1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* STMicroelectronics st_lsm6dsx FIFO buffer library driver
*
* LSM6DS3/LSM6DS3H/LSM6DSL/LSM6DSM/ISM330DLC/LSM6DS3TR-C:
* The FIFO buffer can be configured to store data from gyroscope and
* accelerometer. Samples are queued without any tag according to a
* specific pattern based on 'FIFO data sets' (6 bytes each):
* - 1st data set is reserved for gyroscope data
* - 2nd data set is reserved for accelerometer data
* The FIFO pattern changes depending on the ODRs and decimation factors
* assigned to the FIFO data sets. The first sequence of data stored in FIFO
* buffer contains the data of all the enabled FIFO data sets
* (e.g. Gx, Gy, Gz, Ax, Ay, Az), then data are repeated depending on the
* value of the decimation factor and ODR set for each FIFO data set.
*
* LSM6DSO/LSM6DSOX/ASM330LHH/LSM6DSR/LSM6DSRX/ISM330DHCX:
* The FIFO buffer can be configured to store data from gyroscope and
* accelerometer. Each sample is queued with a tag (1B) indicating data
* source (gyroscope, accelerometer, hw timer).
*
* FIFO supported modes:
* - BYPASS: FIFO disabled
* - CONTINUOUS: FIFO enabled. When the buffer is full, the FIFO index
* restarts from the beginning and the oldest sample is overwritten
*
* Copyright 2016 STMicroelectronics Inc.
*
* Lorenzo Bianconi <lorenzo.bianconi@st.com>
* Denis Ciocca <denis.ciocca@st.com>
*/
#include <linux/module.h>
#include <linux/iio/kfifo_buf.h>
#include <linux/iio/iio.h>
#include <linux/iio/buffer.h>
#include <linux/regmap.h>
#include <linux/bitfield.h>
#include <linux/platform_data/st_sensors_pdata.h>
#include "st_lsm6dsx.h"
#define ST_LSM6DSX_REG_FIFO_MODE_ADDR 0x0a
#define ST_LSM6DSX_FIFO_MODE_MASK GENMASK(2, 0)
#define ST_LSM6DSX_FIFO_ODR_MASK GENMASK(6, 3)
#define ST_LSM6DSX_FIFO_EMPTY_MASK BIT(12)
#define ST_LSM6DSX_REG_FIFO_OUTL_ADDR 0x3e
#define ST_LSM6DSX_REG_FIFO_OUT_TAG_ADDR 0x78
#define ST_LSM6DSX_REG_TS_RESET_ADDR 0x42
#define ST_LSM6DSX_MAX_FIFO_ODR_VAL 0x08
#define ST_LSM6DSX_TS_RESET_VAL 0xaa
struct st_lsm6dsx_decimator_entry {
u8 decimator;
u8 val;
};
enum st_lsm6dsx_fifo_tag {
ST_LSM6DSX_GYRO_TAG = 0x01,
ST_LSM6DSX_ACC_TAG = 0x02,
ST_LSM6DSX_TS_TAG = 0x04,
ST_LSM6DSX_EXT0_TAG = 0x0f,
ST_LSM6DSX_EXT1_TAG = 0x10,
ST_LSM6DSX_EXT2_TAG = 0x11,
};
static const
struct st_lsm6dsx_decimator_entry st_lsm6dsx_decimator_table[] = {
{ 0, 0x0 },
{ 1, 0x1 },
{ 2, 0x2 },
{ 3, 0x3 },
{ 4, 0x4 },
{ 8, 0x5 },
{ 16, 0x6 },
{ 32, 0x7 },
};
static int
st_lsm6dsx_get_decimator_val(struct st_lsm6dsx_sensor *sensor, u32 max_odr)
{
const int max_size = ARRAY_SIZE(st_lsm6dsx_decimator_table);
u32 decimator = max_odr / sensor->odr;
int i;
if (decimator > 1)
decimator = round_down(decimator, 2);
for (i = 0; i < max_size; i++) {
if (st_lsm6dsx_decimator_table[i].decimator == decimator)
break;
}
sensor->decimator = decimator;
