static int pcm512x_digital_playback_switch_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol); struct pcm512x_priv *pcm512x = snd_soc_component_get_drvdata(component); int ret, changed = 0; mutex_lock(&pcm512x->mutex); if ((pcm512x->mute & 0x4) == (ucontrol->value.integer.value[0] << 2)) { pcm512x->mute ^= 0x4; changed = 1; } if ((pcm512x->mute & 0x2) == (ucontrol->value.integer.value[1] << 1)) { pcm512x->mute ^= 0x2; changed = 1; } if (changed) { ret = pcm512x_update_mute(pcm512x); if (ret != 0) { dev_err(component->dev, "Failed to update digital mute: %d\n", ret); mutex_unlock(&pcm512x->mutex); return ret; } } mutex_unlock(&pcm512x->mutex); return changed; } static const struct snd_kcontrol_new pcm512x_controls[] = { SOC_DOUBLE_R_TLV("Digital Playback Volume", PCM512x_DIGITAL_VOLUME_2, PCM512x_DIGITAL_VOLUME_3, 0, 255, 1, digital_tlv), SOC_DOUBLE_TLV("Analogue Playback Volume", PCM512x_ANALOG_GAIN_CTRL, PCM512x_LAGN_SHIFT, PCM512x_RAGN_SHIFT, 1, 1, analog_tlv), SOC_DOUBLE_TLV("Analogue Playback Boost Volume", PCM512x_ANALOG_GAIN_BOOST, PCM512x_AGBL_SHIFT, PCM512x_AGBR_SHIFT, 1, 0, boost_tlv), { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Digital Playback Switch", .index = 0, .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, .info = snd_ctl_boolean_stereo_info, .get = pcm512x_digital_playback_switch_get, .put = pcm512x_digital_playback_switch_put }, SOC_SINGLE("Deemphasis Switch", PCM512x_DSP, PCM512x_DEMP_SHIFT, 1, 1), SOC_ENUM("DSP Program", pcm512x_dsp_program), SOC_ENUM("Clock Missing Period", pcm512x_clk_missing), SOC_ENUM("Auto Mute Time Left", pcm512x_autom_l), SOC_ENUM("Auto Mute Time Right", pcm512x_autom_r), SOC_SINGLE("Auto Mute Mono Switch", PCM512x_DIGITAL_MUTE_3, PCM512x_ACTL_SHIFT, 1, 0), SOC_DOUBLE("Auto Mute Switch", PCM512x_DIGITAL_MUTE_3, PCM512x_AMLE_SHIFT, PCM512x_AMRE_SHIFT, 1, 0), SOC_ENUM("Volume Ramp Down Rate", pcm512x_vndf), SOC_ENUM("Volume Ramp Down Step", pcm512x_vnds), SOC_ENUM("Volume Ramp Up Rate", pcm512x_vnuf), SOC_ENUM("Volume Ramp Up Step", pcm512x_vnus), SOC_ENUM("Volume Ramp Down Emergency Rate", pcm512x_vedf), SOC_ENUM("Volume Ramp Down Emergency Step", pcm512x_veds), SOC_SINGLE_EXT("Max Overclock PLL", SND_SOC_NOPM, 0, 20, 0, pcm512x_overclock_pll_get, pcm512x_overclock_pll_put), SOC_SINGLE_EXT("Max Overclock DSP", SND_SOC_NOPM, 0, 40, 0, pcm512x_overclock_dsp_get, pcm512x_overclock_dsp_put), SOC_SINGLE_EXT("Max Overclock DAC", SND_SOC_NOPM, 0, 40, 0, pcm512x_overclock_dac_get, pcm512x_overclock_dac_put), }; static const struct snd_soc_dapm_widget pcm512x_dapm_widgets[] = { SND_SOC_DAPM_DAC("DACL", NULL, SND_SOC_NOPM, 0, 0), SND_SOC_DAPM_DAC("DACR", NULL, SND_SOC_NOPM, 0, 0), SND_SOC_DAPM_OUTPUT("OUTL"), SND_SOC_DAPM_OUTPUT("OUTR"), }; static const struct snd_soc_dapm_route pcm512x_dapm_routes[] = { { "DACL", NULL, "Playback" }, { "DACR", NULL, "Playback" }, { "OUTL", NULL, "DACL" }, { "OUTR", NULL, "DACR" }, }; static unsigned long pcm512x_pll_max(struct pcm512x_priv *pcm512x) { return 25000000 + 25000000 * pcm512x->overclock_pll / 100; } static unsigned long pcm512x_dsp_max(struct pcm512x_priv *pcm512x) { return 50000000 + 50000000 * pcm512x->overclock_dsp / 100; } static unsigned long pcm512x_dac_max(struct pcm512x_priv *pcm512x, unsigned long rate) { return rate + rate * pcm512x->overclock_dac / 100; } static unsigned long pcm512x_sck_max(struct pcm512x_priv *pcm512x) { if (!pcm512x->pll_out) return 25000000; return pcm512x_pll_max(pcm512x); } static unsigned long pcm512x_ncp_target(struct pcm512x_priv *pcm512x, unsigned long dac_rate) { /* * If the DAC is not actually overclocked, use the good old * NCP target rate... */ if (dac_rate <= 6144000) return 1536000; /* * ...but if the DAC is in fact overclocked, bump the NCP target * rate to get the recommended dividers even when overclocking. */ return pcm512x_dac_max(pcm512x, 1536000); } static const u32 pcm512x_dai_rates[] = { 8000, 11025, 16000, 22050, 32000, 44100, 48000, 64000, 88200, 96000, 176400, 192000, 