1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
|
/* SPDX-License-Identifier: GPL-2.0-only */
/*
* Copyright (C) 2012,2013 - ARM Ltd
* Author: Marc Zyngier <marc.zyngier@arm.com>
*
* Derived from arch/arm/include/asm/kvm_host.h:
* Copyright (C) 2012 - Virtual Open Systems and Columbia University
* Author: Christoffer Dall <c.dall@virtualopensystems.com>
*/
#ifndef __ARM64_KVM_HOST_H__
#define __ARM64_KVM_HOST_H__
#include <linux/arm-smccc.h>
#include <linux/bitmap.h>
#include <linux/types.h>
#include <linux/jump_label.h>
#include <linux/kvm_types.h>
#include <linux/percpu.h>
#include <asm/arch_gicv3.h>
#include <asm/barrier.h>
#include <asm/cpufeature.h>
#include <asm/cputype.h>
#include <asm/daifflags.h>
#include <asm/fpsimd.h>
#include <asm/kvm.h>
#include <asm/kvm_asm.h>
#include <asm/thread_info.h>
#define __KVM_HAVE_ARCH_INTC_INITIALIZED
#define KVM_USER_MEM_SLOTS 512
#define KVM_HALT_POLL_NS_DEFAULT 500000
#include <kvm/arm_vgic.h>
#include <kvm/arm_arch_timer.h>
#include <kvm/arm_pmu.h>
#define KVM_MAX_VCPUS VGIC_V3_MAX_CPUS
#define KVM_VCPU_MAX_FEATURES 7
#define KVM_REQ_SLEEP \
KVM_ARCH_REQ_FLAGS(0, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
#define KVM_REQ_IRQ_PENDING KVM_ARCH_REQ(1)
#define KVM_REQ_VCPU_RESET KVM_ARCH_REQ(2)
#define KVM_REQ_RECORD_STEAL KVM_ARCH_REQ(3)
#define KVM_REQ_RELOAD_GICv4 KVM_ARCH_REQ(4)
#define KVM_DIRTY_LOG_MANUAL_CAPS (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \
KVM_DIRTY_LOG_INITIALLY_SET)
DECLARE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
extern unsigned int kvm_sve_max_vl;
int kvm_arm_init_sve(void);
int __attribute_const__ kvm_target_cpu(void);
int kvm_reset_vcpu(struct kvm_vcpu *vcpu);
void kvm_arm_vcpu_destroy(struct kvm_vcpu *vcpu);
int kvm_arch_vm_ioctl_check_extension(struct kvm *kvm, long ext);
void __extended_idmap_trampoline(phys_addr_t boot_pgd, phys_addr_t idmap_start);
struct kvm_vmid {
/* The VMID generation used for the virt. memory system */
u64 vmid_gen;
u32 vmid;
};
struct kvm_s2_mmu {
struct kvm_vmid vmid;
/*
* stage2 entry level table
*
* Two kvm_s2_mmu structures in the same VM can point to the same
* pgd here. This happens when running a guest using a
* translation regime that isn't affected by its own stage-2
* translation, such as a non-VHE hypervisor running at vEL2, or
* for vEL1/EL0 with vHCR_EL2.VM == 0. In that case, we use the
* canonical stage-2 page tables.
*/
phys_addr_t pgd_phys;
struct kvm_pgtable *pgt;
/* The last vcpu id that ran on each physical CPU */
int __percpu *last_vcpu_ran;
struct kvm *kvm;
};
struct kvm_arch {
struct kvm_s2_mmu mmu;
/* VTCR_EL2 value for this VM */
u64 vtcr;
/* The maximum number of vCPUs depends on the used GIC model */
int max_vcpus;
/* Interrupt controller */
struct vgic_dist vgic;
/* Mandated version of PSCI */
u32 psci_version;
/*
* If we encounter a data abort without valid instruction syndrome
* information, report this to user space. User space can (and
* should) opt in to this feature if KVM_CAP_ARM_NISV_TO_USER is
* supported.
*/
bool return_nisv_io_abort_to_user;
/*
* VM-wide PMU filter, implemented as a bitmap and big enough for
* up to 2^10 events (ARMv8.0) or 2^16 events (ARMv8.1+).
