summaryrefslogtreecommitdiffstats
path: root/openbsd-compat/sha2.c
diff options
context:
space:
mode:
Diffstat (limited to 'openbsd-compat/sha2.c')
-rw-r--r--openbsd-compat/sha2.c1010
1 files changed, 1010 insertions, 0 deletions
diff --git a/openbsd-compat/sha2.c b/openbsd-compat/sha2.c
new file mode 100644
index 0000000..e36cc24
--- /dev/null
+++ b/openbsd-compat/sha2.c
@@ -0,0 +1,1010 @@
+/* $OpenBSD: sha2.c,v 1.28 2019/07/23 12:35:22 dtucker Exp $ */
+
+/*
+ * FILE: sha2.c
+ * AUTHOR: Aaron D. Gifford <me@aarongifford.com>
+ *
+ * Copyright (c) 2000-2001, Aaron D. Gifford
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. Neither the name of the copyright holder nor the names of contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ *
+ * $From: sha2.c,v 1.1 2001/11/08 00:01:51 adg Exp adg $
+ */
+
+/* OPENBSD ORIGINAL: lib/libc/hash/sha2.c */
+
+#include "includes.h"
+
+#if !defined(HAVE_SHA256UPDATE) || !defined(HAVE_SHA384UPDATE) || \
+ !defined(HAVE_SHA512UPDATE)
+
+/* no-op out, similar to DEF_WEAK but only needed here */
+#define MAKE_CLONE(x, y) void __ssh_compat_make_clone_##x_##y(void)
+
+#include <string.h>
+#include <sha2.h>
+
+/*
+ * UNROLLED TRANSFORM LOOP NOTE:
+ * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform
+ * loop version for the hash transform rounds (defined using macros
+ * later in this file). Either define on the command line, for example:
+ *
+ * cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c
+ *
+ * or define below:
+ *
+ * #define SHA2_UNROLL_TRANSFORM
+ *
+ */
+#ifndef SHA2_SMALL
+#if defined(__amd64__) || defined(__i386__)
+#define SHA2_UNROLL_TRANSFORM
+#endif
+#endif
+
+/*** SHA-224/256/384/512 Machine Architecture Definitions *****************/
+/*
+ * BYTE_ORDER NOTE:
+ *
+ * Please make sure that your system defines BYTE_ORDER. If your
+ * architecture is little-endian, make sure it also defines
+ * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are
+ * equivalent.
+ *
+ * If your system does not define the above, then you can do so by
+ * hand like this:
+ *
+ * #define LITTLE_ENDIAN 1234
+ * #define BIG_ENDIAN 4321
+ *
+ * And for little-endian machines, add:
+ *
+ * #define BYTE_ORDER LITTLE_ENDIAN
+ *
+ * Or for big-endian machines:
+ *
+ * #define BYTE_ORDER BIG_ENDIAN
+ *
+ * The FreeBSD machine this was written on defines BYTE_ORDER
+ * appropriately by including <sys/types.h> (which in turn includes
+ * <machine/endian.h> where the appropriate definitions are actually
+ * made).
+ */
+#if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN)
+#error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN
+#endif
+
+
+/*** SHA-224/256/384/512 Various Length Definitions ***********************/
+/* NOTE: Most of these are in sha2.h */
+#define SHA224_SHORT_BLOCK_LENGTH (SHA224_BLOCK_LENGTH - 8)
+#define SHA256_SHORT_BLOCK_LENGTH (SHA256_BLOCK_LENGTH - 8)
+#define SHA384_SHORT_BLOCK_LENGTH (SHA384_BLOCK_LENGTH - 16)
+#define SHA512_SHORT_BLOCK_LENGTH (SHA512_BLOCK_LENGTH - 16)
+
+/*** ENDIAN SPECIFIC COPY MACROS **************************************/
+#define BE_8_TO_32(dst, cp) do { \
+ (dst) = (u_int32_t)(cp)[3] | ((u_int32_t)(cp)[2] << 8) | \
+ ((u_int32_t)(cp)[1] << 16) | ((u_int32_t)(cp)[0] << 24); \
+} while(0)
+
+#define BE_8_TO_64(dst, cp) do { \
+ (dst) = (u_int64_t)(cp)[7] | ((u_int64_t)(cp)[6] << 8) | \
+ ((u_int64_t)(cp)[5] << 16) | ((u_int64_t)(cp)[4] << 24) | \
+ ((u_int64_t)(cp)[3] << 32) | ((u_int64_t)(cp)[2] << 40) | \
+ ((u_int64_t)(cp)[1] << 48) | ((u_int64_t)(cp)[0] << 56); \