return i == max_size ? 0 : st_lsm6dsx_decimator_table[i].val;
}
static void st_lsm6dsx_get_max_min_odr(struct st_lsm6dsx_hw *hw,
u32 *max_odr, u32 *min_odr)
{
struct st_lsm6dsx_sensor *sensor;
int i;
*max_odr = 0, *min_odr = ~0;
for (i = 0; i < ST_LSM6DSX_ID_MAX; i++) {
if (!hw->iio_devs[i])
continue;
sensor = iio_priv(hw->iio_devs[i]);
if (!(hw->enable_mask & BIT(sensor->id)))
continue;
*max_odr = max_t(u32, *max_odr, sensor->odr);
*min_odr = min_t(u32, *min_odr, sensor->odr);
}
}
static u8 st_lsm6dsx_get_sip(struct st_lsm6dsx_sensor *sensor, u32 min_odr)
{
u8 sip = sensor->odr / min_odr;
return sip > 1 ? round_down(sip, 2) : sip;
}
static int st_lsm6dsx_update_decimators(struct st_lsm6dsx_hw *hw)
{
const struct st_lsm6dsx_reg *ts_dec_reg;
struct st_lsm6dsx_sensor *sensor;
u16 sip = 0, ts_sip = 0;
u32 max_odr, min_odr;
int err = 0, i;
u8 data;
st_lsm6dsx_get_max_min_odr(hw, &max_odr, &min_odr);
for (i = 0; i < ST_LSM6DSX_ID_MAX; i++) {
const struct st_lsm6dsx_reg *dec_reg;
if (!hw->iio_devs[i])
continue;
sensor = iio_priv(hw->iio_devs[i]);
/* update fifo decimators and sample in pattern */
if (hw->enable_mask & BIT(sensor->id)) {
sensor->sip = st_lsm6dsx_get_sip(sensor, min_odr);
data = st_lsm6dsx_get_decimator_val(sensor, max_odr);
} else {
sensor->sip = 0;
data = 0;
}
ts_sip = max_t(u16, ts_sip, sensor->sip);
dec_reg = &hw->settings->decimator[sensor->id];
if (dec_reg->addr) {
int val = ST_LSM6DSX_SHIFT_VAL(data, dec_reg->mask);
err = st_lsm6dsx_update_bits_locked(hw, dec_reg->addr,
dec_reg->mask,
val);
if (err < 0)
return err;
}
sip += sensor->sip;
}
hw->sip = sip + ts_sip;
hw->ts_sip = ts_sip;
/*
* update hw ts decimator if necessary. Decimator for hw timestamp
* is always 1 or 0 in order to have a ts sample for each data
* sample in FIFO
*/
ts_dec_reg = &hw->settings->ts_settings.decimator;
if (ts_dec_reg->addr) {
int val, ts_dec = !!hw->ts_sip;
val = ST_LSM6DSX_SHIFT_VAL(ts_dec, ts_dec_reg->mask);
err = st_lsm6dsx_update_bits_locked(hw, ts_dec_reg->addr,
ts_dec_reg->mask, val);
}
return err;
}
static int st_lsm6dsx_set_fifo_mode(struct st_lsm6dsx_hw *hw,
enum st_lsm6dsx_fifo_mode fifo_mode)
{
unsigned int data;
data = FIELD_PREP(ST_LSM6DSX_FIFO_MODE_MASK, fifo_mode);
return st_lsm6dsx_update_bits_locked(hw, ST_LSM6DSX_REG_FIFO_MODE_ADDR,
ST_LSM6DSX_FIFO_MODE_MASK, data);
}
static int st_lsm6dsx_set_fifo_odr(struct st_lsm6dsx_sensor *sensor,
bool enable)
{
struct st_lsm6dsx_hw *hw = sensor->hw;
const struct st_lsm6dsx_reg *batch_reg;
u8 data;
batch_reg = &hw->settings->batch[sensor->id];
if (batch_reg->addr) {
int val;
if (enable) {
int err;
err = st_lsm6dsx_check_odr(sensor, sensor->odr,
&data);
if (err < 0)
return err;
} else {
data = 0;
}
val = ST_LSM6DSX_SHIFT_VAL(data, batch_reg->mask);
return st_lsm6dsx_update_bits_locked(hw, batch_reg->addr,
batch_reg->mask, val);
} else {