*/
unsigned long *pmu_filter;
unsigned int pmuver;
u8 pfr0_csv2;
};
struct kvm_vcpu_fault_info {
u32 esr_el2; /* Hyp Syndrom Register */
u64 far_el2; /* Hyp Fault Address Register */
u64 hpfar_el2; /* Hyp IPA Fault Address Register */
u64 disr_el1; /* Deferred [SError] Status Register */
};
enum vcpu_sysreg {
__INVALID_SYSREG__, /* 0 is reserved as an invalid value */
MPIDR_EL1, /* MultiProcessor Affinity Register */
CSSELR_EL1, /* Cache Size Selection Register */
SCTLR_EL1, /* System Control Register */
ACTLR_EL1, /* Auxiliary Control Register */
CPACR_EL1, /* Coprocessor Access Control */
ZCR_EL1, /* SVE Control */
TTBR0_EL1, /* Translation Table Base Register 0 */
TTBR1_EL1, /* Translation Table Base Register 1 */
TCR_EL1, /* Translation Control Register */
ESR_EL1, /* Exception Syndrome Register */
AFSR0_EL1, /* Auxiliary Fault Status Register 0 */
AFSR1_EL1, /* Auxiliary Fault Status Register 1 */
FAR_EL1, /* Fault Address Register */
MAIR_EL1, /* Memory Attribute Indirection Register */
VBAR_EL1, /* Vector Base Address Register */
CONTEXTIDR_EL1, /* Context ID Register */
TPIDR_EL0, /* Thread ID, User R/W */
TPIDRRO_EL0, /* Thread ID, User R/O */
TPIDR_EL1, /* Thread ID, Privileged */
AMAIR_EL1, /* Aux Memory Attribute Indirection Register */
CNTKCTL_EL1, /* Timer Control Register (EL1) */
PAR_EL1, /* Physical Address Register */
MDSCR_EL1, /* Monitor Debug System Control Register */
MDCCINT_EL1, /* Monitor Debug Comms Channel Interrupt Enable Reg */
DISR_EL1, /* Deferred Interrupt Status Register */
/* Performance Monitors Registers */
PMCR_EL0, /* Control Register */
PMSELR_EL0, /* Event Counter Selection Register */
PMEVCNTR0_EL0, /* Event Counter Register (0-30) */
PMEVCNTR30_EL0 = PMEVCNTR0_EL0 + 30,
PMCCNTR_EL0, /* Cycle Counter Register */
PMEVTYPER0_EL0, /* Event Type Register (0-30) */
PMEVTYPER30_EL0 = PMEVTYPER0_EL0 + 30,
PMCCFILTR_EL0, /* Cycle Count Filter Register */
PMCNTENSET_EL0, /* Count Enable Set Register */
PMINTENSET_EL1, /* Interrupt Enable Set Register */
PMOVSSET_EL0, /* Overflow Flag Status Set Register */
PMSWINC_EL0, /* Software Increment Register */
PMUSERENR_EL0, /* User Enable Register */
/* Pointer Authentication Registers in a strict increasing order. */
APIAKEYLO_EL1,
APIAKEYHI_EL1,
APIBKEYLO_EL1,
APIBKEYHI_EL1,
APDAKEYLO_EL1,
APDAKEYHI_EL1,
APDBKEYLO_EL1,
APDBKEYHI_EL1,
APGAKEYLO_EL1,
APGAKEYHI_EL1,
ELR_EL1,
SP_EL1,
SPSR_EL1,
CNTVOFF_EL2,
CNTV_CVAL_EL0,
CNTV_CTL_EL0,
CNTP_CVAL_EL0,
CNTP_CTL_EL0,
/* 32bit specific registers. Keep them at the end of the range */
DACR32_EL2, /* Domain Access Control Register */
IFSR32_EL2, /* Instruction Fault Status Register */
FPEXC32_EL2, /* Floating-Point Exception Control Register */
DBGVCR32_EL2, /* Debug Vector Catch Register */
NR_SYS_REGS /* Nothing after this line! */
};
/* 32bit mapping */
#define c0_MPIDR (MPIDR_EL1 * 2) /* MultiProcessor ID Register */
#define c0_CSSELR (CSSELR_EL1 * 2)/* Cache Size Selection Register */
#define c1_SCTLR (SCTLR_EL1 * 2) /* System Control Register */
#define c1_ACTLR (ACTLR_EL1 * 2) /* Auxiliary Control Register */
#define c1_CPACR (CPACR_EL1 * 2) /* Coprocessor Access Control */
#define c2_TTBR0 (TTBR0_EL1 * 2) /* Translation Table Base Register 0 */
#define c2_TTBR0_high (c2_TTBR0 + 1) /* TTBR0 top 32 bits */