+} while (0)
+
+#define BE_64_TO_8(cp, src) do { \
+ (cp)[0] = (src) >> 56; \
+ (cp)[1] = (src) >> 48; \
+ (cp)[2] = (src) >> 40; \
+ (cp)[3] = (src) >> 32; \
+ (cp)[4] = (src) >> 24; \
+ (cp)[5] = (src) >> 16; \
+ (cp)[6] = (src) >> 8; \
+ (cp)[7] = (src); \
+} while (0)
+
+#define BE_32_TO_8(cp, src) do { \
+ (cp)[0] = (src) >> 24; \
+ (cp)[1] = (src) >> 16; \
+ (cp)[2] = (src) >> 8; \
+ (cp)[3] = (src); \
+} while (0)
+
+/*
+ * Macro for incrementally adding the unsigned 64-bit integer n to the
+ * unsigned 128-bit integer (represented using a two-element array of
+ * 64-bit words):
+ */
+#define ADDINC128(w,n) do { \
+ (w)[0] += (u_int64_t)(n); \
+ if ((w)[0] < (n)) { \
+ (w)[1]++; \
+ } \
+} while (0)
+
+/*** THE SIX LOGICAL FUNCTIONS ****************************************/
+/*
+ * Bit shifting and rotation (used by the six SHA-XYZ logical functions:
+ *
+ * NOTE: The naming of R and S appears backwards here (R is a SHIFT and
+ * S is a ROTATION) because the SHA-224/256/384/512 description document
+ * (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this
+ * same "backwards" definition.
+ */
+/* Shift-right (used in SHA-224, SHA-256, SHA-384, and SHA-512): */
+#define R(b,x) ((x) >> (b))
+/* 32-bit Rotate-right (used in SHA-224 and SHA-256): */
+#define S32(b,x) (((x) >> (b)) | ((x) << (32 - (b))))
+/* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
+#define S64(b,x) (((x) >> (b)) | ((x) << (64 - (b))))
+
+/* Two of six logical functions used in SHA-224, SHA-256, SHA-384, and SHA-512: */
+#define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z)))
+#define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
+
+/* Four of six logical functions used in SHA-224 and SHA-256: */
+#define Sigma0_256(x) (S32(2, (x)) ^ S32(13, (x)) ^ S32(22, (x)))
+#define Sigma1_256(x) (S32(6, (x)) ^ S32(11, (x)) ^ S32(25, (x)))
+#define sigma0_256(x) (S32(7, (x)) ^ S32(18, (x)) ^ R(3 , (x)))
+#define sigma1_256(x) (S32(17, (x)) ^ S32(19, (x)) ^ R(10, (x)))
+
+/* Four of six logical functions used in SHA-384 and SHA-512: */
+#define Sigma0_512(x) (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
+#define Sigma1_512(x) (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
+#define sigma0_512(x) (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7, (x)))
+#define sigma1_512(x) (S64(19, (x)) ^ S64(61, (x)) ^ R( 6, (x)))
+
+
+/*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
+/* Hash constant words K for SHA-224 and SHA-256: */
+static const u_int32_t K256[64] = {
+ 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
+ 0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
+ 0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
+ 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
+ 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
+ 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
+ 0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
+ 0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
+ 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
+ 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
+ 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
+ 0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
+ 0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
+ 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
+ 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
+ 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
+};
+
+/* Initial hash value H for SHA-256: */