384000, }; static const struct snd_pcm_hw_constraint_list constraints_slave = { .count = ARRAY_SIZE(pcm512x_dai_rates), .list = pcm512x_dai_rates, }; static int pcm512x_hw_rule_rate(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule) { struct pcm512x_priv *pcm512x = rule->private; struct snd_interval ranges[2]; int frame_size; frame_size = snd_soc_params_to_frame_size(params); if (frame_size < 0) return frame_size; switch (frame_size) { case 32: /* No hole when the frame size is 32. */ return 0; case 48: case 64: /* There is only one hole in the range of supported * rates, but it moves with the frame size. */ memset(ranges, 0, sizeof(ranges)); ranges[0].min = 8000; ranges[0].max = pcm512x_sck_max(pcm512x) / frame_size / 2; ranges[1].min = DIV_ROUND_UP(16000000, frame_size); ranges[1].max = 384000; break; default: return -EINVAL; } return snd_interval_ranges(hw_param_interval(params, rule->var), ARRAY_SIZE(ranges), ranges, 0); } static int pcm512x_dai_startup_master(struct snd_pcm_substream *substream, struct snd_soc_dai *dai) { struct snd_soc_component *component = dai->component; struct pcm512x_priv *pcm512x = snd_soc_component_get_drvdata(component); struct device *dev = dai->dev; struct snd_pcm_hw_constraint_ratnums *constraints_no_pll; struct snd_ratnum *rats_no_pll; if (IS_ERR(pcm512x->sclk)) { dev_err(dev, "Need SCLK for master mode: %ld\n", PTR_ERR(pcm512x->sclk)); return PTR_ERR(pcm512x->sclk); } if (pcm512x->pll_out) return snd_pcm_hw_rule_add(substream->runtime, 0, SNDRV_PCM_HW_PARAM_RATE, pcm512x_hw_rule_rate, pcm512x, SNDRV_PCM_HW_PARAM_FRAME_BITS, SNDRV_PCM_HW_PARAM_CHANNELS, -1); constraints_no_pll = devm_kzalloc(dev, sizeof(*constraints_no_pll), GFP_KERNEL); if (!constraints_no_pll) return -ENOMEM; constraints_no_pll->nrats = 1; rats_no_pll = devm_kzalloc(dev, sizeof(*rats_no_pll), GFP_KERNEL); if (!rats_no_pll) return -ENOMEM; constraints_no_pll->rats = rats_no_pll; rats_no_pll->num = clk_get_rate(pcm512x->sclk) / 64; rats_no_pll->den_min = 1; rats_no_pll->den_max = 128; rats_no_pll->den_step = 1; return snd_pcm_hw_constraint_ratnums(substream->runtime, 0, SNDRV_PCM_HW_PARAM_RATE, constraints_no_pll); } static int pcm512x_dai_startup_slave(struct snd_pcm_substream *substream, struct snd_soc_dai *dai) { struct snd_soc_component *component = dai->component; struct pcm512x_priv *pcm512x = snd_soc_component_get_drvdata(component); struct device *dev = dai->dev; struct regmap *regmap = pcm512x->regmap; if (IS_ERR(pcm512x->sclk)) { dev_info(dev, "No SCLK, using BCLK: %ld\n", PTR_ERR(pcm512x->sclk)); /* Disable reporting of missing SCLK as an error */ regmap_update_bits(regmap, PCM512x_ERROR_DETECT, PCM512x_IDCH, PCM512x_IDCH); /* Switch PLL input to BCLK */ regmap_update_bits(regmap, PCM512x_PLL_REF, PCM512x_SREF, PCM512x_SREF_BCK); } return snd_pcm_hw_constraint_list(substream->runtime, 0, SNDRV_PCM_HW_PARAM_RATE, &constraints_slave); } static int pcm512x_dai_startup(struct snd_pcm_substream *substream, struct snd_soc_dai *dai) { struct snd_soc_component *component = dai->component; struct pcm512x_priv *pcm512x = snd_soc_component_get_drvdata(component); switch (pcm512x->fmt & SND_SOC_DAIFMT_MASTER_MASK) { case SND_SOC_DAIFMT_CBM_CFM: case SND_SOC_DAIFMT_CBM_CFS: return pcm512x_dai_startup_master(substream, dai); case SND_SOC_DAIFMT_CBS_CFS: return pcm512x_dai_startup_slave(substream, dai); default: return -EINVAL; } } static int pcm512x_set_bias_level(struct snd_soc_component *component, enum snd_soc_bias_level level) { struct pcm512x_priv *pcm512x = dev_get_drvdata(component->dev); int ret; switch (level) { case SND_SOC_BIAS_ON: case SND_SOC_BIAS_PREPARE: break; case SND_SOC_BIAS_STANDBY: ret = regmap_update_bits(pcm512x->regmap, PCM512x_POWER, PCM512x_RQST, 0); if (ret != 0) { dev_err(component->dev, "Failed to remove standby: %d\n", ret); return ret; } break; case SND_SOC_BIAS_OFF: ret = regmap_update_bits(pcm512x->regmap, PCM512x_POWER, PCM512x_RQST, PCM512x_RQST); if (ret != 0) { dev_err(component->dev, "Failed to request