data = hw->enable_mask ? ST_LSM6DSX_MAX_FIFO_ODR_VAL : 0;
return st_lsm6dsx_update_bits_locked(hw,
ST_LSM6DSX_REG_FIFO_MODE_ADDR,
ST_LSM6DSX_FIFO_ODR_MASK,
FIELD_PREP(ST_LSM6DSX_FIFO_ODR_MASK,
data));
}
}
int st_lsm6dsx_update_watermark(struct st_lsm6dsx_sensor *sensor, u16 watermark)
{
u16 fifo_watermark = ~0, cur_watermark, fifo_th_mask;
struct st_lsm6dsx_hw *hw = sensor->hw;
struct st_lsm6dsx_sensor *cur_sensor;
int i, err, data;
__le16 wdata;
if (!hw->sip)
return 0;
for (i = 0; i < ST_LSM6DSX_ID_MAX; i++) {
if (!hw->iio_devs[i])
continue;
cur_sensor = iio_priv(hw->iio_devs[i]);
if (!(hw->enable_mask & BIT(cur_sensor->id)))
continue;
cur_watermark = (cur_sensor == sensor) ? watermark
: cur_sensor->watermark;
fifo_watermark = min_t(u16, fifo_watermark, cur_watermark);
}
fifo_watermark = max_t(u16, fifo_watermark, hw->sip);
fifo_watermark = (fifo_watermark / hw->sip) * hw->sip;
fifo_watermark = fifo_watermark * hw->settings->fifo_ops.th_wl;
mutex_lock(&hw->page_lock);
err = regmap_read(hw->regmap, hw->settings->fifo_ops.fifo_th.addr + 1,
&data);
if (err < 0)
goto out;
fifo_th_mask = hw->settings->fifo_ops.fifo_th.mask;
fifo_watermark = ((data << 8) & ~fifo_th_mask) |
(fifo_watermark & fifo_th_mask);
wdata = cpu_to_le16(fifo_watermark);
err = regmap_bulk_write(hw->regmap,
hw->settings->fifo_ops.fifo_th.addr,
&wdata, sizeof(wdata));
out:
mutex_unlock(&hw->page_lock);
return err;
}
static int st_lsm6dsx_reset_hw_ts(struct st_lsm6dsx_hw *hw)
{
struct st_lsm6dsx_sensor *sensor;
int i, err;
/* reset hw ts counter */
err = st_lsm6dsx_write_locked(hw, ST_LSM6DSX_REG_TS_RESET_ADDR,
ST_LSM6DSX_TS_RESET_VAL);
if (err < 0)
return err;
for (i = 0; i < ST_LSM6DSX_ID_MAX; i++) {
if (!hw->iio_devs[i])
continue;
sensor = iio_priv(hw->iio_devs[i]);
/*
* store enable buffer timestamp as reference for
* hw timestamp
*/
sensor->ts_ref = iio_get_time_ns(hw->iio_devs[i]);
}
return 0;
}
int st_lsm6dsx_resume_fifo(struct st_lsm6dsx_hw *hw)
{
int err;
/* reset hw ts counter */
err = st_lsm6dsx_reset_hw_ts(hw);
if (err < 0)
return err;
return st_lsm6dsx_set_fifo_mode(hw, ST_LSM6DSX_FIFO_CONT);
}
/*
* Set max bulk read to ST_LSM6DSX_MAX_WORD_LEN/ST_LSM6DSX_MAX_TAGGED_WORD_LEN
* in order to avoid a kmalloc for each bus access
*/
static inline int st_lsm6dsx_read_block(struct st_lsm6dsx_hw *hw, u8 addr,
u8 *data, unsigned int data_len,
unsigned int max_word_len)
{
unsigned int word_len, read_len = 0;
int err;
while (read_len < data_len) {
word_len = min_t(unsigned int, data_len - read_len,
max_word_len);
err = st_lsm6dsx_read_locked(hw, addr, data + read_len,
word_len);
if (err < 0)
return err;
read_len += word_len;
}
return 0;
}
#define ST_LSM6DSX_IIO_BUFF_SIZE (ALIGN(ST_LSM6DSX_SAMPLE_SIZE, \
sizeof(s64)) + sizeof(s64))
/**
* st_lsm6dsx_read_fifo() - hw FIFO read routine
* @hw: Pointer to instance of struct st_lsm6dsx_hw.