+static const u_int32_t sha256_initial_hash_value[8] = {
+ 0x6a09e667UL,
+ 0xbb67ae85UL,
+ 0x3c6ef372UL,
+ 0xa54ff53aUL,
+ 0x510e527fUL,
+ 0x9b05688cUL,
+ 0x1f83d9abUL,
+ 0x5be0cd19UL
+};
+
+/* Hash constant words K for SHA-384 and SHA-512: */
+static const u_int64_t K512[80] = {
+ 0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
+ 0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
+ 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
+ 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
+ 0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
+ 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
+ 0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
+ 0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
+ 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
+ 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
+ 0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
+ 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
+ 0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
+ 0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
+ 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
+ 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
+ 0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
+ 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
+ 0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
+ 0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
+ 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
+ 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
+ 0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
+ 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
+ 0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
+ 0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
+ 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
+ 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
+ 0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
+ 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
+ 0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
+ 0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
+ 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
+ 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
+ 0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
+ 0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
+ 0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
+ 0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
+ 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
+ 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
+};
+
+/* Initial hash value H for SHA-512 */
+static const u_int64_t sha512_initial_hash_value[8] = {
+ 0x6a09e667f3bcc908ULL,
+ 0xbb67ae8584caa73bULL,
+ 0x3c6ef372fe94f82bULL,
+ 0xa54ff53a5f1d36f1ULL,
+ 0x510e527fade682d1ULL,
+ 0x9b05688c2b3e6c1fULL,
+ 0x1f83d9abfb41bd6bULL,
+ 0x5be0cd19137e2179ULL
+};
+
+#if !defined(SHA2_SMALL)
+#if 0
+/* Initial hash value H for SHA-224: */
+static const u_int32_t sha224_initial_hash_value[8] = {
+ 0xc1059ed8UL,
+ 0x367cd507UL,
+ 0x3070dd17UL,
+ 0xf70e5939UL,
+ 0xffc00b31UL,
+ 0x68581511UL,
+ 0x64f98fa7UL,
+ 0xbefa4fa4UL
+};
+#endif /* 0 */
+
+/* Initial hash value H for SHA-384 */
+static const u_int64_t sha384_initial_hash_value[8] = {
+ 0xcbbb9d5dc1059ed8ULL,
+ 0x629a292a367cd507ULL,
+ 0x9159015a3070dd17ULL,
+ 0x152fecd8f70e5939ULL,
+ 0x67332667ffc00b31ULL,
+ 0x8eb44a8768581511ULL,
+ 0xdb0c2e0d64f98fa7ULL,
+ 0x47b5481dbefa4fa4ULL
+};
+
+#if 0
+/* Initial hash value H for SHA-512-256 */
