summaryrefslogtreecommitdiffstats
path: root/drivers/media/pci/cx18/cx18-av-vbi.c
blob: a0d465924e75e30753f367c0b79ee1086c480e3a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
// SPDX-License-Identifier: GPL-2.0-or-later
/*
 *  cx18 ADEC VBI functions
 *
 *  Derived from cx25840-vbi.c
 *
 *  Copyright (C) 2007  Hans Verkuil <hverkuil@xs4all.nl>
 */


#include "cx18-driver.h"

/*
 * For sliced VBI output, we set up to use VIP-1.1, 8-bit mode,
 * NN counts 1 byte Dwords, an IDID with the VBI line # in it.
 * Thus, according to the VIP-2 Spec, our VBI ancillary data lines
 * (should!) look like:
 *	4 byte EAV code:          0xff 0x00 0x00 0xRP
 *	unknown number of possible idle bytes
 *	3 byte Anc data preamble: 0x00 0xff 0xff
 *	1 byte data identifier:   ne010iii (parity bits, 010, DID bits)
 *	1 byte secondary data id: nessssss (parity bits, SDID bits)
 *	1 byte data word count:   necccccc (parity bits, NN Dword count)
 *	2 byte Internal DID:	  VBI-line-# 0x80
 *	NN data bytes
 *	1 byte checksum
 *	Fill bytes needed to fil out to 4*NN bytes of payload
 *
 * The RP codes for EAVs when in VIP-1.1 mode, not in raw mode, &
 * in the vertical blanking interval are:
 *	0xb0 (Task         0 VerticalBlank HorizontalBlank 0 0 0 0)
 *	0xf0 (Task EvenField VerticalBlank HorizontalBlank 0 0 0 0)
 *
 * Since the V bit is only allowed to toggle in the EAV RP code, just
 * before the first active region line and for active lines, they are:
 *	0x90 (Task         0 0 HorizontalBlank 0 0 0 0)
 *	0xd0 (Task EvenField 0 HorizontalBlank 0 0 0 0)
 *
 * The user application DID bytes we care about are:
 *	0x91 (1 0 010        0 !ActiveLine AncDataPresent)
 *	0x55 (0 1 010 2ndField !ActiveLine AncDataPresent)
 *
 */
static const u8 sliced_vbi_did[2] = { 0x91, 0x55 };

struct vbi_anc_data {
	/* u8 eav[4]; */
	/* u8 idle[]; Variable number of idle bytes */
	u8 preamble[3];
	u8 did;
	u8 sdid;
	u8 data_count;
	u8 idid[2];
	u8 payload[1]; /* data_count of payload */
	/* u8 checksum; */
	/* u8 fill[]; Variable number of fill bytes */
};

static int odd_parity(u8 c)
{
	c ^= (c >> 4);
	c ^= (c >> 2);
	c ^= (c >> 1);