#define c2_TTBR1 (TTBR1_EL1 * 2) /* Translation Table Base Register 1 */
#define c2_TTBR1_high (c2_TTBR1 + 1) /* TTBR1 top 32 bits */
#define c2_TTBCR (TCR_EL1 * 2) /* Translation Table Base Control R. */
#define c2_TTBCR2 (c2_TTBCR + 1) /* Translation Table Base Control R. 2 */
#define c3_DACR (DACR32_EL2 * 2)/* Domain Access Control Register */
#define c5_DFSR (ESR_EL1 * 2) /* Data Fault Status Register */
#define c5_IFSR (IFSR32_EL2 * 2)/* Instruction Fault Status Register */
#define c5_ADFSR (AFSR0_EL1 * 2) /* Auxiliary Data Fault Status R */
#define c5_AIFSR (AFSR1_EL1 * 2) /* Auxiliary Instr Fault Status R */
#define c6_DFAR (FAR_EL1 * 2) /* Data Fault Address Register */
#define c6_IFAR (c6_DFAR + 1) /* Instruction Fault Address Register */
#define c7_PAR (PAR_EL1 * 2) /* Physical Address Register */
#define c7_PAR_high (c7_PAR + 1) /* PAR top 32 bits */
#define c10_PRRR (MAIR_EL1 * 2) /* Primary Region Remap Register */
#define c10_NMRR (c10_PRRR + 1) /* Normal Memory Remap Register */
#define c12_VBAR (VBAR_EL1 * 2) /* Vector Base Address Register */
#define c13_CID (CONTEXTIDR_EL1 * 2) /* Context ID Register */
#define c13_TID_URW (TPIDR_EL0 * 2) /* Thread ID, User R/W */
#define c13_TID_URO (TPIDRRO_EL0 * 2)/* Thread ID, User R/O */
#define c13_TID_PRIV (TPIDR_EL1 * 2) /* Thread ID, Privileged */
#define c10_AMAIR0 (AMAIR_EL1 * 2) /* Aux Memory Attr Indirection Reg */
#define c10_AMAIR1 (c10_AMAIR0 + 1)/* Aux Memory Attr Indirection Reg */
#define c14_CNTKCTL (CNTKCTL_EL1 * 2) /* Timer Control Register (PL1) */
#define cp14_DBGDSCRext (MDSCR_EL1 * 2)
#define cp14_DBGBCR0 (DBGBCR0_EL1 * 2)
#define cp14_DBGBVR0 (DBGBVR0_EL1 * 2)
#define cp14_DBGBXVR0 (cp14_DBGBVR0 + 1)
#define cp14_DBGWCR0 (DBGWCR0_EL1 * 2)
#define cp14_DBGWVR0 (DBGWVR0_EL1 * 2)
#define cp14_DBGDCCINT (MDCCINT_EL1 * 2)
#define cp14_DBGVCR (DBGVCR32_EL2 * 2)
#define NR_COPRO_REGS (NR_SYS_REGS * 2)
struct kvm_cpu_context {
struct user_pt_regs regs; /* sp = sp_el0 */
u64 spsr_abt;
u64 spsr_und;
u64 spsr_irq;
u64 spsr_fiq;
struct user_fpsimd_state fp_regs;
union {
u64 sys_regs[NR_SYS_REGS];
u32 copro[NR_COPRO_REGS];
};
struct kvm_vcpu *__hyp_running_vcpu;
};
struct kvm_pmu_events {
u32 events_host;
u32 events_guest;
};
struct kvm_host_data {
struct kvm_cpu_context host_ctxt;
struct kvm_pmu_events pmu_events;
};
struct vcpu_reset_state {
unsigned long pc;
unsigned long r0;
bool be;
bool reset;
};
struct kvm_vcpu_arch {
struct kvm_cpu_context ctxt;
void *sve_state;
unsigned int sve_max_vl;
/* Stage 2 paging state used by the hardware on next switch */
struct kvm_s2_mmu *hw_mmu;
/* HYP configuration */
u64 hcr_el2;
u32 mdcr_el2;
/* Exception Information */
struct kvm_vcpu_fault_info fault;
/* State of various workarounds, see kvm_asm.h for bit assignment */
u64 workaround_flags;
/* Miscellaneous vcpu state flags */
u64 flags;
/*
* We maintain more than a single set of debug registers to support
* debugging the guest from the host and to maintain separate host and
* guest state during world switches. vcpu_debug_state are the debug
* registers of the vcpu as the guest sees them. host_debug_state are
* the host registers which are saved and restored during
* world switches. external_debug_state contains the debug
* values we want to debug the guest. This is set via the
* KVM_SET_GUEST_DEBUG ioctl.
