// SPDX-License-Identifier: GPL-2.0-only // // Copyright(c) 2020 Intel Corporation. All rights reserved. // // Author: Cezary Rojewski // #include #include #include #include #include #include "core.h" #include "messages.h" #include "registers.h" static bool catpt_dma_filter(struct dma_chan *chan, void *param) { return param == chan->device->dev; } /* * Either engine 0 or 1 can be used for image loading. * Align with Windows driver equivalent and stick to engine 1. */ #define CATPT_DMA_DEVID 1 #define CATPT_DMA_DSP_ADDR_MASK GENMASK(31, 20) struct dma_chan *catpt_dma_request_config_chan(struct catpt_dev *cdev) { struct dma_slave_config config; struct dma_chan *chan; dma_cap_mask_t mask; int ret; dma_cap_zero(mask); dma_cap_set(DMA_MEMCPY, mask); chan = dma_request_channel(mask, catpt_dma_filter, cdev->dev); if (!chan) { dev_err(cdev->dev, "request channel failed\n"); return ERR_PTR(-ENODEV); } memset(&config, 0, sizeof(config)); config.direction = DMA_MEM_TO_DEV; config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; config.src_maxburst = 16; config.dst_maxburst = 16; ret = dmaengine_slave_config(chan, &config); if (ret) { dev_err(cdev->dev, "slave config failed: %d\n", ret); dma_release_channel(chan); return ERR_PTR(ret); } return chan; } static int catpt_dma_memcpy(struct catpt_dev *cdev, struct dma_chan *chan, dma_addr_t dst_addr, dma_addr_t src_addr, size_t size) { struct dma_async_tx_descriptor *desc; enum dma_status status; int ret; desc = dmaengine_prep_dma_memcpy(chan, dst_addr, src_addr, size, DMA_CTRL_ACK); if (!desc) { dev_err(cdev->dev, "prep dma memcpy failed\n"); return -EIO; } /* enable demand mode for dma channel */ catpt_updatel_shim(cdev, HMDC, CATPT_HMDC_HDDA(CATPT_DMA_DEVID, chan->chan_id), CATPT_HMDC_HDDA(CATPT_DMA_DEVID, chan->chan_id)); ret = dma_submit_error(dmaengine_submit(desc)); if (ret) { dev_err(cdev->dev, "submit tx failed: %d\n", ret); goto clear_hdda; } status = dma_wait_for_async_tx(desc); ret = (status == DMA_COMPLETE) ? 0 : -EPROTO; clear_hdda: /* regardless of status, disable access to HOST memory in demand mode */ catpt_updatel_shim(cdev, HMDC, CATPT_HMDC_HDDA(CATPT_DMA_DEVID, chan->chan_id), 0); return ret; } int catpt_dma_memcpy_todsp(struct catpt_dev *cdev, struct dma_chan *chan, dma_addr_t dst_addr, dma_addr_t src_addr, size_t size) { return catpt_dma_memcpy(cdev, chan, dst_addr | CATPT_DMA_DSP_ADDR_MASK, src_addr, size); } int catpt_dma_memcpy_fromdsp(struct catpt_dev *cdev, struct dma_chan *chan, dma_addr_t dst_addr, dma_addr_t src_addr, size_t size) { return catpt_dma_memcpy(cdev, chan, dst_addr, src_addr | CATPT_DMA_DSP_ADDR_MASK, size); } int catpt_dmac_probe(struct catpt_dev *cdev) { struct dw_dma_chip *dmac; int ret; dmac = devm_kzalloc(cdev->dev, sizeof(*dmac), GFP_KERNEL); if (!dmac) return -ENOMEM; dmac->regs = cdev->lpe_ba + cdev->spec->host_dma_offset[CATPT_DMA_DEVID]; dmac->dev = cdev->dev; dmac->irq = cdev->irq; ret = dma_coerce_mask_and_coherent(cdev->dev, DMA_BIT_MASK(31)); if (ret) return ret; /* * Caller is responsible for putting device in D0 to allow * for I/O