	return c & 1;
}

static int decode_vps(u8 *dst, u8 *p)
{
	static const u8 biphase_tbl[] = {
		0xf0, 0x78, 0x70, 0xf0, 0xb4, 0x3c, 0x34, 0xb4,
		0xb0, 0x38, 0x30, 0xb0, 0xf0, 0x78, 0x70, 0xf0,
		0xd2, 0x5a, 0x52, 0xd2, 0x96, 0x1e, 0x16, 0x96,
		0x92, 0x1a, 0x12, 0x92, 0xd2, 0x5a, 0x52, 0xd2,
		0xd0, 0x58, 0x50, 0xd0, 0x94, 0x1c, 0x14, 0x94,
		0x90, 0x18, 0x10, 0x90, 0xd0, 0x58, 0x50, 0xd0,
		0xf0, 0x78, 0x70, 0xf0, 0xb4, 0x3c, 0x34, 0xb4,
		0xb0, 0x38, 0x30, 0xb0, 0xf0, 0x78, 0x70, 0xf0,
		0xe1, 0x69, 0x61, 0xe1, 0xa5, 0x2d, 0x25, 0xa5,
		0xa1, 0x29, 0x21, 0xa1, 0xe1, 0x69, 0x61, 0xe1,
		0xc3, 0x4b, 0x43, 0xc3, 0x87, 0x0f, 0x07, 0x87,
		0x83, 0x0b, 0x03, 0x83, 0xc3, 0x4b, 0x43, 0xc3,
		0xc1, 0x49, 0x41, 0xc1, 0x85, 0x0d, 0x05, 0x85,
		0x81, 0x09, 0x01, 0x81, 0xc1, 0x49, 0x41, 0xc1,
		0xe1, 0x69, 0x61, 0xe1, 0xa5, 0x2d, 0x25, 0xa5,
		0xa1, 0x29, 0x21, 0xa1, 0xe1, 0x69, 0x61, 0xe1,
		0xe0, 0x68, 0x60, 0xe0, 0xa4, 0x2c, 0x24, 0xa4,
		0xa0, 0x28, 0x20, 0xa0, 0xe0, 0x68, 0x60, 0xe0,
		0xc2, 0x4a, 0x42, 0xc2, 0x86, 0x0e, 0x06, 0x86,
		0x82, 0x0a, 0x02, 0x82, 0xc2, 0x4a, 0x42, 0xc2,
		0xc0, 0x48, 0x40, 0xc0, 0x84, 0x0c, 0x04, 0x84,
		0x80, 0x08, 0x00, 0x80, 0xc0, 0x48, 0x40, 0xc0,
		0xe0, 0x68, 0x60, 0xe0, 0xa4, 0x2c, 0x24, 0xa4,
		0xa0, 0x28, 0x20, 0xa0, 0xe0, 0x68, 0x60, 0xe0,
		0xf0, 0x78, 0x70, 0xf0, 0xb4, 0x3c, 0x34, 0xb4,
		0xb0, 0x38, 0x30, 0xb0, 0xf0, 0x78, 0x70, 0xf0,
		0xd2, 0x5a, 0x52, 0xd2, 0x96, 0x1e, 0x16, 0x96,
		0x92, 0x1a, 0x12, 0x92, 0xd2, 0x5a, 0x52, 0xd2,
		0xd0, 0x58, 0x50, 0xd0, 0x94, 0x1c, 0x14, 0x94,
		0x90, 0x18, 0x10, 0x90, 0xd0, 0x58, 0x50, 0xd0,
		0xf0, 0x78, 0x70, 0xf0, 0xb4, 0x3c, 0x34, 0xb4,
		0xb0, 0x38, 0x30, 0xb0, 0xf0, 0x78, 0x70, 0xf0,
	};

	u8 c, err = 0;
	int i;

	for (i = 0; i < 2 * 13; i += 2) {
		err |= biphase_tbl[p[i]] | biphase_tbl[p[i + 1]];
		c = (biphase_tbl[p[i + 1]] & 0xf) |
		    ((biphase_tbl[p[i]] & 0xf) << 4);
		dst[i / 2] = c;
	}

	return err & 0xf0;
}

int cx18_av_g_sliced_fmt(struct v4l2_subdev *sd, struct v4l2_sliced_vbi_format *svbi)
{
	struct cx18 *cx = v4l2_get_subdevdata(sd);
	struct cx18_av_state *state = &cx->av_state;
	static const u16 lcr2vbi[] = {
		0, V4L2_SLICED_TELETEXT_B, 0,	/* 1 */
		0, V4L2_SLICED_WSS_625, 0,	/* 4 */
		V4L2_SLICED_CAPTION_525,	/* 6 */
		0, 0, V4L2_SLICED_VPS, 0, 0,	/* 9 */
		0, 0, 0, 0
	};
	int is_pal = !(state->std & V4L2_STD_525_60);
	int i;

	memset(svbi->service_lines, 0, sizeof(svbi->service_lines));
	svbi->service_set = 0;

	/* we're done if raw VBI is active */
	if ((cx18_av_read(cx, 0x404) & 0x10) == 0)
		return 0;

	if (is_pal) {
		for (i = 7; i <= 23; i++) {
			u8 v = cx18_av_read(cx, 0x424 + i - 7);

			svbi->service_lines[0][i] = lcr2vbi[v >> 4];
			svbi->service_lines[1][i] = lcr2vbi[v & 0xf];
			svbi->service_set |= svbi->service_lines[0][i] |
				svbi->service_lines[1][i];
		}
	} else {
		for (i = 10; i <= 21; i++) {
			u8 v = cx18_av_read(cx, 0x424 + i - 10);

			svbi->service_lines[0][i] = lcr2vbi[v >> 4];
			svbi->service_lines[1][i] = lcr2vbi[v & 0xf];
			svbi->service_set |= svbi->service_lines[0][i] |
				svbi->service_lines[1][i];
		}
	}
	return 0;
}

int cx18_av_s_raw_fmt(struct v4l2_subdev *sd, struct v4l2_vbi_format *fmt)
{
	struct cx18 *cx = v4l2_get_subdevdata(sd);
	struct cx18_av_state *state = &cx->av_state;

	/* Setup standard */
	cx18_av_std_setup(cx);