+static const u_int64_t sha512_256_initial_hash_value[8] = {
+ 0x22312194fc2bf72cULL,
+ 0x9f555fa3c84c64c2ULL,
+ 0x2393b86b6f53b151ULL,
+ 0x963877195940eabdULL,
+ 0x96283ee2a88effe3ULL,
+ 0xbe5e1e2553863992ULL,
+ 0x2b0199fc2c85b8aaULL,
+ 0x0eb72ddc81c52ca2ULL
+};
+
+/*** SHA-224: *********************************************************/
+void
+SHA224Init(SHA2_CTX *context)
+{
+ memcpy(context->state.st32, sha224_initial_hash_value,
+ sizeof(sha224_initial_hash_value));
+ memset(context->buffer, 0, sizeof(context->buffer));
+ context->bitcount[0] = 0;
+}
+DEF_WEAK(SHA224Init);
+
+MAKE_CLONE(SHA224Transform, SHA256Transform);
+MAKE_CLONE(SHA224Update, SHA256Update);
+MAKE_CLONE(SHA224Pad, SHA256Pad);
+DEF_WEAK(SHA224Transform);
+DEF_WEAK(SHA224Update);
+DEF_WEAK(SHA224Pad);
+
+void
+SHA224Final(u_int8_t digest[SHA224_DIGEST_LENGTH], SHA2_CTX *context)
+{
+ SHA224Pad(context);
+
+#if BYTE_ORDER == LITTLE_ENDIAN
+ int i;
+
+ /* Convert TO host byte order */
+ for (i = 0; i < 7; i++)
+ BE_32_TO_8(digest + i * 4, context->state.st32[i]);
+#else
+ memcpy(digest, context->state.st32, SHA224_DIGEST_LENGTH);
+#endif
+ explicit_bzero(context, sizeof(*context));
+}
+DEF_WEAK(SHA224Final);
+#endif /* !defined(SHA2_SMALL) */
+#endif /* 0 */
+
+/*** SHA-256: *********************************************************/
+void
+SHA256Init(SHA2_CTX *context)
+{
+ memcpy(context->state.st32, sha256_initial_hash_value,
+ sizeof(sha256_initial_hash_value));
+ memset(context->buffer, 0, sizeof(context->buffer));
+ context->bitcount[0] = 0;
+}
+DEF_WEAK(SHA256Init);
+
+#ifdef SHA2_UNROLL_TRANSFORM
+
+/* Unrolled SHA-256 round macros: */
+
+#define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) do { \
+ BE_8_TO_32(W256[j], data); \
+ data += 4; \
+ T1 = (h) + Sigma1_256((e)) + Ch((e), (f), (g)) + K256[j] + W256[j]; \
+ (d) += T1; \
+ (h) = T1 + Sigma0_256((a)) + Maj((a), (b), (c)); \
+ j++; \
+} while(0)
+
+#define ROUND256(a,b,c,d,e,f,g,h) do { \
+ s0 = W256[(j+1)&0x0f]; \
+ s0 = sigma0_256(s0); \
+ s1 = W256[(j+14)&0x0f]; \
+ s1 = sigma1_256(s1); \
+ T1 = (h) + Sigma1_256((e)) + Ch((e), (f), (g)) + K256[j] + \
+ (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \
+ (d) += T1; \
+ (h) = T1 + Sigma0_256((a)) + Maj((a), (b), (c)); \
+ j++; \
+} while(0)
+
+void
+SHA256Transform(u_int32_t state[8], const u_int8_t data[SHA256_BLOCK_LENGTH])
+{
+ u_int32_t a, b, c, d, e, f, g, h, s0, s1;
+ u_int32_t T1, W256[16];
+ int j;
+
+ /* Initialize registers with the prev. intermediate value */
+ a = state[0];
+ b = state[1];
+ c = state[2];
+ d = state[3];
+ e = state[4];
+ f = state[5];
+ g = state[6];
+ h = state[7];
+
+ j = 0;
+ do {
+ /* Rounds 0 to 15 (unrolled): */
+ ROUND256_0_TO_15(a,b,c,d,e,f,g,h);
+ ROUND256_0_TO_15(h,a,b,c,d,e,f,g);
+ ROUND256_0_TO_15(g,h,a,b,c,d,e,f);
+ ROUND256_0_TO_15(f,g,h,a,b,c,d,e);
+ ROUND256_0_TO_15(e,f,g,h,a,b,c,d);
+ ROUND256_0_TO_15(d,e,f,g,h,a,b,c);
+ ROUND256_0_TO_15(c,d,e,f,g,h,a,b);
+ ROUND256_0_TO_15(b,c,d,e,f,g,h,a);
+ } while (j < 16);
+
+ /* Now for the remaining rounds up to 63: */
+ do {
+ ROUND256(a,b,c,d,e,f,g,h);
+ ROUND256(h,a,b,c,d,e,f,g);
+ ROUND256(g,h,a,b,c,d,e,f);
+ ROUND256(f,g,h,a,b,c,d,e);
+ ROUND256(e,f,g,h,a,b,c,d);
+ ROUND256(d,e,f,g,h,a,b,c);
+ ROUND256(c,d,e,f,g,h,a,b);
+ ROUND256(b,c,d,e,f,g,h,a);
+ } while (j < 64);
+
+ /* Compute the current intermediate hash value */
+ state[0] += a;
+ state[1] += b;
+ state[2] += c;
+ state[3] += d;
+ state[4] += e;
+ state[5] += f;
+ state[6] += g;
+ state[7] += h;
+
+ /* Clean up */