*
* Read samples from the hw FIFO and push them to IIO buffers.
*
* Return: Number of bytes read from the FIFO
*/
int st_lsm6dsx_read_fifo(struct st_lsm6dsx_hw *hw)
{
struct st_lsm6dsx_sensor *acc_sensor, *gyro_sensor, *ext_sensor = NULL;
int err, sip, acc_sip, gyro_sip, ts_sip, ext_sip, read_len, offset;
u16 fifo_len, pattern_len = hw->sip * ST_LSM6DSX_SAMPLE_SIZE;
u16 fifo_diff_mask = hw->settings->fifo_ops.fifo_diff.mask;
bool reset_ts = false;
__le16 fifo_status;
s64 ts = 0;
err = st_lsm6dsx_read_locked(hw,
hw->settings->fifo_ops.fifo_diff.addr,
&fifo_status, sizeof(fifo_status));
if (err < 0) {
dev_err(hw->dev, "failed to read fifo status (err=%d)\n",
err);
return err;
}
if (fifo_status & cpu_to_le16(ST_LSM6DSX_FIFO_EMPTY_MASK))
return 0;
fifo_len = (le16_to_cpu(fifo_status) & fifo_diff_mask) *
ST_LSM6DSX_CHAN_SIZE;
fifo_len = (fifo_len / pattern_len) * pattern_len;
acc_sensor = iio_priv(hw->iio_devs[ST_LSM6DSX_ID_ACC]);
gyro_sensor = iio_priv(hw->iio_devs[ST_LSM6DSX_ID_GYRO]);
if (hw->iio_devs[ST_LSM6DSX_ID_EXT0])
ext_sensor = iio_priv(hw->iio_devs[ST_LSM6DSX_ID_EXT0]);
for (read_len = 0; read_len < fifo_len; read_len += pattern_len) {
err = st_lsm6dsx_read_block(hw, ST_LSM6DSX_REG_FIFO_OUTL_ADDR,
hw->buff, pattern_len,
ST_LSM6DSX_MAX_WORD_LEN);
if (err < 0) {
dev_err(hw->dev,
"failed to read pattern from fifo (err=%d)\n",
err);
return err;
}
/*
* Data are written to the FIFO with a specific pattern
* depending on the configured ODRs. The first sequence of data
* stored in FIFO contains the data of all enabled sensors
* (e.g. Gx, Gy, Gz, Ax, Ay, Az, Ts), then data are repeated
* depending on the value of the decimation factor set for each
* sensor.
*
* Supposing the FIFO is storing data from gyroscope and
* accelerometer at different ODRs:
* - gyroscope ODR = 208Hz, accelerometer ODR = 104Hz
* Since the gyroscope ODR is twice the accelerometer one, the
* following pattern is repeated every 9 samples:
* - Gx, Gy, Gz, Ax, Ay, Az, Ts, Gx, Gy, Gz, Ts, Gx, ..