	/* VBI Offset */
	cx18_av_write(cx, 0x47f, state->slicer_line_delay);
	cx18_av_write(cx, 0x404, 0x2e);
	return 0;
}

int cx18_av_s_sliced_fmt(struct v4l2_subdev *sd, struct v4l2_sliced_vbi_format *svbi)
{
	struct cx18 *cx = v4l2_get_subdevdata(sd);
	struct cx18_av_state *state = &cx->av_state;
	int is_pal = !(state->std & V4L2_STD_525_60);
	int i, x;
	u8 lcr[24];

	for (x = 0; x <= 23; x++)
		lcr[x] = 0x00;

	/* Setup standard */
	cx18_av_std_setup(cx);

	/* Sliced VBI */
	cx18_av_write(cx, 0x404, 0x32);	/* Ancillary data */
	cx18_av_write(cx, 0x406, 0x13);
	cx18_av_write(cx, 0x47f, state->slicer_line_delay);

	/* Force impossible lines to 0 */
	if (is_pal) {
		for (i = 0; i <= 6; i++)
			svbi->service_lines[0][i] =
				svbi->service_lines[1][i] = 0;
	} else {
		for (i = 0; i <= 9; i++)
			svbi->service_lines[0][i] =
				svbi->service_lines[1][i] = 0;

		for (i = 22; i <= 23; i++)
			svbi->service_lines[0][i] =
				svbi->service_lines[1][i] = 0;
	}

	/* Build register values for requested service lines */
	for (i = 7; i <= 23; i++) {
		for (x = 0; x <= 1; x++) {
			switch (svbi->service_lines[1-x][i]) {
			case V4L2_SLICED_TELETEXT_B:
				lcr[i] |= 1 << (4 * x);
				break;
			case V4L2_SLICED_WSS_625:
				lcr[i] |= 4 << (4 * x);
				break;
			case V4L2_SLICED_CAPTION_525:
				lcr[i] |= 6 << (4 * x);
				break;
			case V4L2_SLICED_VPS:
				lcr[i] |= 9 << (4 * x);
				break;
			}
		}
	}

	if (is_pal) {
		for (x = 1, i = 0x424; i <= 0x434; i++, x++)
			cx18_av_write(cx, i, lcr[6 + x]);
	} else {
		for (x = 1, i = 0x424; i <= 0x430; i++, x++)
			cx18_av_write(cx, i, lcr[9 + x]);
		for (i = 0x431; i <= 0x434; i++)
			cx18_av_write(cx, i, 0);
	}

	cx18_av_write(cx, 0x43c, 0x16);
	/* Should match vblank set in cx18_av_std_setup() */
	cx18_av_write(cx, 0x474, is_pal ? 38 : 26);
	return 0;
}

int cx18_av_decode_vbi_line(struct v4l2_subdev *sd,
				   struct v4l2_decode_vbi_line *vbi)
{
	struct cx18 *cx = v4l2_get_subdevdata(sd);
	struct cx18_av_state *state = &cx->av_state;
	struct vbi_anc_data *anc = (struct vbi_anc_data *)vbi->p;
	u8 *p;
	int did, sdid, l, err = 0;

	/*
	 * Check for the ancillary data header for sliced VBI
	 */
	if (anc->preamble[0] ||
			anc->preamble[1] != 0xff || anc->preamble[2] != 0xff ||
			(anc->did != sliced_vbi_did[0] &&
			 anc->did != sliced_vbi_did[1])) {
		vbi->line = vbi->type = 0;
		return 0;
	}

	did = anc->did;
	sdid = anc->sdid & 0xf;
	l = anc->idid[0] & 0x3f;
	l += state->slicer_line_offset;
	p = anc->payload;

	/* Decode the SDID set by the slicer */
	switch (sdid) {
	case 1:
		sdid = V4L2_SLICED_TELETEXT_B;
		break;
	case 4:
		sdid = V4L2_SLICED_WSS_625;
		break;
	case 6:
		sdid = V4L2_SLICED_CAPTION_525;
		err = !odd_parity(p[0]) || !odd_parity(p[1]);
		break;
	case 9:
		sdid = V4L2_SLICED_VPS;
		if (decode_vps(p, p) != 0)
			err = 1;
		break;
	default:
		sdid = 0;
		err = 1;
		break;
	}

	vbi->type = err ? 0 : sdid;
	vbi->line = err ? 0 : l;
	vbi->is_second_field = err ? 0 : (did == sliced_vbi_did[1]);
	vbi->p = p;
	return 0;
}