+ a = b = c = d = e = f = g = h = T1 = 0;
+}
+
+#else /* SHA2_UNROLL_TRANSFORM */
+
+void
+SHA256Transform(u_int32_t state[8], const u_int8_t data[SHA256_BLOCK_LENGTH])
+{
+ u_int32_t a, b, c, d, e, f, g, h, s0, s1;
+ u_int32_t T1, T2, W256[16];
+ int j;
+
+ /* Initialize registers with the prev. intermediate value */
+ a = state[0];
+ b = state[1];
+ c = state[2];
+ d = state[3];
+ e = state[4];
+ f = state[5];
+ g = state[6];
+ h = state[7];
+
+ j = 0;
+ do {
+ BE_8_TO_32(W256[j], data);
+ data += 4;
+ /* Apply the SHA-256 compression function to update a..h */
+ T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
+ T2 = Sigma0_256(a) + Maj(a, b, c);
+ h = g;
+ g = f;
+ f = e;
+ e = d + T1;
+ d = c;
+ c = b;
+ b = a;
+ a = T1 + T2;
+
+ j++;
+ } while (j < 16);
+
+ do {
+ /* Part of the message block expansion: */
+ s0 = W256[(j+1)&0x0f];
+ s0 = sigma0_256(s0);
+ s1 = W256[(j+14)&0x0f];
+ s1 = sigma1_256(s1);
+
+ /* Apply the SHA-256 compression function to update a..h */
+ T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] +
+ (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);
+ T2 = Sigma0_256(a) + Maj(a, b, c);
+ h = g;
+ g = f;
+ f = e;
+ e = d + T1;
+ d = c;
+ c = b;
+ b = a;
+ a = T1 + T2;
+
+ j++;
+ } while (j < 64);
+
+ /* Compute the current intermediate hash value */
+ state[0] += a;
+ state[1] += b;
+ state[2] += c;
+ state[3] += d;
+ state[4] += e;
+ state[5] += f;
+ state[6] += g;
+ state[7] += h;
+
+ /* Clean up */
+ a = b = c = d = e = f = g = h = T1 = T2 = 0;
+}
+
+#endif /* SHA2_UNROLL_TRANSFORM */
+DEF_WEAK(SHA256Transform);
+
+void
+SHA256Update(SHA2_CTX *context, const u_int8_t *data, size_t len)
+{
+ u_int64_t freespace, usedspace;
+
+ /* Calling with no data is valid (we do nothing) */
+ if (len == 0)
+ return;
+
+ usedspace = (context->bitcount[0] >> 3) % SHA256_BLOCK_LENGTH;
+ if (usedspace > 0) {
+ /* Calculate how much free space is available in the buffer */
+ freespace = SHA256_BLOCK_LENGTH - usedspace;
+
+ if (len >= freespace) {
+ /* Fill the buffer completely and process it */
+ memcpy(&context->buffer[usedspace], data, freespace);
+ context->bitcount[0] += freespace << 3;
+ len -= freespace;
+ data += freespace;
+ SHA256Transform(context->state.st32, context->buffer);
+ } else {
+ /* The buffer is not yet full */
+ memcpy(&context->buffer[usedspace], data, len);
+ context->bitcount[0] += (u_int64_t)len << 3;
+ /* Clean up: */
+ usedspace = freespace = 0;
+ return;
+ }
+ }
+ while (len >= SHA256_BLOCK_LENGTH) {
+ /* Process as many complete blocks as we can */
+ SHA256Transform(context->state.st32, data);
+ context->bitcount[0] += SHA256_BLOCK_LENGTH << 3;
+ len -= SHA256_BLOCK_LENGTH;
+ data += SHA256_BLOCK_LENGTH;
+ }
+ if (len > 0) {
+ /* There's left-overs, so save 'em */
+ memcpy(context->buffer, data, len);
+ context->bitcount[0] += len << 3;
+ }
+ /* Clean up: */
+ usedspace = freespace = 0;
+}
+DEF_WEAK(SHA256Update);
+
+void
+SHA256Pad(SHA2_CTX *context)
+{
+ unsigned int usedspace;
+
+ usedspace = (context->bitcount[0] >> 3) % SHA256_BLOCK_LENGTH;
+ if (usedspace > 0) {
+ /* Begin padding with a 1 bit: */
+ context->buffer[usedspace++] = 0x80;
+
+ if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) {
+ /* Set-up for the last transform: */
+ memset(&context->buffer[usedspace], 0,
+ SHA256_SHORT_BLOCK_LENGTH - usedspace);
+ } else {
+ if (usedspace < SHA256_BLOCK_LENGTH) {
+ memset(&context->buffer[usedspace], 0,
+ SHA256_BLOCK_LENGTH - usedspace);
+ }
+ /* Do second-to-last transform: */