standby: %d\n", ret); return ret; } break; } return 0; } static unsigned long pcm512x_find_sck(struct snd_soc_dai *dai, unsigned long bclk_rate) { struct device *dev = dai->dev; struct snd_soc_component *component = dai->component; struct pcm512x_priv *pcm512x = snd_soc_component_get_drvdata(component); unsigned long sck_rate; int pow2; /* 64 MHz <= pll_rate <= 100 MHz, VREF mode */ /* 16 MHz <= sck_rate <= 25 MHz, VREF mode */ /* select sck_rate as a multiple of bclk_rate but still with * as many factors of 2 as possible, as that makes it easier * to find a fast DAC rate */ pow2 = 1 << fls((pcm512x_pll_max(pcm512x) - 16000000) / bclk_rate); for (; pow2; pow2 >>= 1) { sck_rate = rounddown(pcm512x_pll_max(pcm512x), bclk_rate * pow2); if (sck_rate >= 16000000) break; } if (!pow2) { dev_err(dev, "Impossible to generate a suitable SCK\n"); return 0; } dev_dbg(dev, "sck_rate %lu\n", sck_rate); return sck_rate; } /* pll_rate = pllin_rate * R * J.D / P * 1 <= R <= 16 * 1 <= J <= 63 * 0 <= D <= 9999 * 1 <= P <= 15 * 64 MHz <= pll_rate <= 100 MHz * if D == 0 * 1 MHz <= pllin_rate / P <= 20 MHz * else if D > 0 * 6.667 MHz <= pllin_rate / P <= 20 MHz * 4 <= J <= 11 * R = 1 */ static int pcm512x_find_pll_coeff(struct snd_soc_dai *dai, unsigned long pllin_rate, unsigned long pll_rate) { struct device *dev = dai->dev; struct snd_soc_component *component = dai->component; struct pcm512x_priv *pcm512x = snd_soc_component_get_drvdata(component); unsigned long common; int R, J, D, P; unsigned long K; /* 10000 * J.D */ unsigned long num; unsigned long den; common = gcd(pll_rate, pllin_rate); dev_dbg(dev, "pll %lu pllin %lu common %lu\n", pll_rate, pllin_rate, common); num = pll_rate / common; den = pllin_rate / common; /* pllin_rate / P (or here, den) cannot be greater than 20 MHz */ if (pllin_rate / den > 20000000 && num < 8) { num *= DIV_ROUND_UP(pllin_rate / den, 20000000); den *= DIV_ROUND_UP(pllin_rate / den, 20000000); } dev_dbg(dev, "num / den = %lu / %lu\n", num, den); P = den; if (den <= 15 && num <= 16 * 63 && 1000000 <= pllin_rate / P && pllin_rate / P <= 20000000) { /* Try the case with D = 0 */ D = 0; /* factor 'num' into J and R, such that R <= 16 and J <= 63 */ for (R = 16; R; R--) { if (num % R) continue; J = num / R; if (J == 0 || J > 63) continue; dev_dbg(dev, "R * J / P = %d * %d / %d\n", R, J, P); pcm512x->real_pll = pll_rate; goto done; } /* no luck */ } R = 1; if (num > 0xffffffffUL / 10000) goto fallback; /* Try to find an exact pll_rate using the D > 0 case */ common = gcd(10000 * num, den); num = 10000 * num / common; den /= common; dev_dbg(dev, "num %lu den %lu common %lu\n", num, den, common); for (P = den; P <= 15; P++) { if (pllin_rate / P < 6667000 || 200000000 < pllin_rate / P) continue; if (num * P % den) continue; K = num * P / den; /* J == 12 is ok if D == 0 */ if (K < 40000 || K > 120000) continue; J = K / 10000; D = K % 10000; dev_dbg(dev, "J.D / P = %d.%04d / %d\n", J, D, P); pcm512x->real_pll = pll_rate; goto done; } /* Fall back to an approximate pll_rate */ fallback: /* find smallest possible P */ P = DIV_ROUND_UP(pllin_rate, 20000000); if (!P) P = 1; else if (P > 15) { dev_err(dev, "Need a slower clock as pll-input\n"); return -EINVAL; } if (pllin_rate / P < 6667000) { dev_err(dev, "Need a faster clock as pll-input\n"); return -EINVAL; } K = DIV_ROUND_CLOSEST_ULL(10000ULL * pll_rate * P, pllin_rate); if (K < 40000) K = 40000; /* J == 12 is ok if D == 0 */ if (K > 120000) K = 120000; J = K / 10000; D = K % 10000; dev_dbg(dev, "J.D / P ~ %d.%04d / %d\n", J, D, P); pcm512x->real_pll = DIV_ROUND_DOWN_ULL((u64)K * pllin_rate, 10000 * P); done: pcm512x->pll_r = R; pcm512x->pll_j = J; pcm512x->pll_d = D; pcm512x->pll_p = P; return 0; } static unsigned long pcm512x_pllin_dac_rate(struct snd_soc_dai *dai, unsigned long osr_rate, unsigned long pllin_rate) { struct snd_soc_component *component = dai->component; struct pcm512x_priv *pcm512x = snd_soc_component_get_drvdata(component); unsigned long dac_rate; if (!pcm512x->pll_out) return 0; /* no PLL to bypass, force SCK as DAC input */ if (pllin_rate % osr_rate) return 0; /* futile, quit early */ /* run DAC no faster than 6144000 Hz */ for (dac_rate = rounddown(pcm512x_dac_max(pcm512x, 6144000), osr_rate); dac_rate; dac_rate -= osr_rate) { if (pllin_rate / dac_rate > 128) return 0; /* DAC divider would be too big */ if (!