*/
ext_sip = ext_sensor ? ext_sensor->sip : 0;
gyro_sip = gyro_sensor->sip;
acc_sip = acc_sensor->sip;
ts_sip = hw->ts_sip;
offset = 0;
sip = 0;
while (acc_sip > 0 || gyro_sip > 0 || ext_sip > 0) {
if (gyro_sip > 0 && !(sip % gyro_sensor->decimator)) {
memcpy(hw->scan[ST_LSM6DSX_ID_GYRO].channels,
&hw->buff[offset],
sizeof(hw->scan[ST_LSM6DSX_ID_GYRO].channels));
offset += sizeof(hw->scan[ST_LSM6DSX_ID_GYRO].channels);
}
if (acc_sip > 0 && !(sip % acc_sensor->decimator)) {
memcpy(hw->scan[ST_LSM6DSX_ID_ACC].channels,
&hw->buff[offset],
sizeof(hw->scan[ST_LSM6DSX_ID_ACC].channels));
offset += sizeof(hw->scan[ST_LSM6DSX_ID_ACC].channels);
}
if (ext_sip > 0 && !(sip % ext_sensor->decimator)) {
memcpy(hw->scan[ST_LSM6DSX_ID_EXT0].channels,
&hw->buff[offset],
sizeof(hw->scan[ST_LSM6DSX_ID_EXT0].channels));
offset += sizeof(hw->scan[ST_LSM6DSX_ID_EXT0].channels);
}
if (ts_sip-- > 0) {
u8 data[ST_LSM6DSX_SAMPLE_SIZE];
memcpy(data, &hw->buff[offset], sizeof(data));
/*
* hw timestamp is 3B long and it is stored
* in FIFO using 6B as 4th FIFO data set
* according to this schema:
* B0 = ts[15:8], B1 = ts[23:16], B3 = ts[7:0]
*/
ts = data[1] << 16 | data[0] << 8 | data[3];
/*
* check if hw timestamp engine is going to
* reset (the sensor generates an interrupt
* to signal the hw timestamp will reset in
* 1.638s)
*/
if (!reset_ts && ts >= 0xff0000)
reset_ts = true;
ts *= hw->ts_gain;
offset += ST_LSM6DSX_SAMPLE_SIZE;
}
if (gyro_sip > 0 && !(sip % gyro_sensor->decimator)) {
iio_push_to_buffers_with_timestamp(
hw->iio_devs[ST_LSM6DSX_ID_GYRO],
&hw->scan[ST_LSM6DSX_ID_GYRO],
gyro_sensor->ts_ref + ts);
gyro_sip--;
}
if (acc_sip > 0 && !(sip % acc_sensor->decimator)) {
iio_push_to_buffers_with_timestamp(
hw->iio_devs[ST_LSM6DSX_ID_ACC],
&hw->scan[ST_LSM6DSX_ID_ACC],
acc_sensor->ts_ref + ts);
acc_sip--;
}
if (ext_sip > 0 && !(sip % ext_sensor->decimator)) {
iio_push_to_buffers_with_timestamp(
hw->iio_devs[ST_LSM6DSX_ID_EXT0],
&hw->scan[ST_LSM6DSX_ID_EXT0],
ext_sensor->ts_ref + ts);
ext_sip--;
}
sip++;
}
}
if (unlikely(reset_ts)) {
err = st_lsm6dsx_reset_hw_ts(hw);
if (err < 0) {
dev_err(hw->dev, "failed to reset hw ts (err=%d)\n",
err);
return err;
}
}
return read_len;
}
#define ST_LSM6DSX_INVALID_SAMPLE 0x7ffd
static int
st_lsm6dsx_push_tagged_data(struct st_lsm6dsx_hw *hw, u8 tag,
u8 *data, s64 ts)
{
s16 val = le16_to_cpu(*(__le16 *)data);
struct st_lsm6dsx_sensor *sensor;
struct iio_dev *iio_dev;
/* invalid sample during bootstrap phase */
if (val >= ST_LSM6DSX_INVALID_SAMPLE)
return -EINVAL;
/*
* EXT_TAG are managed in FIFO fashion so ST_LSM6DSX_EXT0_TAG
* corresponds to the first enabled channel, ST_LSM6DSX_EXT1_TAG
* to the second one and ST_LSM6DSX_EXT2_TAG to the last enabled
* channel
*/