and memory access before probing DW. */ ret = dw_dma_probe(dmac); if (ret) return ret; cdev->dmac = dmac; return 0; } void catpt_dmac_remove(struct catpt_dev *cdev) { /* * As do_dma_remove() juggles with pm_runtime_get_xxx() and * pm_runtime_put_xxx() while both ADSP and DW 'devices' are part of * the same module, caller makes sure pm_runtime_disable() is invoked * before removing DW to prevent postmortem resume and suspend. */ dw_dma_remove(cdev->dmac); } static void catpt_dsp_set_srampge(struct catpt_dev *cdev, struct resource *sram, unsigned long mask, unsigned long new) { unsigned long old; u32 off = sram->start; u32 b = __ffs(mask); old = catpt_readl_pci(cdev, VDRTCTL0) & mask; dev_dbg(cdev->dev, "SRAMPGE [0x%08lx] 0x%08lx -> 0x%08lx", mask, old, new); if (old == new) return; catpt_updatel_pci(cdev, VDRTCTL0, mask, new); /* wait for SRAM power gating to propagate */ udelay(60); /* * Dummy read as the very first access after block enable * to prevent byte loss in future operations. */ for_each_clear_bit_from(b, &new, fls_long(mask)) { u8 buf[4]; /* newly enabled: new bit=0 while old bit=1 */ if (test_bit(b, &old)) { dev_dbg(cdev->dev, "sanitize block %ld: off 0x%08x\n", b - __ffs(mask), off); memcpy_fromio(buf, cdev->lpe_ba + off, sizeof(buf)); } off += CATPT_MEMBLOCK_SIZE; } } void catpt_dsp_update_srampge(struct catpt_dev *cdev, struct resource *sram, unsigned long mask) { struct resource *res; unsigned long new = 0; /* flag all busy blocks */ for (res = sram->child; res; res = res->sibling) { u32 h, l; h = (res->end - sram->start) / CATPT_MEMBLOCK_SIZE; l = (res->start - sram->start) / CATPT_MEMBLOCK_SIZE; new |= GENMASK(h, l); } /* offset value given mask's start and invert it as ON=b0 */ new = ~(new << __ffs(mask)) & mask; /* disable core clock gating */ catpt_updatel_pci(cdev, VDRTCTL2, CATPT_VDRTCTL2_DCLCGE, 0); catpt_dsp_set_srampge(cdev, sram, mask, new); /* enable core clock gating */ catpt_updatel_pci(cdev, VDRTCTL2, CATPT_VDRTCTL2_DCLCGE, CATPT_VDRTCTL2_DCLCGE); } int catpt_dsp_stall(struct catpt_dev *cdev, bool stall) { u32 reg, val; val = stall ? CATPT_CS_STALL : 0; catpt_updatel_shim(cdev, CS1, CATPT_CS_STALL, val); return catpt_readl_poll_shim(cdev, CS1, reg, (reg & CATPT_CS_STALL) == val, 500, 10000); } static int catpt_dsp_reset(struct catpt_dev *cdev, bool reset) { u32 reg, val; val = reset ? CATPT_CS_RST : 0; catpt_updatel_shim(cdev, CS1, CATPT_CS_RST, val); return catpt_readl_poll_shim(cdev, CS1, reg, (reg & CATPT_CS_RST) == val, 500, 10000); } void lpt_dsp_pll_shutdown(struct catpt_dev *cdev, bool enable) { u32 val; val = enable ? LPT_VDRTCTL0_APLLSE : 0; catpt_updatel_pci(cdev, VDRTCTL0, LPT_VDRTCTL0_APLLSE, val); } void wpt_dsp_pll_shutdown(struct catpt_dev *cdev, bool enable) { u32 val; val = enable ? WPT_VDRTCTL2_APLLSE : 0; catpt_updatel_pci(cdev, VDRTCTL2, WPT_VDRTCTL2_APLLSE, val); } static int catpt_dsp_select_lpclock(struct catpt_dev *cdev, bool lp, bool waiti) { u32 mask, reg, val; int ret; mutex_lock(&cdev->clk_mutex); val = lp ? CATPT_CS_LPCS : 0; reg = catpt_readl_shim(cdev, CS1) & CATPT_CS_LPCS; dev_dbg(cdev->dev, "LPCS [0x%08lx] 0x%08x -> 0x%08x", CATPT_CS_LPCS, reg, val); if (reg == val) { mutex_unlock(&cdev->clk_mutex); return 0; } if (waiti) { /* wait for DSP to signal WAIT state */ ret = catpt_readl_poll_shim(cdev, ISD, reg, (reg & CATPT_ISD_DCPWM), 500, 10000); if (ret) { dev_warn(cdev->dev, "await WAITI timeout\n"); /* no signal - only high clock selection allowed */ if (lp) { mutex_unlock(&cdev->clk_mutex); return 0; } } } ret = catpt_readl_poll_shim(cdev, CLKCTL, reg, !(reg & CATPT_CLKCTL_CFCIP), 500, 10000); if (ret) dev_warn(cdev->dev, "clock change still in progress\n"); /* default to DSP core & audio fabric high clock */ val |= CATPT_CS_DCS_HIGH; mask = CATPT_CS_LPCS | CATPT_CS_DCS; catpt_updatel_shim(cdev, CS1, mask, val); ret = catpt_readl_poll_shim(cdev, CLKCTL, reg, !(reg & CATPT_CLKCTL_CFCIP), 500, 10000); if (ret) dev_warn(cdev->dev, "clock change still in progress\n"); /* update PLL accordingly */ cdev->spec->pll_shutdown(cdev, lp); mutex_unlock(&cdev->clk_mutex); return 0; } int catpt_dsp_update_lpclock(struct catpt_dev *cdev) { struct catpt_stream_runtime *stream; list_for_each_entry(stream, &cdev->stream_list, node) if (stream->prepared) return catpt_dsp_select_lpclock(cdev, false, true); return catpt_dsp_select_lpclock(cdev, true, true); } /* bring registers to their defaults as HW won't reset itself */ static void catpt_dsp_set_regs_defaults(struct catpt_dev *cdev) { int i; catpt_writel_shim(cdev, CS1, CATPT_CS_DEFAULT); catpt_writel_shim(cdev, ISC, CATPT_ISC_DEFAULT); catpt_writel_shim(cdev, ISD, CATPT_ISD_DEFAULT); catpt_writel_shim(cdev, IMC, CATPT_IMC_DEFAULT); catpt_writel_shim(cdev, IMD, CATPT_IMD_DEFAULT); catpt_writel_shim(cdev, IPCC, CATPT_IPCC_DEFAULT); catpt_writel_shim(cdev, IPCD, CATPT_IPCD_DEFAULT); catpt_writel_shim(cdev, CLKCTL, CATPT_CLKCTL_DEFAULT); catpt_writel_shim(cdev, CS2, CATPT_CS2_DEFAULT); catpt_writel_shim(cdev, LTRC, CATPT_LTRC_DEFAULT); catpt_writel_shim(cdev, HMDC, CATPT_HMDC_DEFAULT); for (i = 0; i < CATPT_SSP_COUNT; i++) { catpt_writel_ssp(cdev, i, SSCR0, CATPT_SSC0_DEFAULT); catpt_writel_ssp(cdev, i, SSCR1, CATPT_SSC1_DEFAULT); catpt_writel_ssp(cdev, i, SSSR, CATPT_SSS_DEFAULT); catpt_writel_ssp(cdev, i, SSITR, CATPT_SSIT_DEFAULT); catpt_writel_ssp(cdev, i, SSDR, CATPT_SSD_DEFAULT); catpt_writel_ssp(cdev, i, SSTO, CATPT_SSTO_DEFAULT); catpt_writel_ssp(cdev, i, SSPSP, CATPT_SSPSP_DEFAULT); catpt_writel_ssp(cdev, i, SSTSA, CATPT_SSTSA_DEFAULT); catpt_writel_ssp(cdev, i, SSRSA, CATPT_SSRSA_DEFAULT); catpt_writel_ssp(cdev, i, SSTSS, CATPT_SSTSS_DEFAULT); catpt_writel_ssp(cdev, i, SSCR2, CATPT_SSCR2_DEFAULT); catpt_writel_ssp(cdev, i, SSPSP2, CATPT_SSPSP2_DEFAULT); } } int lpt_dsp_power_down(struct catpt_dev *cdev) { catpt_dsp_reset(cdev, true); /* set 24Mhz clock for both SSPs */ catpt_updatel_shim(cdev, CS1, CATPT_CS_SBCS(0) | CATPT_CS_SBCS(1), CATPT_CS_SBCS(0) | CATPT_CS_SBCS(1)); catpt_dsp_select_lpclock(cdev, true, false); /* DRAM power gating all */ catpt_dsp_set_srampge(cdev, &cdev->dram, cdev->spec->dram_mask, cdev->spec->dram_mask); catpt_dsp_set_srampge(cdev, &cdev->iram, cdev->spec->iram_mask, cdev->spec->iram_mask); catpt_updatel_pci(cdev, PMCS, PCI_PM_CTRL_STATE_MASK, PCI_D3hot); /* give hw time to drop off */ udelay(50); return 0; } int lpt_dsp_power_up(struct catpt_dev *cdev) { /* SRAM power gating none */ catpt_dsp_set_srampge(cdev, &cdev->dram, cdev->spec->dram_mask, 0); catpt_dsp_set_srampge(cdev, &cdev->iram, cdev->spec->iram_mask, 0); catpt_updatel_pci(cdev, PMCS, PCI_PM_CTRL_STATE_MASK, PCI_D0); /* give hw time to wake up */ udelay(100); catpt_dsp_select_lpclock(cdev, false, false); catpt_updatel_shim(cdev, CS1, CATPT_CS_SBCS(0) | CATPT_CS_SBCS(1), CATPT_CS_SBCS(0) | CATPT_CS_SBCS(1)); /* stagger DSP reset after clock selection */ udelay(50); catpt_dsp_reset(cdev, false); /* generate int deassert msg to fix inversed int logic */ catpt_updatel_shim(cdev, IMC, CATPT_IMC_IPCDB | CATPT_IMC_IPCCD, 0); return 0; } int wpt_dsp_power_down(struct catpt_dev *cdev) { u32 mask, val; /* disable core clock gating */ catpt_updatel_pci(cdev, VDRTCTL2, CATPT_VDRTCTL2_DCLCGE, 0); catpt_dsp_reset(cdev, true); /* set 24Mhz clock for both SSPs */ catpt_updatel_shim(cdev, CS1, CATPT_CS_SBCS(0) | CATPT_CS_SBCS(1), CATPT_CS_SBCS(0) | CATPT_CS_SBCS(1)); catpt_dsp_select_lpclock(cdev, true, false); /* disable MCLK */ catpt_updatel_shim(cdev, CLKCTL, CATPT_CLKCTL_SMOS, 0); catpt_dsp_set_regs_defaults(cdev); /* switch clock gating */ mask = CATPT_VDRTCTL2_CGEALL & (~CATPT_VDRTCTL2_DCLCGE); val = mask & (~CATPT_VDRTCTL2_DTCGE); catpt_updatel_pci(cdev, VDRTCTL2, mask, val); /* enable DTCGE separatelly */ catpt_updatel_pci(cdev, VDRTCTL2, CATPT_VDRTCTL2_DTCGE, CATPT_VDRTCTL2_DTCGE); /* SRAM power gating all */ catpt_dsp_set_srampge(cdev, &cdev->dram, cdev->spec->dram_mask, cdev->spec->dram_mask); catpt_dsp_set_srampge(cdev, &cdev->iram, cdev->spec->iram_mask, cdev->spec->iram_mask); mask = WPT_VDRTCTL0_D3SRAMPGD | WPT_VDRTCTL0_D3PGD; catpt_updatel_pci(cdev, VDRTCTL0, mask, WPT_VDRTCTL0_D3PGD); catpt_updatel_pci(cdev, PMCS, PCI_PM_CTRL_STATE_MASK, PCI_D3hot); /* give hw time to drop off */ udelay(50); /* enable core clock gating */ catpt_updatel_pci(cdev, VDRTCTL2, CATPT_VDRTCTL2_DCLCGE, CATPT_VDRTCTL2_DCLCGE); udelay(50); return 0; } int wpt_dsp_power_up(struct catpt_dev *cdev) { u32 mask, val; /* disable core clock gating */ catpt_updatel_pci(cdev, VDRTCTL2, CATPT_VDRTCTL2_DCLCGE, 0); /* switch clock gating */ mask = CATPT_VDRTCTL2_CGEALL & (~CATPT_VDRTCTL2_DCLCGE); val = mask & (~CATPT_VDRTCTL2_DTCGE); catpt_updatel_pci(cdev, VDRTCTL2, mask, val); catpt_updatel_pci(cdev, PMCS, PCI_PM_CTRL_STATE_MASK, PCI_D0); /* SRAM power gating none */ mask = WPT_VDRTCTL0_D3SRAMPGD | WPT_VDRTCTL0_D3PGD; catpt_updatel_pci(cdev, VDRTCTL0, mask, mask); catpt_dsp_set_srampge(cdev, &cdev->dram, cdev->spec->dram_mask, 0); catpt_dsp_set_srampge(cdev, &cdev->iram, cdev->spec->iram_mask, 0); catpt_dsp_set_regs_defaults(cdev); /* restore MCLK */ catpt_updatel_shim(cdev, CLKCTL, CATPT_CLKCTL_SMOS, CATPT_CLKCTL_SMOS); catpt_dsp_select_lpclock(cdev, false, false); /* set 24Mhz clock for both SSPs */ catpt_updatel_shim(cdev, CS1, CATPT_CS_SBCS(0) | CATPT_CS_SBCS(1), CATPT_CS_SBCS(0) | CATPT_CS_SBCS(1)); catpt_dsp_reset(cdev, false); /* enable core clock gating */ catpt_updatel_pci(cdev, VDRTCTL2, CATPT_VDRTCTL2_DCLCGE, CATPT_VDRTCTL2_DCLCGE); /* generate int deassert msg to fix inversed int logic */ catpt_updatel_shim(cdev, IMC, CATPT_IMC_IPCDB | CATPT_IMC_IPCCD, 0); return 0; } #define CATPT_DUMP_MAGIC 0xcd42 #define CATPT_DUMP_SECTION_ID_FILE 0x00 #define CATPT_DUMP_SECTION_ID_IRAM 0x01 #define CATPT_DUMP_SECTION_ID_DRAM 0x02 #define CATPT_DUMP_SECTION_ID_REGS 0x03 #define CATPT_DUMP_HASH_SIZE 20 struct catpt_dump_section_hdr { u16 magic; u8 core_id; u8 section_id; u32 size; }; int catpt_coredump(struct catpt_dev *cdev) { struct catpt_dump_section_hdr *hdr; size_t dump_size, regs_size; u8 *dump, *pos; const char *eof; char *info; int i; regs_size = CATPT_SHIM_REGS_SIZE; regs_size += CATPT_DMA_COUNT * CATPT_DMA_REGS_SIZE; regs_size += CATPT_SSP_COUNT * CATPT_SSP_REGS_SIZE; dump_size = resource_size(&cdev->dram); dump_size += resource_size(&cdev->iram); dump_size += regs_size; /* account for header of each section and hash chunk */ dump_size += 4 * sizeof(*hdr) + CATPT_DUMP_HASH_SIZE; dump = vzalloc(dump_size); if (!dump) return -ENOMEM; pos = dump; hdr = (struct catpt_dump_section_hdr *)pos; hdr->magic = CATPT_DUMP_MAGIC; hdr->core_id = cdev->spec->core_id; hdr->section_id = CATPT_DUMP_SECTION_ID_FILE; hdr->size = dump_size - sizeof(*hdr); pos += sizeof(*hdr); info = cdev->ipc.config.fw_info; eof = info + FW_INFO_SIZE_MAX; /* navigate to fifth info segment (fw hash) */ for (i = 0; i < 4 && info < eof; i++, info++) { /* info segments are separated by space each */ info = strnchr(info, eof - info, ' '); if (!info) break; } if (i == 4 && info) memcpy(pos, info, min_t(u32, eof - info, CATPT_DUMP_HASH_SIZE)); pos += CATPT_DUMP_HASH_SIZE; hdr = (struct catpt_dump_section_hdr *)pos; hdr->magic = CATPT_DUMP_MAGIC; hdr->core_id = cdev->spec->core_id; hdr->section_id = CATPT_DUMP_SECTION_ID_IRAM; hdr->size = resource_size(&cdev->iram); pos += sizeof(*hdr); memcpy_fromio(pos, cdev->lpe_ba + cdev->iram.start, hdr->size); pos += hdr->size; hdr = (struct catpt_dump_section_hdr *)pos; hdr->magic = CATPT_DUMP_MAGIC; hdr->core_id = cdev->spec->core_id; hdr->section_id = CATPT_DUMP_SECTION_ID_DRAM; hdr->size = resource_size(&cdev->dram); pos += sizeof(*hdr); memcpy_fromio(pos, cdev->lpe_ba + cdev->dram.start, hdr->size); pos += hdr->size; hdr = (struct catpt_dump_section_hdr *)pos; hdr->magic = CATPT_DUMP_MAGIC; hdr->core_id = cdev->spec->core_id; hdr->section_id = CATPT_DUMP_SECTION_ID_REGS; hdr->size = regs_size; pos += sizeof(*hdr); memcpy_fromio(pos, catpt_shim_addr(cdev), CATPT_SHIM_REGS_SIZE); pos += CATPT_SHIM_REGS_SIZE; for (i = 0; i < CATPT_SSP_COUNT; i++) { memcpy_fromio(pos, catpt_ssp_addr(cdev, i), CATPT_SSP_REGS_SIZE); pos += CATPT_SSP_REGS_SIZE; } for (i = 0; i < CATPT_DMA_COUNT; i++) { memcpy_fromio(pos, catpt_dma_addr(cdev, i), CATPT_DMA_REGS_SIZE); pos += CATPT_DMA_REGS_SIZE; } dev_coredumpv(cdev->dev, dump, dump_size, GFP_KERNEL); return 0; }