(pllin_rate % dac_rate)) return dac_rate; dac_rate -= osr_rate; } return 0; } static int pcm512x_set_dividers(struct snd_soc_dai *dai, struct snd_pcm_hw_params *params) { struct device *dev = dai->dev; struct snd_soc_component *component = dai->component; struct pcm512x_priv *pcm512x = snd_soc_component_get_drvdata(component); unsigned long pllin_rate = 0; unsigned long pll_rate; unsigned long sck_rate; unsigned long mck_rate; unsigned long bclk_rate; unsigned long sample_rate; unsigned long osr_rate; unsigned long dacsrc_rate; int bclk_div; int lrclk_div; int dsp_div; int dac_div; unsigned long dac_rate; int ncp_div; int osr_div; int ret; int idac; int fssp; int gpio; if (pcm512x->bclk_ratio > 0) { lrclk_div = pcm512x->bclk_ratio; } else { lrclk_div = snd_soc_params_to_frame_size(params); if (lrclk_div == 0) { dev_err(dev, "No LRCLK?\n"); return -EINVAL; } } if (!pcm512x->pll_out) { sck_rate = clk_get_rate(pcm512x->sclk); bclk_rate = params_rate(params) * lrclk_div; bclk_div = DIV_ROUND_CLOSEST(sck_rate, bclk_rate); mck_rate = sck_rate; } else { ret = snd_soc_params_to_bclk(params); if (ret < 0) { dev_err(dev, "Failed to find suitable BCLK: %d\n", ret); return ret; } if (ret == 0) { dev_err(dev, "No BCLK?\n"); return -EINVAL; } bclk_rate = ret; pllin_rate = clk_get_rate(pcm512x->sclk); sck_rate = pcm512x_find_sck(dai, bclk_rate); if (!sck_rate) return -EINVAL; pll_rate = 4 * sck_rate; ret = pcm512x_find_pll_coeff(dai, pllin_rate, pll_rate); if (ret != 0) return ret; ret = regmap_write(pcm512x->regmap, PCM512x_PLL_COEFF_0, pcm512x->pll_p - 1); if (ret != 0) { dev_err(dev, "Failed to write PLL P: %d\n", ret); return ret; } ret = regmap_write(pcm512x->regmap, PCM512x_PLL_COEFF_1, pcm512x->pll_j); if (ret != 0) { dev_err(dev, "Failed to write PLL J: %d\n", ret); return ret; } ret = regmap_write(pcm512x->regmap, PCM512x_PLL_COEFF_2, pcm512x->pll_d >> 8); if (ret != 0) { dev_err(dev, "Failed to write PLL D msb: %d\n", ret); return ret; } ret = regmap_write(pcm512x->regmap, PCM512x_PLL_COEFF_3, pcm512x->pll_d & 0xff); if (ret != 0) { dev_err(dev, "Failed to write PLL D lsb: %d\n", ret); return ret; } ret = regmap_write(pcm512x->regmap, PCM512x_PLL_COEFF_4, pcm512x->pll_r - 1); if (ret != 0) { dev_err(dev, "Failed to write PLL R: %d\n", ret); return ret; } mck_rate = pcm512x->real_pll; bclk_div = DIV_ROUND_CLOSEST(sck_rate, bclk_rate); } if (bclk_div > 128) { dev_err(dev, "Failed to find BCLK divider\n"); return -EINVAL; } /* the actual rate */ sample_rate = sck_rate / bclk_div / lrclk_div; osr_rate = 16 * sample_rate; /* run DSP no faster than 50 MHz */ dsp_div = mck_rate > pcm512x_dsp_max(pcm512x) ? 2 : 1; dac_rate = pcm512x_pllin_dac_rate(dai, osr_rate, pllin_rate); if (dac_rate) { /* the desired clock rate is "compatible" with the pll input * clock, so use that clock as dac input instead of the pll * output clock since the pll will introduce jitter and thus * noise. */ dev_dbg(dev, "using pll input as dac input\n"); ret = regmap_update_bits(pcm512x->regmap, PCM512x_DAC_REF, PCM512x_SDAC, PCM512x_SDAC_GPIO); if (ret != 0) { dev_err(component->dev, "Failed to set gpio as dacref: %d\n", ret); return ret; } gpio = PCM512x_GREF_GPIO1 + pcm512x->pll_in - 1; ret = regmap_update_bits(pcm512x->regmap, PCM512x_GPIO_DACIN, PCM512x_GREF, gpio); if (ret != 0) { dev_err(component->dev, "Failed to set gpio %d as dacin: %d\n", pcm512x->pll_in, ret); return ret; } dacsrc_rate = pllin_rate; } else { /* run DAC no faster than 6144000 Hz */ unsigned long dac_mul = pcm512x_dac_max(pcm512x, 6144000) / osr_rate; unsigned long sck_mul = sck_rate / osr_rate; for (; dac_mul; dac_mul--) { if (!