switch (tag) {
case ST_LSM6DSX_GYRO_TAG:
iio_dev = hw->iio_devs[ST_LSM6DSX_ID_GYRO];
break;
case ST_LSM6DSX_ACC_TAG:
iio_dev = hw->iio_devs[ST_LSM6DSX_ID_ACC];
break;
case ST_LSM6DSX_EXT0_TAG:
if (hw->enable_mask & BIT(ST_LSM6DSX_ID_EXT0))
iio_dev = hw->iio_devs[ST_LSM6DSX_ID_EXT0];
else if (hw->enable_mask & BIT(ST_LSM6DSX_ID_EXT1))
iio_dev = hw->iio_devs[ST_LSM6DSX_ID_EXT1];
else
iio_dev = hw->iio_devs[ST_LSM6DSX_ID_EXT2];
break;
case ST_LSM6DSX_EXT1_TAG:
if ((hw->enable_mask & BIT(ST_LSM6DSX_ID_EXT0)) &&
(hw->enable_mask & BIT(ST_LSM6DSX_ID_EXT1)))
iio_dev = hw->iio_devs[ST_LSM6DSX_ID_EXT1];
else
iio_dev = hw->iio_devs[ST_LSM6DSX_ID_EXT2];
break;
case ST_LSM6DSX_EXT2_TAG:
iio_dev = hw->iio_devs[ST_LSM6DSX_ID_EXT2];
break;
default:
return -EINVAL;
}
sensor = iio_priv(iio_dev);
iio_push_to_buffers_with_timestamp(iio_dev, data,
ts + sensor->ts_ref);
return 0;
}
/**
* st_lsm6dsx_read_tagged_fifo() - tagged hw FIFO read routine
* @hw: Pointer to instance of struct st_lsm6dsx_hw.
*
* Read samples from the hw FIFO and push them to IIO buffers.
*
* Return: Number of bytes read from the FIFO
*/
int st_lsm6dsx_read_tagged_fifo(struct st_lsm6dsx_hw *hw)
{
u16 pattern_len = hw->sip * ST_LSM6DSX_TAGGED_SAMPLE_SIZE;
u16 fifo_len, fifo_diff_mask;
/*
* Alignment needed as this can ultimately be passed to a
* call to iio_push_to_buffers_with_timestamp() which
* must be passed a buffer that is aligned to 8 bytes so
* as to allow insertion of a naturally aligned timestamp.
*/
u8 iio_buff[ST_LSM6DSX_IIO_BUFF_SIZE] __aligned(8);
u8 tag;
bool reset_ts = false;
int i, err, read_len;
__le16 fifo_status;
s64 ts = 0;
err = st_lsm6dsx_read_locked(hw,
hw->settings->fifo_ops.fifo_diff.addr,
&fifo_status, sizeof(fifo_status));
if (err < 0) {
dev_err(hw->dev, "failed to read fifo status (err=%d)\n",
err);
return err;
}
fifo_diff_mask = hw->settings->fifo_ops.fifo_diff.mask;
fifo_len = (le16_to_cpu(fifo_status) & fifo_diff_mask) *
ST_LSM6DSX_TAGGED_SAMPLE_SIZE;
if (!fifo_len)
return 0;
for (read_len = 0; read_len < fifo_len; read_len += pattern_len) {
err = st_lsm6dsx_read_block(hw,
ST_LSM6DSX_REG_FIFO_OUT_TAG_ADDR,
hw->buff, pattern_len,
ST_LSM6DSX_MAX_TAGGED_WORD_LEN);
if (err < 0) {
dev_err(hw->dev,
"failed to read pattern from fifo (err=%d)\n",
err);
return err;
}
for (i = 0; i < pattern_len;
i += ST_LSM6DSX_TAGGED_SAMPLE_SIZE) {
memcpy(iio_buff, &hw->buff[i + ST_LSM6DSX_TAG_SIZE],
ST_LSM6DSX_SAMPLE_SIZE);
tag = hw->buff[i] >> 3;
if (tag == ST_LSM6DSX_TS_TAG) {
/*
* hw timestamp is 4B long and it is stored
* in FIFO according to this schema:
* B0 = ts[7:0], B1 = ts[15:8], B2 = ts[23:16],
* B3 = ts[31:24]
*/
ts = le32_to_cpu(*((__le32 *)iio_buff));
/*
* check if hw timestamp engine is going to