*
* debug_ptr points to the set of debug registers that should be loaded
* onto the hardware when running the guest.
*/
struct kvm_guest_debug_arch *debug_ptr;
struct kvm_guest_debug_arch vcpu_debug_state;
struct kvm_guest_debug_arch external_debug_state;
struct thread_info *host_thread_info; /* hyp VA */
struct user_fpsimd_state *host_fpsimd_state; /* hyp VA */
struct {
/* {Break,watch}point registers */
struct kvm_guest_debug_arch regs;
/* Statistical profiling extension */
u64 pmscr_el1;
} host_debug_state;
/* VGIC state */
struct vgic_cpu vgic_cpu;
struct arch_timer_cpu timer_cpu;
struct kvm_pmu pmu;
/*
* Anything that is not used directly from assembly code goes
* here.
*/
/*
* Guest registers we preserve during guest debugging.
*
* These shadow registers are updated by the kvm_handle_sys_reg
* trap handler if the guest accesses or updates them while we
* are using guest debug.
*/
struct {
u32 mdscr_el1;
} guest_debug_preserved;
/* vcpu power-off state */
bool power_off;
/* Don't run the guest (internal implementation need) */
bool pause;
/* Cache some mmu pages needed inside spinlock regions */
struct kvm_mmu_memory_cache mmu_page_cache;
/* Target CPU and feature flags */
int target;
DECLARE_BITMAP(features, KVM_VCPU_MAX_FEATURES);
/* Detect first run of a vcpu */
bool has_run_once;
/* Virtual SError ESR to restore when HCR_EL2.VSE is set */
u64 vsesr_el2;
/* Additional reset state */
struct vcpu_reset_state reset_state;
/* True when deferrable sysregs are loaded on the physical CPU,
* see kvm_vcpu_load_sysregs_vhe and kvm_vcpu_put_sysregs_vhe. */
bool sysregs_loaded_on_cpu;
/* Guest PV state */
struct {
u64 last_steal;
gpa_t base;
} steal;
};
/* Pointer to the vcpu's SVE FFR for sve_{save,load}_state() */
#define vcpu_sve_pffr(vcpu) ((void *)((char *)((vcpu)->arch.sve_state) + \
sve_ffr_offset((vcpu)->arch.sve_max_vl)))
#define vcpu_sve_state_size(vcpu) ({ \
size_t __size_ret; \
unsigned int __vcpu_vq; \
\
if (WARN_ON(!sve_vl_valid((vcpu)->arch.sve_max_vl))) { \
__size_ret = 0; \
} else { \
__vcpu_vq = sve_vq_from_vl((vcpu)->arch.sve_max_vl); \
__size_ret = SVE_SIG_REGS_SIZE(__vcpu_vq); \
} \
\
__size_ret; \
})
/* vcpu_arch flags field values: */
#define KVM_ARM64_DEBUG_DIRTY (1 << 0)
#define KVM_ARM64_FP_ENABLED (1 << 1) /* guest FP regs loaded */
#define KVM_ARM64_FP_HOST (1 << 2) /* host FP regs loaded */
#define KVM_ARM64_HOST_SVE_IN_USE (1 << 3) /* backup for host TIF_SVE */
#define KVM_ARM64_HOST_SVE_ENABLED (1 << 4) /* SVE enabled for EL0 */
#define KVM_ARM64_GUEST_HAS_SVE (1 << 5) /* SVE exposed to guest */
#define KVM_ARM64_VCPU_SVE_FINALIZED (1 << 6) /* SVE config completed */
#define KVM_ARM64_GUEST_HAS_PTRAUTH (1 << 7) /* PTRAUTH exposed to guest */
#define vcpu_has_sve(vcpu) (system_supports_sve() && \
((vcpu)->arch.flags & KVM_ARM64_GUEST_HAS_SVE))
#ifdef CONFIG_ARM64_PTR_AUTH
#define vcpu_has_ptrauth(vcpu) \
((cpus_have_final_cap(ARM64_HAS_ADDRESS_AUTH) || \
cpus_have_final_cap(ARM64_HAS_GENERIC_AUTH)) && \
(vcpu)->arch.flags & KVM_ARM64_GUEST_HAS_PTRAUTH)
#else
#define vcpu_has_ptrauth(vcpu) false
#endif
#define vcpu_gp_regs(v) (&(v)->arch.ctxt.regs)
/*
* Only use __vcpu_sys_reg/ctxt_sys_reg if you know you want the
* memory backed version of a register, and not the one most recently
* accessed by a running VCPU. For example, for userspace access or
* for system registers that are never context switched, but only
* emulated.