(sck_mul % dac_mul)) break; } if (!dac_mul) { dev_err(dev, "Failed to find DAC rate\n"); return -EINVAL; } dac_rate = dac_mul * osr_rate; dev_dbg(dev, "dac_rate %lu sample_rate %lu\n", dac_rate, sample_rate); ret = regmap_update_bits(pcm512x->regmap, PCM512x_DAC_REF, PCM512x_SDAC, PCM512x_SDAC_SCK); if (ret != 0) { dev_err(component->dev, "Failed to set sck as dacref: %d\n", ret); return ret; } dacsrc_rate = sck_rate; } osr_div = DIV_ROUND_CLOSEST(dac_rate, osr_rate); if (osr_div > 128) { dev_err(dev, "Failed to find OSR divider\n"); return -EINVAL; } dac_div = DIV_ROUND_CLOSEST(dacsrc_rate, dac_rate); if (dac_div > 128) { dev_err(dev, "Failed to find DAC divider\n"); return -EINVAL; } dac_rate = dacsrc_rate / dac_div; ncp_div = DIV_ROUND_CLOSEST(dac_rate, pcm512x_ncp_target(pcm512x, dac_rate)); if (ncp_div > 128 || dac_rate / ncp_div > 2048000) { /* run NCP no faster than 2048000 Hz, but why? */ ncp_div = DIV_ROUND_UP(dac_rate, 2048000); if (ncp_div > 128) { dev_err(dev, "Failed to find NCP divider\n"); return -EINVAL; } } idac = mck_rate / (dsp_div * sample_rate); ret = regmap_write(pcm512x->regmap, PCM512x_DSP_CLKDIV, dsp_div - 1); if (ret != 0) { dev_err(dev, "Failed to write DSP divider: %d\n", ret); return ret; } ret = regmap_write(pcm512x->regmap, PCM512x_DAC_CLKDIV, dac_div - 1); if (ret != 0) { dev_err(dev, "Failed to write DAC divider: %d\n", ret); return ret; } ret = regmap_write(pcm512x->regmap, PCM512x_NCP_CLKDIV, ncp_div - 1); if (ret != 0) { dev_err(dev, "Failed to write NCP divider: %d\n", ret); return ret; } ret = regmap_write(pcm512x->regmap, PCM512x_OSR_CLKDIV, osr_div - 1); if (ret != 0) { dev_err(dev, "Failed to write OSR divider: %d\n", ret); return ret; } ret = regmap_write(pcm512x->regmap, PCM512x_MASTER_CLKDIV_1, bclk_div - 1); if (ret != 0) { dev_err(dev, "Failed to write BCLK divider: %d\n", ret); return ret; } ret = regmap_write(pcm512x->regmap, PCM512x_MASTER_CLKDIV_2, lrclk_div - 1); if (ret != 0) { dev_err(dev, "Failed to write LRCLK divider: %d\n", ret); return ret; } ret = regmap_write(pcm512x->regmap, PCM512x_IDAC_1, idac >> 8); if (ret != 0) { dev_err(dev, "Failed to write IDAC msb divider: %d\n", ret); return ret; } ret = regmap_write(pcm512x->regmap, PCM512x_IDAC_2, idac & 0xff); if (ret != 0) { dev_err(dev, "Failed to write IDAC lsb divider: %d\n", ret); return ret; } if (sample_rate <= pcm512x_dac_max(pcm512x, 48000)) fssp = PCM512x_FSSP_48KHZ; else if (sample_rate <= pcm512x_dac_max(pcm512x, 96000)) fssp = PCM512x_FSSP_96KHZ; else if (sample_rate <= pcm512x_dac_max(pcm512x, 192000)) fssp = PCM512x_FSSP_192KHZ; else fssp = PCM512x_FSSP_384KHZ; ret = regmap_update_bits(pcm512x->regmap, PCM512x_FS_SPEED_MODE, PCM512x_FSSP, fssp); if (ret != 0) { dev_err(component->dev, "Failed to set fs speed: %d\n", ret); return ret; } dev_dbg(component->dev, "DSP divider %d\n", dsp_div); dev_dbg(component->dev, "DAC divider %d\n", dac_div); dev_dbg(component->dev, "NCP divider %d\n", ncp_div); dev_dbg(component->dev, "OSR divider %d\n", osr_div); dev_dbg(component->dev, "BCK divider %d\n", bclk_div); dev_dbg(component->dev, "LRCK divider %d\n", lrclk_div); dev_dbg(component->dev, "IDAC %d\n", idac); dev_dbg(component->dev, "1<component; struct pcm512x_priv *pcm512x = snd_soc_component_get_drvdata(component); int alen; int gpio; int clock_output; int master_mode; int ret; dev_dbg(component->dev, "hw_params %u Hz, %u channels\n", params_rate(params), params_channels(params)); switch (params_width(params)) { case 16: alen = PCM512x_ALEN_16; break; case 20: alen = PCM512x_ALEN_20; break; case 24: alen = PCM512x_ALEN_24; break; case 32: alen = PCM512x_ALEN_32; break; default: dev_err(component->dev, "Bad frame size: %d\n", params_width(params)); return -EINVAL; } switch (pcm512x->fmt & SND_SOC_DAIFMT_MASTER_MASK) { case SND_SOC_DAIFMT_CBS_CFS: ret = regmap_update_bits(pcm512x->regmap, PCM512x_BCLK_LRCLK_CFG, PCM512x_BCKP | PCM512x_BCKO | PCM512x_LRKO, 0); if (ret != 0) { dev_err(component->dev, "Failed to enable slave mode: %d\n", ret); return ret; } ret = regmap_update_bits(pcm512x->regmap, PCM512x_ERROR_DETECT, PCM512x_DCAS, 0); if (ret != 0) { dev_err(component->dev, "Failed to enable clock divider autoset: %d\n", ret); return ret; } return 0; case SND_SOC_DAIFMT_CBM_CFM: clock_output = PCM512x_BCKO | PCM512x_LRKO; master_mode = PCM512x_RLRK | PCM512x_RBCK; break; case SND_SOC_DAIFMT_CBM_CFS: clock_output = PCM512x_BCKO; master_mode = PCM512x_RBCK; break; default: return -EINVAL; } ret = regmap_update_bits(pcm512x->regmap, PCM512x_I2S_1, PCM512x_ALEN, alen); if (ret != 0) { dev_err(component->dev, "Failed to set frame size: %d\n", ret); return ret; } if (pcm512x->pll_out) { ret = regmap_write(pcm512x->regmap, PCM512x_FLEX_A, 0x11); if (ret != 0) { dev_err(component->dev, "Failed to set FLEX_A: %d\n", ret); return ret; } ret = regmap_write(pcm512x->regmap, PCM512x_FLEX_B, 0xff); if (ret != 0) { dev_err(component->dev, "Failed to set FLEX_B: %d\n", ret); return ret; } ret = regmap_update_bits(pcm512x->regmap, PCM512x_ERROR_DETECT, PCM512x_IDFS | PCM512x_IDBK | PCM512x_IDSK | PCM512x_IDCH | PCM512x_IDCM | PCM512x_DCAS | PCM512x_IPLK, PCM512x_IDFS | PCM512x_IDBK | PCM512x_IDSK | PCM512x_IDCH | PCM512x_DCAS); if (ret != 0) { dev_err(component->dev, "Failed to ignore auto-clock failures: %d\n", ret); return ret; } } else { ret = regmap_update_bits(pcm512x->regmap, PCM512x_ERROR_DETECT, PCM512x_IDFS | PCM512x_IDBK | PCM512x_IDSK | PCM512x_IDCH | PCM512x_IDCM | PCM512x_DCAS | PCM512x_IPLK, PCM512x_IDFS | PCM512x_IDBK | PCM512x_IDSK | PCM512x_IDCH | PCM512x_DCAS | PCM512x_IPLK); if (ret != 0) { dev_err(component->dev, "Failed to ignore auto-clock failures: %d\n", ret); return ret; } ret = regmap_update_bits(pcm512x->regmap, PCM512x_PLL_EN, PCM512x_PLLE, 0); if (ret != 0) { dev_err(component->dev, "Failed to disable pll: %d\n", ret); return ret; } } ret = pcm512x_set_dividers(dai, params); if (ret != 0) return ret; if (pcm512x->pll_out) { ret = regmap_update_bits(pcm512x->regmap, PCM512x_PLL_REF, PCM512x_SREF, PCM512x_SREF_GPIO); if (ret != 0) { dev_err(component->dev, "Failed to set gpio as pllref: %d\n", ret); return ret; } gpio = PCM512x_GREF_GPIO1 + pcm512x->pll_in - 1; ret = regmap_update_bits(pcm512x->regmap, PCM512x_GPIO_PLLIN, PCM512x_GREF, gpio); if (ret != 0) { dev_err(component->dev, "Failed to set gpio %d as pllin: %d\n", pcm512x->pll_in, ret); return ret; } ret = regmap_update_bits(pcm512x->regmap, PCM512x_PLL_EN, PCM512x_PLLE, PCM512x_PLLE); if (ret != 0) { dev_err(component->dev, "Failed to enable pll: %d\n", ret); return ret; } } ret = regmap_update_bits(pcm512x->regmap, PCM512x_BCLK_LRCLK_CFG, PCM512x_BCKP | PCM512x_BCKO | PCM512x_LRKO, clock_output); if (ret != 0) { dev_err(component->dev, "Failed to enable clock output: %d\n", ret); return ret; } ret = regmap_update_bits(pcm512x->regmap, PCM512x_MASTER_MODE, PCM512x_RLRK | PCM512x_RBCK, master_mode); if (ret != 0) { dev_err(component->dev, "Failed to enable master mode: %d\n", ret); return ret; } if (pcm512x->pll_out) { gpio = PCM512x_G1OE << (pcm512x->pll_out - 1); ret = regmap_update_bits(pcm512x->regmap, PCM512x_GPIO_EN, gpio, gpio); if (ret != 0) { dev_err(component->dev, "Failed to enable gpio %d: %d\n", pcm512x->pll_out, ret); return ret; } gpio = PCM512x_GPIO_OUTPUT_1 + pcm512x->pll_out - 1; ret = regmap_update_bits(pcm512x->regmap, gpio, PCM512x_GxSL, PCM512x_GxSL_PLLCK); if (ret != 0) { dev_err(component->dev, "Failed to output pll on %d: %d\n", ret, pcm512x->pll_out); return ret; } } ret = regmap_update_bits(pcm512x->regmap, PCM512x_SYNCHRONIZE, PCM512x_RQSY, PCM512x_RQSY_HALT); if (ret != 0) { dev_err(component->dev, "Failed to halt clocks: %d\n", ret); return ret; } ret = regmap_update_bits(pcm512x->regmap, PCM512x_SYNCHRONIZE, PCM512x_RQSY, PCM512x_RQSY_RESUME); if (ret != 0) { dev_err(component->dev, "Failed to resume clocks: %d\n", ret); return ret; } return 0; } static int pcm512x_set_fmt(struct snd_soc_dai *dai, unsigned int fmt) { struct snd_soc_component *component = dai->component; struct