* reset (the sensor generates an interrupt
* to signal the hw timestamp will reset in
* 1.638s)
*/
if (!reset_ts && ts >= 0xffff0000)
reset_ts = true;
ts *= hw->ts_gain;
} else {
st_lsm6dsx_push_tagged_data(hw, tag, iio_buff,
ts);
}
}
}
if (unlikely(reset_ts)) {
err = st_lsm6dsx_reset_hw_ts(hw);
if (err < 0)
return err;
}
return read_len;
}
int st_lsm6dsx_flush_fifo(struct st_lsm6dsx_hw *hw)
{
int err;
if (!hw->settings->fifo_ops.read_fifo)
return -ENOTSUPP;
mutex_lock(&hw->fifo_lock);
hw->settings->fifo_ops.read_fifo(hw);
err = st_lsm6dsx_set_fifo_mode(hw, ST_LSM6DSX_FIFO_BYPASS);
mutex_unlock(&hw->fifo_lock);
return err;
}
int st_lsm6dsx_update_fifo(struct st_lsm6dsx_sensor *sensor, bool enable)
{
struct st_lsm6dsx_hw *hw = sensor->hw;
u8 fifo_mask;
int err;
mutex_lock(&hw->conf_lock);
if (enable)
fifo_mask = hw->fifo_mask | BIT(sensor->id);
else
fifo_mask = hw->fifo_mask & ~BIT(sensor->id);
if (hw->fifo_mask) {
err = st_lsm6dsx_flush_fifo(hw);
if (err < 0)
goto out;
}
if (sensor->id == ST_LSM6DSX_ID_EXT0 ||
sensor->id == ST_LSM6DSX_ID_EXT1 ||
sensor->id == ST_LSM6DSX_ID_EXT2) {
err = st_lsm6dsx_shub_set_enable(sensor, enable);
if (err < 0)
goto out;
} else {
err = st_lsm6dsx_sensor_set_enable(sensor, enable);
if (err < 0)
goto out;
}
err = st_lsm6dsx_set_fifo_odr(sensor, enable);
if (err < 0)
goto out;
err = st_lsm6dsx_update_decimators(hw);
if (err < 0)
goto out;
err = st_lsm6dsx_update_watermark(sensor, sensor->watermark);
if (err < 0)
goto out;
if (fifo_mask) {
err = st_lsm6dsx_resume_fifo(hw);
if (err < 0)
goto out;
}
hw->fifo_mask = fifo_mask;
out:
mutex_unlock(&hw->conf_lock);
return err;
}
static int st_lsm6dsx_buffer_preenable(struct iio_dev *iio_dev)
{
struct st_lsm6dsx_sensor *sensor = iio_priv(iio_dev);
struct st_lsm6dsx_hw *hw = sensor->hw;
if (!hw->settings->fifo_ops.update_fifo)
return -ENOTSUPP;
return hw->settings->fifo_ops.update_fifo(sensor, true);
}
static int st_lsm6dsx_buffer_postdisable(struct iio_dev *iio_dev)
{
struct st_lsm6dsx_sensor *sensor = iio_priv(iio_dev);
struct st_lsm6dsx_hw *hw = sensor->hw;
if (!hw->settings->fifo_ops.update_fifo)
return -ENOTSUPP;
return hw->settings->fifo_ops.update_fifo(sensor, false);
}
static const struct iio_buffer_setup_ops st_lsm6dsx_buffer_ops = {
.preenable = st_lsm6dsx_buffer_preenable,
.postdisable = st_lsm6dsx_buffer_postdisable,
};
int st_lsm6dsx_fifo_setup(struct st_lsm6dsx_hw *hw)
{
struct iio_buffer *buffer;
int i;
for (i = 0; i < ST_LSM6DSX_ID_MAX; i++) {
if (!hw->iio_devs[i])
continue;
buffer = devm_iio_kfifo_allocate(hw->dev);
if (!buffer)
return -ENOMEM;
iio_device_attach_buffer(hw->iio_devs[i], buffer);
hw->iio_devs[i]->modes |= INDIO_BUFFER_SOFTWARE;
hw->iio_devs[i]->setup_ops = &st_lsm6dsx_buffer_ops;
}
return 0;
}
|