+ SHA256Transform(context->state.st32, context->buffer);
+
+ /* Prepare for last transform: */
+ memset(context->buffer, 0, SHA256_SHORT_BLOCK_LENGTH);
+ }
+ } else {
+ /* Set-up for the last transform: */
+ memset(context->buffer, 0, SHA256_SHORT_BLOCK_LENGTH);
+
+ /* Begin padding with a 1 bit: */
+ *context->buffer = 0x80;
+ }
+ /* Store the length of input data (in bits) in big endian format: */
+ BE_64_TO_8(&context->buffer[SHA256_SHORT_BLOCK_LENGTH],
+ context->bitcount[0]);
+
+ /* Final transform: */
+ SHA256Transform(context->state.st32, context->buffer);
+
+ /* Clean up: */
+ usedspace = 0;
+}
+DEF_WEAK(SHA256Pad);
+
+void
+SHA256Final(u_int8_t digest[SHA256_DIGEST_LENGTH], SHA2_CTX *context)
+{
+ SHA256Pad(context);
+
+#if BYTE_ORDER == LITTLE_ENDIAN
+ int i;
+
+ /* Convert TO host byte order */
+ for (i = 0; i < 8; i++)
+ BE_32_TO_8(digest + i * 4, context->state.st32[i]);
+#else
+ memcpy(digest, context->state.st32, SHA256_DIGEST_LENGTH);
+#endif
+ explicit_bzero(context, sizeof(*context));
+}
+DEF_WEAK(SHA256Final);
+
+
+/*** SHA-512: *********************************************************/
+void
+SHA512Init(SHA2_CTX *context)
+{
+ memcpy(context->state.st64, sha512_initial_hash_value,
+ sizeof(sha512_initial_hash_value));
+ memset(context->buffer, 0, sizeof(context->buffer));
+ context->bitcount[0] = context->bitcount[1] = 0;
+}
+DEF_WEAK(SHA512Init);
+
+#ifdef SHA2_UNROLL_TRANSFORM
+
+/* Unrolled SHA-512 round macros: */
+
+#define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) do { \
+ BE_8_TO_64(W512[j], data); \
+ data += 8; \
+ T1 = (h) + Sigma1_512((e)) + Ch((e), (f), (g)) + K512[j] + W512[j]; \
+ (d) += T1; \
+ (h) = T1 + Sigma0_512((a)) + Maj((a), (b), (c)); \
+ j++; \
+} while(0)
+
+
+#define ROUND512(a,b,c,d,e,f,g,h) do { \
+ s0 = W512[(j+1)&0x0f]; \
+ s0 = sigma0_512(s0); \
+ s1 = W512[(j+14)&0x0f]; \
+ s1 = sigma1_512(s1); \
+ T1 = (h) + Sigma1_512((e)) + Ch((e), (f), (g)) + K512[j] + \
+ (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \
+ (d) += T1; \
+ (h) = T1 + Sigma0_512((a)) + Maj((a), (b), (c)); \
+ j++; \
+} while(0)
+
+void
+SHA512Transform(u_int64_t state[8], const u_int8_t data[SHA512_BLOCK_LENGTH])
+{
+ u_int64_t a, b, c, d, e, f, g, h, s0, s1;
+ u_int64_t T1, W512[16];
+ int j;
+
+ /* Initialize registers with the prev. intermediate value */
+ a = state[0];
+ b = state[1];
+ c = state[2];
+ d = state[3];
+ e = state[4];
+ f = state[5];
+ g = state[6];
+ h = state[7];
+
+ j = 0;
+ do {
+ /* Rounds 0 to 15 (unrolled): */
+ ROUND512_0_TO_15(a,b,c,d,e,f,g,h);
+ ROUND512_0_TO_15(h,a,b,c,d,e,f,g);
+ ROUND512_0_TO_15(g,h,a,b,c,d,e,f);
+ ROUND512_0_TO_15(f,g,h,a,b,c,d,e);
+ ROUND512_0_TO_15(e,f,g,h,a,b,c,d);
+ ROUND512_0_TO_15(d,e,f,g,h,a,b,c);
+ ROUND512_0_TO_15(c,d,e,f,g,h,a,b);
+ ROUND512_0_TO_15(b,c,d,e,f,g,h,a);
+ } while (j < 16);
+
+ /* Now for the remaining rounds up to 79: */
+ do {
+ ROUND512(a,b,c,d,e,f,g,h);
+ ROUND512(h,a,b,c,d,e,f,g);
+ ROUND512(g,h,a,b,c,d,e,f);
+ ROUND512(f,g,h,a,b,c,d,e);
+ ROUND512(e,f,g,h,a,b,c,d);
+ ROUND512(d,e,f,g,h,a,b,c);
+ ROUND512(c,d,e,f,g,h,a,b);
+ ROUND512(b,c,d,e,f,g,h,a);
+ } while (j < 80);
+
+ /* Compute the current intermediate hash value */
+ state[0] += a;
+ state[1] += b;
+ state[2] += c;
+ state[3] += d;
+ state[4] += e;
+ state[5] += f;
+ state[6] += g;
+ state[7] += h;
+
+ /* Clean up */
+ a = b = c = d = e = f = g = h = T1 = 0;
+}
+
+#else /* SHA2_UNROLL_TRANSFORM */
+
+void
+SHA512Transform(u_int64_t state[8], const u_int8_t data[SHA512_BLOCK_LENGTH])