*/
#define __ctxt_sys_reg(c,r) (&(c)->sys_regs[(r)])
#define ctxt_sys_reg(c,r) (*__ctxt_sys_reg(c,r))
#define __vcpu_sys_reg(v,r) (ctxt_sys_reg(&(v)->arch.ctxt, (r)))
u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg);
void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg);
/*
* CP14 and CP15 live in the same array, as they are backed by the
* same system registers.
*/
#define CPx_BIAS IS_ENABLED(CONFIG_CPU_BIG_ENDIAN)
#define vcpu_cp14(v,r) ((v)->arch.ctxt.copro[(r) ^ CPx_BIAS])
#define vcpu_cp15(v,r) ((v)->arch.ctxt.copro[(r) ^ CPx_BIAS])
struct kvm_vm_stat {
ulong remote_tlb_flush;
};
struct kvm_vcpu_stat {
u64 halt_successful_poll;
u64 halt_attempted_poll;
u64 halt_poll_success_ns;
u64 halt_poll_fail_ns;
u64 halt_poll_invalid;
u64 halt_wakeup;
u64 hvc_exit_stat;
u64 wfe_exit_stat;
u64 wfi_exit_stat;
u64 mmio_exit_user;
u64 mmio_exit_kernel;
u64 exits;
};
int kvm_vcpu_preferred_target(struct kvm_vcpu_init *init);
unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu);
int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices);
int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg);
int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg);
int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
struct kvm_vcpu_events *events);
int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
struct kvm_vcpu_events *events);
#define KVM_ARCH_WANT_MMU_NOTIFIER
int kvm_unmap_hva_range(struct kvm *kvm,
unsigned long start, unsigned long end, unsigned flags);
int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte);
int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end);
int kvm_test_age_hva(struct kvm *kvm, unsigned long hva);
void kvm_arm_halt_guest(struct kvm *kvm);
void kvm_arm_resume_guest(struct kvm *kvm);
#define kvm_call_hyp_nvhe(f, ...) \
({ \
struct arm_smccc_res res; \
\
arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(f), \
##__VA_ARGS__, &res); \
WARN_ON(res.a0 != SMCCC_RET_SUCCESS); \
\
res.a1; \
})
/*
* The couple of isb() below are there to guarantee the same behaviour
* on VHE as on !VHE, where the eret to EL1 acts as a context
* synchronization event.
*/
#define kvm_call_hyp(f, ...) \
do { \
if (has_vhe()) { \
f(__VA_ARGS__); \
isb(); \
} else { \
kvm_call_hyp_nvhe(f, ##__VA_ARGS__); \
} \
} while(0)
#define kvm_call_hyp_ret(f, ...) \
({ \
typeof(f(__VA_ARGS__)) ret; \
\
if (has_vhe()) { \
ret = f(__VA_ARGS__); \
isb(); \
} else { \
ret = kvm_call_hyp_nvhe(f, ##__VA_ARGS__); \
} \
\
ret; \
})
void force_vm_exit(const cpumask_t *mask);
void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot);
int handle_exit(struct kvm_vcpu *vcpu, int exception_index);
void handle_exit_early(struct kvm_vcpu *vcpu, int exception_index);
/* MMIO helpers */
void kvm_mmio_write_buf(void *buf, unsigned int len, unsigned long data);
unsigned long kvm_mmio_read_buf(const void *buf, unsigned int len);
int kvm_handle_mmio_return(struct kvm_vcpu *vcpu);
int io_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa);
int kvm_perf_init(void);
int kvm_perf_teardown(void);
long kvm_hypercall_pv_features(struct kvm_vcpu *vcpu);
gpa_t kvm_init_stolen_time(struct kvm_vcpu *vcpu);
void kvm_update_stolen_time(struct kvm_vcpu *vcpu);
bool kvm_arm_pvtime_supported(void);
int kvm_arm_pvtime_set_attr(struct kvm_vcpu *vcpu,
struct kvm_device_attr *attr);