pcm512x_priv *pcm512x = snd_soc_component_get_drvdata(component); pcm512x->fmt = fmt; return 0; } static int pcm512x_set_bclk_ratio(struct snd_soc_dai *dai, unsigned int ratio) { struct snd_soc_component *component = dai->component; struct pcm512x_priv *pcm512x = snd_soc_component_get_drvdata(component); if (ratio > 256) return -EINVAL; pcm512x->bclk_ratio = ratio; return 0; } static int pcm512x_mute(struct snd_soc_dai *dai, int mute, int direction) { struct snd_soc_component *component = dai->component; struct pcm512x_priv *pcm512x = snd_soc_component_get_drvdata(component); int ret; unsigned int mute_det; mutex_lock(&pcm512x->mutex); if (mute) { pcm512x->mute |= 0x1; ret = regmap_update_bits(pcm512x->regmap, PCM512x_MUTE, PCM512x_RQML | PCM512x_RQMR, PCM512x_RQML | PCM512x_RQMR); if (ret != 0) { dev_err(component->dev, "Failed to set digital mute: %d\n", ret); goto unlock; } regmap_read_poll_timeout(pcm512x->regmap, PCM512x_ANALOG_MUTE_DET, mute_det, (mute_det & 0x3) == 0, 200, 10000); } else { pcm512x->mute &= ~0x1; ret = pcm512x_update_mute(pcm512x); if (ret != 0) { dev_err(component->dev, "Failed to update digital mute: %d\n", ret); goto unlock; } regmap_read_poll_timeout(pcm512x->regmap, PCM512x_ANALOG_MUTE_DET, mute_det, (mute_det & 0x3) == ((~pcm512x->mute >> 1) & 0x3), 200, 10000); } unlock: mutex_unlock(&pcm512x->mutex); return ret; } static const struct snd_soc_dai_ops pcm512x_dai_ops = { .startup = pcm512x_dai_startup, .hw_params = pcm512x_hw_params, .set_fmt = pcm512x_set_fmt, .mute_stream = pcm512x_mute, .set_bclk_ratio = pcm512x_set_bclk_ratio, .no_capture_mute = 1, }; static struct snd_soc_dai_driver pcm512x_dai = { .name = "pcm512x-hifi", .playback = { .stream_name = "Playback", .channels_min = 2, .channels_max = 2, .rates = SNDRV_PCM_RATE_CONTINUOUS, .rate_min = 8000, .rate_max = 384000, .formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S32_LE }, .ops = &pcm512x_dai_ops, }; static const struct snd_soc_component_driver pcm512x_component_driver = { .set_bias_level = pcm512x_set_bias_level, .controls = pcm512x_controls, .num_controls = ARRAY_SIZE(pcm512x_controls), .dapm_widgets = pcm512x_dapm_widgets, .num_dapm_widgets = ARRAY_SIZE(pcm512x_dapm_widgets), .dapm_routes = pcm512x_dapm_routes, .num_dapm_routes = ARRAY_SIZE(pcm512x_dapm_routes), .use_pmdown_time = 1, .endianness = 1, .non_legacy_dai_naming = 1, }; static const struct regmap_range_cfg pcm512x_range = { .name = "Pages", .range_min = PCM512x_VIRT_BASE, .range_max = PCM512x_MAX_REGISTER, .selector_reg = PCM512x_PAGE, .selector_mask = 0xff, .window_start = 0, .window_len = 0x100, }; const struct regmap_config pcm512x_regmap = { .reg_bits = 8, .val_bits = 8, .readable_reg = pcm512x_readable, .volatile_reg = pcm512x_volatile, .ranges = &pcm512x_range, .num_ranges = 1, .max_register = PCM512x_MAX_REGISTER, .reg_defaults = pcm512x_reg_defaults, .num_reg_defaults = ARRAY_SIZE(pcm512x_reg_defaults), .cache_type = REGCACHE_RBTREE, }; EXPORT_SYMBOL_GPL(pcm512x_regmap); int pcm512x_probe(struct device *dev, struct regmap *regmap) { struct pcm512x_priv *pcm512x; int i, ret; pcm512x = devm_kzalloc(dev, sizeof(struct pcm512x_priv), GFP_KERNEL); if (!pcm512x) return -ENOMEM; mutex_init(&pcm512x->mutex); dev_set_drvdata(dev, pcm512x); pcm512x->regmap = regmap; for (i = 0; i < ARRAY_SIZE(pcm512x->supplies); i++) pcm512x->supplies[i].supply = pcm512x_supply_names[i]; ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(pcm512x->supplies), pcm512x->supplies); if (ret != 0) { dev_err(dev, "Failed to get supplies: %d\n", ret); return ret; } pcm512x->supply_nb[0].notifier_call = pcm512x_regulator_event_0; pcm512x->supply_nb[1].notifier_call = pcm512x_regulator_event_1; pcm512x->supply_nb[2].notifier_call = pcm512x_regulator_event_2; for (i = 0; i < ARRAY_SIZE(pcm512x->supplies); i++) { ret = devm_regulator_register_notifier( pcm512x->supplies[i].consumer, &pcm512x->supply_nb[i]); if (ret != 0) { dev_err(dev, "Failed to register regulator notifier: %d\n", ret); } } ret = regulator_bulk_enable(ARRAY_SIZE(pcm512x->supplies), pcm512x->supplies); if (ret != 0) { dev_err(dev, "Failed to enable supplies: %d\n", ret); return ret; } /* Reset the device, verifying I/O in the process for I2C */ ret = regmap_write(regmap, PCM512x_RESET, PCM512x_RSTM | PCM512x_RSTR); if (ret != 0) { dev_err(dev, "Failed to reset device: %d\n", ret); goto err; } ret = regmap_write(regmap, PCM512x_RESET, 0); if (ret != 0) { dev_err(dev, "Failed to reset device: %d\n", ret); goto err; } pcm512x->sclk = devm_clk_get(dev, NULL); if (PTR_ERR(pcm512x->sclk) == -EPROBE_DEFER) { ret = -EPROBE_DEFER; goto err; } if (!IS_ERR(pcm512x->sclk)) { ret = clk_prepare_enable(pcm512x->sclk); if (ret != 0) { dev_err(dev, "Failed to enable SCLK: %d\n", ret); goto err; } } /* Default to standby mode */ ret = regmap_update_bits(pcm512x->regmap, PCM512x_POWER, PCM512x_RQST, PCM512x_RQST); if (ret != 0) { dev_err(dev, "Failed to request standby: %d\n", ret); goto err_clk; } pm_runtime_set_active(dev); pm_runtime_enable(dev); pm_runtime_idle(dev); #ifdef CONFIG_OF if (dev->of_node) { const struct device_node *np = dev->of_node; u32 val; if (of_property_read_u32(np, "pll-in", &val) >= 0) { if (val > 6) { dev_err(dev, "Invalid pll-in\n"); ret = -EINVAL; goto err_pm; } pcm512x->pll_in = val; } if (of_property_read_u32(np, "pll-out", &val) >= 0) { if (val > 6) { dev_err(dev, "Invalid pll-out\n"); ret = -EINVAL; goto err_pm; } pcm512x->pll_out = val; } if (!pcm512x->pll_in != !pcm512x->pll_out) { dev_err(dev, "Error: both pll-in and pll-out, or none\n"); ret = -EINVAL; goto err_pm; } if (pcm512x->pll_in && pcm512x->pll_in == pcm512x->pll_out) { dev_err(dev, "Error: pll-in == pll-out\n"); ret = -EINVAL; goto err_pm; } } #endif ret = devm_snd_soc_register_component(dev, &pcm512x_component_driver, &pcm512x_dai, 1); if (ret != 0) { dev_err(dev, "Failed to register CODEC: %d\n", ret); goto err_pm; } return 0; err_pm: pm_runtime_disable(dev); err_clk: if (!IS_ERR(pcm512x->sclk)) clk_disable_unprepare(pcm512x->sclk); err: regulator_bulk_disable(ARRAY_SIZE(pcm512x->supplies), pcm512x->supplies); return ret; } EXPORT_SYMBOL_GPL(pcm512x_probe); void pcm512x_remove(struct device *dev) { struct pcm512x_priv *pcm512x = dev_get_drvdata(dev); pm_runtime_disable(dev); if (!IS_ERR(pcm512x->sclk)) clk_disable_unprepare(pcm512x->sclk); regulator_bulk_disable(ARRAY_SIZE(pcm512x->supplies), pcm512x->supplies); } EXPORT_SYMBOL_GPL(pcm512x_remove); #ifdef CONFIG_PM static int pcm512x_suspend(struct device *dev) { struct pcm512x_priv *pcm512x = dev_get_drvdata(dev); int ret; ret = regmap_update_bits(pcm512x->regmap, PCM512x_POWER, PCM512x_RQPD, PCM512x_RQPD); if (ret != 0) { dev_err(dev, "Failed to request power down: %d\n", ret); return ret; } ret = regulator_bulk_disable(ARRAY_SIZE(pcm512x->supplies), pcm512x->supplies); if (ret != 0) { dev_err(dev, "Failed to disable supplies: %d\n", ret); return ret; } if (!IS_ERR(pcm512x->sclk)) clk_disable_unprepare(pcm512x->sclk); return 0; } static int pcm512x_resume(struct device *dev) { struct pcm512x_priv *pcm512x = dev_get_drvdata(dev); int ret; if (!IS_ERR(pcm512x->sclk)) { ret = clk_prepare_enable(pcm512x->sclk); if (ret != 0) { dev_err(dev, "Failed to enable SCLK: %d\n", ret); return ret; } } ret = regulator_bulk_enable(ARRAY_SIZE(pcm512x->supplies), pcm512x->supplies); if (ret != 0) { dev_err(dev, "Failed to enable supplies: %d\n", ret); return ret; } regcache_cache_only(pcm512x->regmap, false); ret = regcache_sync(pcm512x->regmap); if (ret != 0) { dev_err(dev, "Failed to sync cache: %d\n", ret); return ret; } ret = regmap_update_bits(pcm512x->regmap, PCM512x_POWER, PCM512x_RQPD, 0); if (ret != 0) { dev_err(dev, "Failed to remove power down: %d\n", ret); return ret; } return 0; } #endif const struct dev_pm_ops pcm512x_pm_ops = { SET_RUNTIME_PM_OPS(pcm512x_suspend, pcm512x_resume, NULL) }; EXPORT_SYMBOL_GPL(pcm512x_pm_ops); MODULE_DESCRIPTION("ASoC PCM512x codec driver"); MODULE_AUTHOR("Mark Brown "); MODULE_LICENSE("GPL v2");