+{
+ u_int64_t a, b, c, d, e, f, g, h, s0, s1;
+ u_int64_t T1, T2, W512[16];
+ int j;
+
+ /* Initialize registers with the prev. intermediate value */
+ a = state[0];
+ b = state[1];
+ c = state[2];
+ d = state[3];
+ e = state[4];
+ f = state[5];
+ g = state[6];
+ h = state[7];
+
+ j = 0;
+ do {
+ BE_8_TO_64(W512[j], data);
+ data += 8;
+ /* Apply the SHA-512 compression function to update a..h */
+ T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j];
+ T2 = Sigma0_512(a) + Maj(a, b, c);
+ h = g;
+ g = f;
+ f = e;
+ e = d + T1;
+ d = c;
+ c = b;
+ b = a;
+ a = T1 + T2;
+
+ j++;
+ } while (j < 16);
+
+ do {
+ /* Part of the message block expansion: */
+ s0 = W512[(j+1)&0x0f];
+ s0 = sigma0_512(s0);
+ s1 = W512[(j+14)&0x0f];
+ s1 = sigma1_512(s1);
+
+ /* Apply the SHA-512 compression function to update a..h */
+ T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] +
+ (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);
+ T2 = Sigma0_512(a) + Maj(a, b, c);
+ h = g;
+ g = f;
+ f = e;
+ e = d + T1;
+ d = c;
+ c = b;
+ b = a;
+ a = T1 + T2;
+
+ j++;
+ } while (j < 80);
+
+ /* Compute the current intermediate hash value */
+ state[0] += a;
+ state[1] += b;
+ state[2] += c;
+ state[3] += d;
+ state[4] += e;
+ state[5] += f;
+ state[6] += g;
+ state[7] += h;
+
+ /* Clean up */
+ a = b = c = d = e = f = g = h = T1 = T2 = 0;
+}
+
+#endif /* SHA2_UNROLL_TRANSFORM */
+DEF_WEAK(SHA512Transform);
+
+void
+SHA512Update(SHA2_CTX *context, const u_int8_t *data, size_t len)
+{
+ size_t freespace, usedspace;
+
+ /* Calling with no data is valid (we do nothing) */
+ if (len == 0)
+ return;
+
+ usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
+ if (usedspace > 0) {
+ /* Calculate how much free space is available in the buffer */
+ freespace = SHA512_BLOCK_LENGTH - usedspace;
+
+ if (len >= freespace) {
+ /* Fill the buffer completely and process it */
+ memcpy(&context->buffer[usedspace], data, freespace);
+ ADDINC128(context->bitcount, freespace << 3);
+ len -= freespace;
+ data += freespace;
+ SHA512Transform(context->state.st64, context->buffer);
+ } else {
+ /* The buffer is not yet full */
+ memcpy(&context->buffer[usedspace], data, len);
+ ADDINC128(context->bitcount, len << 3);
+ /* Clean up: */
+ usedspace = freespace = 0;
+ return;
+ }
+ }
+ while (len >= SHA512_BLOCK_LENGTH) {
+ /* Process as many complete blocks as we can */
+ SHA512Transform(context->state.st64, data);
+ ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3);
+ len -= SHA512_BLOCK_LENGTH;
+ data += SHA512_BLOCK_LENGTH;
+ }
+ if (len > 0) {
+ /* There's left-overs, so save 'em */
+ memcpy(context->buffer, data, len);
+ ADDINC128(context->bitcount, len << 3);
+ }
+ /* Clean up: */
+ usedspace = freespace = 0;
+}
+DEF_WEAK(SHA512Update);
+
+void
+SHA512Pad(SHA2_CTX *context)
+{
+ unsigned int usedspace;
+
+ usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
+ if (usedspace > 0) {
+ /* Begin padding with a 1 bit: */
+ context->buffer[usedspace++] = 0x80;
+
+ if (usedspace <= SHA512_SHORT_BLOCK_LENGTH) {
+ /* Set-up for the last transform: */
+ memset(&context->buffer[usedspace], 0, SHA512_SHORT_BLOCK_LENGTH - usedspace);
+ } else {
+ if (usedspace < SHA512_BLOCK_LENGTH) {
+ memset(&context->buffer[usedspace], 0, SHA512_BLOCK_LENGTH - usedspace);
+ }
+ /* Do second-to-last transform: */
+ SHA512Transform(context->state.st64, context->buffer);
+
+ /* And set-up for the last transform: */
+ memset(context->buffer, 0, SHA512_BLOCK_LENGTH - 2);
+ }
+ } else {