int kvm_arm_pvtime_get_attr(struct kvm_vcpu *vcpu,
struct kvm_device_attr *attr);
int kvm_arm_pvtime_has_attr(struct kvm_vcpu *vcpu,
struct kvm_device_attr *attr);
static inline void kvm_arm_pvtime_vcpu_init(struct kvm_vcpu_arch *vcpu_arch)
{
vcpu_arch->steal.base = GPA_INVALID;
}
static inline bool kvm_arm_is_pvtime_enabled(struct kvm_vcpu_arch *vcpu_arch)
{
return (vcpu_arch->steal.base != GPA_INVALID);
}
void kvm_set_sei_esr(struct kvm_vcpu *vcpu, u64 syndrome);
struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr);
DECLARE_KVM_HYP_PER_CPU(struct kvm_host_data, kvm_host_data);
static inline void kvm_init_host_cpu_context(struct kvm_cpu_context *cpu_ctxt)
{
/* The host's MPIDR is immutable, so let's set it up at boot time */
ctxt_sys_reg(cpu_ctxt, MPIDR_EL1) = read_cpuid_mpidr();
}
static inline bool kvm_arch_requires_vhe(void)
{
/*
* The Arm architecture specifies that implementation of SVE
* requires VHE also to be implemented. The KVM code for arm64
* relies on this when SVE is present:
*/
if (system_supports_sve())
return true;
return false;
}
void kvm_arm_vcpu_ptrauth_trap(struct kvm_vcpu *vcpu);
static inline void kvm_arch_hardware_unsetup(void) {}
static inline void kvm_arch_sync_events(struct kvm *kvm) {}
static inline void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) {}
static inline void kvm_arch_vcpu_block_finish(struct kvm_vcpu *vcpu) {}
void kvm_arm_init_debug(void);
void kvm_arm_vcpu_init_debug(struct kvm_vcpu *vcpu);
void kvm_arm_setup_debug(struct kvm_vcpu *vcpu);
void kvm_arm_clear_debug(struct kvm_vcpu *vcpu);
void kvm_arm_reset_debug_ptr(struct kvm_vcpu *vcpu);
int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu,
struct kvm_device_attr *attr);
int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu,
struct kvm_device_attr *attr);
int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu,
struct kvm_device_attr *attr);
/* Guest/host FPSIMD coordination helpers */
int kvm_arch_vcpu_run_map_fp(struct kvm_vcpu *vcpu);
void kvm_arch_vcpu_load_fp(struct kvm_vcpu *vcpu);
void kvm_arch_vcpu_ctxsync_fp(struct kvm_vcpu *vcpu);
void kvm_arch_vcpu_put_fp(struct kvm_vcpu *vcpu);
static inline bool kvm_pmu_counter_deferred(struct perf_event_attr *attr)
{
return (!has_vhe() && attr->exclude_host);
}
#ifdef CONFIG_KVM /* Avoid conflicts with core headers if CONFIG_KVM=n */
static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
{
return kvm_arch_vcpu_run_map_fp(vcpu);
}
void kvm_set_pmu_events(u32 set, struct perf_event_attr *attr);
void kvm_clr_pmu_events(u32 clr);
void kvm_vcpu_pmu_restore_guest(struct kvm_vcpu *vcpu);
void kvm_vcpu_pmu_restore_host(struct kvm_vcpu *vcpu);
#else
static inline void kvm_set_pmu_events(u32 set, struct perf_event_attr *attr) {}
static inline void kvm_clr_pmu_events(u32 clr) {}
#endif
void kvm_vcpu_load_sysregs_vhe(struct kvm_vcpu *vcpu);
void kvm_vcpu_put_sysregs_vhe(struct kvm_vcpu *vcpu);
int kvm_set_ipa_limit(void);
#define __KVM_HAVE_ARCH_VM_ALLOC
struct kvm *kvm_arch_alloc_vm(void);
void kvm_arch_free_vm(struct kvm *kvm);
int kvm_arm_setup_stage2(struct kvm *kvm, unsigned long type);
int kvm_arm_vcpu_finalize(struct kvm_vcpu *vcpu, int feature);
bool kvm_arm_vcpu_is_finalized(struct kvm_vcpu *vcpu);
#define kvm_arm_vcpu_sve_finalized(vcpu) \
((vcpu)->arch.flags & KVM_ARM64_VCPU_SVE_FINALIZED)
#endif /* __ARM64_KVM_HOST_H__ */
|