+ /* Prepare for final transform: */
+ memset(context->buffer, 0, SHA512_SHORT_BLOCK_LENGTH);
+
+ /* Begin padding with a 1 bit: */
+ *context->buffer = 0x80;
+ }
+ /* Store the length of input data (in bits) in big endian format: */
+ BE_64_TO_8(&context->buffer[SHA512_SHORT_BLOCK_LENGTH],
+ context->bitcount[1]);
+ BE_64_TO_8(&context->buffer[SHA512_SHORT_BLOCK_LENGTH + 8],
+ context->bitcount[0]);
+
+ /* Final transform: */
+ SHA512Transform(context->state.st64, context->buffer);
+
+ /* Clean up: */
+ usedspace = 0;
+}
+DEF_WEAK(SHA512Pad);
+
+void
+SHA512Final(u_int8_t digest[SHA512_DIGEST_LENGTH], SHA2_CTX *context)
+{
+ SHA512Pad(context);
+
+#if BYTE_ORDER == LITTLE_ENDIAN
+ int i;
+
+ /* Convert TO host byte order */
+ for (i = 0; i < 8; i++)
+ BE_64_TO_8(digest + i * 8, context->state.st64[i]);
+#else
+ memcpy(digest, context->state.st64, SHA512_DIGEST_LENGTH);
+#endif
+ explicit_bzero(context, sizeof(*context));
+}
+DEF_WEAK(SHA512Final);
+
+#if !defined(SHA2_SMALL)
+
+/*** SHA-384: *********************************************************/
+void
+SHA384Init(SHA2_CTX *context)
+{
+ memcpy(context->state.st64, sha384_initial_hash_value,
+ sizeof(sha384_initial_hash_value));
+ memset(context->buffer, 0, sizeof(context->buffer));
+ context->bitcount[0] = context->bitcount[1] = 0;
+}
+DEF_WEAK(SHA384Init);
+
+MAKE_CLONE(SHA384Transform, SHA512Transform);
+MAKE_CLONE(SHA384Update, SHA512Update);
+MAKE_CLONE(SHA384Pad, SHA512Pad);
+DEF_WEAK(SHA384Transform);
+DEF_WEAK(SHA384Update);
+DEF_WEAK(SHA384Pad);
+
+/* Equivalent of MAKE_CLONE (which is a no-op) for SHA384 funcs */
+void
+SHA384Transform(u_int64_t state[8], const u_int8_t data[SHA512_BLOCK_LENGTH])
+{
+ SHA512Transform(state, data);
+}
+
+void
+SHA384Update(SHA2_CTX *context, const u_int8_t *data, size_t len)
+{
+ SHA512Update(context, data, len);
+}
+
+void
+SHA384Pad(SHA2_CTX *context)
+{
+ SHA512Pad(context);
+}
+
+void
+SHA384Final(u_int8_t digest[SHA384_DIGEST_LENGTH], SHA2_CTX *context)
+{
+ SHA384Pad(context);
+
+#if BYTE_ORDER == LITTLE_ENDIAN
+ int i;
+
+ /* Convert TO host byte order */
+ for (i = 0; i < 6; i++)
+ BE_64_TO_8(digest + i * 8, context->state.st64[i]);
+#else
+ memcpy(digest, context->state.st64, SHA384_DIGEST_LENGTH);
+#endif
+ /* Zero out state data */
+ explicit_bzero(context, sizeof(*context));
+}
+DEF_WEAK(SHA384Final);
+
+#if 0
+/*** SHA-512/256: *********************************************************/
+void
+SHA512_256Init(SHA2_CTX *context)
+{
+ memcpy(context->state.st64, sha512_256_initial_hash_value,
+ sizeof(sha512_256_initial_hash_value));
+ memset(context->buffer, 0, sizeof(context->buffer));
+ context->bitcount[0] = context->bitcount[1] = 0;
+}
+DEF_WEAK(SHA512_256Init);
+
+MAKE_CLONE(SHA512_256Transform, SHA512Transform);
+MAKE_CLONE(SHA512_256Update, SHA512Update);
+MAKE_CLONE(SHA512_256Pad, SHA512Pad);
+DEF_WEAK(SHA512_256Transform);
+DEF_WEAK(SHA512_256Update);
+DEF_WEAK(SHA512_256Pad);
+
+void
+SHA512_256Final(u_int8_t digest[SHA512_256_DIGEST_LENGTH], SHA2_CTX *context)
+{
+ SHA512_256Pad(context);
+
+#if BYTE_ORDER == LITTLE_ENDIAN
+ int i;
+
+ /* Convert TO host byte order */
+ for (i = 0; i < 4; i++)
+ BE_64_TO_8(digest + i * 8, context->state.st64[i]);
+#else
+ memcpy(digest, context->state.st64, SHA512_256_DIGEST_LENGTH);
+#endif
+ /* Zero out state data */
+ explicit_bzero(context, sizeof(*context));
+}
+DEF_WEAK(SHA512_256Final);
+#endif /* !defined(SHA2_SMALL) */
+#endif /* 0 */
+
+#endif /* HAVE_SHA{256,384,512}UPDATE */