diff options
Diffstat (limited to '')
-rw-r--r-- | src/modules/echo-cancel/adrian-aec.c | 287 |
1 files changed, 287 insertions, 0 deletions
diff --git a/src/modules/echo-cancel/adrian-aec.c b/src/modules/echo-cancel/adrian-aec.c new file mode 100644 index 0000000..215ea76 --- /dev/null +++ b/src/modules/echo-cancel/adrian-aec.c @@ -0,0 +1,287 @@ +/* aec.cpp + * + * Copyright (C) DFS Deutsche Flugsicherung (2004, 2005). + * All Rights Reserved. + * + * Acoustic Echo Cancellation NLMS-pw algorithm + * + * Version 0.3 filter created with www.dsptutor.freeuk.com + * Version 0.3.1 Allow change of stability parameter delta + * Version 0.4 Leaky Normalized LMS - pre whitening algorithm + */ + +#ifndef _GNU_SOURCE +#define _GNU_SOURCE +#endif + +#ifdef HAVE_CONFIG_H +#include <config.h> +#endif + +#include <math.h> +#include <string.h> +#include <stdint.h> + +#include <pulse/xmalloc.h> + +#include "adrian-aec.h" + +#ifndef DISABLE_ORC +#include "adrian-aec-orc-gen.h" +#endif + +#ifdef __SSE__ +#include <xmmintrin.h> +#endif + +/* Vector Dot Product */ +static REAL dotp(REAL a[], REAL b[]) +{ + REAL sum0 = 0.0f, sum1 = 0.0f; + int j; + + for (j = 0; j < NLMS_LEN; j += 2) { + // optimize: partial loop unrolling + sum0 += a[j] * b[j]; + sum1 += a[j + 1] * b[j + 1]; + } + return sum0 + sum1; +} + +static REAL dotp_sse(REAL a[], REAL b[]) +{ +#ifdef __SSE__ + /* This is taken from speex's inner product implementation */ + int j; + REAL sum; + __m128 acc = _mm_setzero_ps(); + + for (j=0;j<NLMS_LEN;j+=8) + { + acc = _mm_add_ps(acc, _mm_mul_ps(_mm_load_ps(a+j), _mm_loadu_ps(b+j))); + acc = _mm_add_ps(acc, _mm_mul_ps(_mm_load_ps(a+j+4), _mm_loadu_ps(b+j+4))); + } + acc = _mm_add_ps(acc, _mm_movehl_ps(acc, acc)); + acc = _mm_add_ss(acc, _mm_shuffle_ps(acc, acc, 0x55)); + _mm_store_ss(&sum, acc); + + return sum; +#else + return dotp(a, b); +#endif +} + + +AEC* AEC_init(int RATE, int have_vector) +{ + AEC *a = pa_xnew0(AEC, 1); + a->j = NLMS_EXT; + AEC_setambient(a, NoiseFloor); + a->dfast = a->dslow = M75dB_PCM; + a->xfast = a->xslow = M80dB_PCM; + a->gain = 1.0f; + a->Fx = IIR1_init(2000.0f/RATE); + a->Fe = IIR1_init(2000.0f/RATE); + a->cutoff = FIR_HP_300Hz_init(); + a->acMic = IIR_HP_init(); + a->acSpk = IIR_HP_init(); + + a->aes_y2 = M0dB; + + a->fdwdisplay = -1; + + if (have_vector) { + /* Get a 16-byte aligned location */ + a->w = (REAL *) (((uintptr_t) a->w_arr) - (((uintptr_t) a->w_arr) % 16) + 16); + a->dotp = dotp_sse; + } else { + /* We don't care about alignment, just use the array as-is */ + a->w = a->w_arr; + a->dotp = dotp; + } + + return a; +} + +void AEC_done(AEC *a) { + pa_assert(a); + + pa_xfree(a->Fx); + pa_xfree(a->Fe); + pa_xfree(a->acMic); + pa_xfree(a->acSpk); + pa_xfree(a->cutoff); + pa_xfree(a); +} + +// Adrian soft decision DTD +// (Dual Average Near-End to Far-End signal Ratio DTD) +// This algorithm uses exponential smoothing with different +// ageing parameters to get fast and slow near-end and far-end +// signal averages. The ratio of NFRs term +// (dfast / xfast) / (dslow / xslow) is used to compute the stepsize +// A ratio value of 2.5 is mapped to stepsize 0, a ratio of 0 is +// mapped to 1.0 with a limited linear function. +static float AEC_dtd(AEC *a, REAL d, REAL x) +{ + float ratio, stepsize; + + // fast near-end and far-end average + a->dfast += ALPHAFAST * (fabsf(d) - a->dfast); + a->xfast += ALPHAFAST * (fabsf(x) - a->xfast); + + // slow near-end and far-end average + a->dslow += ALPHASLOW * (fabsf(d) - a->dslow); + a->xslow += ALPHASLOW * (fabsf(x) - a->xslow); + + if (a->xfast < M70dB_PCM) { + return 0.0f; // no Spk signal + } + + if (a->dfast < M70dB_PCM) { + return 0.0f; // no Mic signal + } + + // ratio of NFRs + ratio = (a->dfast * a->xslow) / (a->dslow * a->xfast); + + // Linear interpolation with clamping at the limits + if (ratio < STEPX1) + stepsize = STEPY1; + else if (ratio > STEPX2) + stepsize = STEPY2; + else + stepsize = STEPY1 + (STEPY2 - STEPY1) * (ratio - STEPX1) / (STEPX2 - STEPX1); + + return stepsize; +} + + +static void AEC_leaky(AEC *a) +// The xfast signal is used to charge the hangover timer to Thold. +// When hangover expires (no Spk signal for some time) the vector w +// is erased. This is my implementation of Leaky NLMS. +{ + if (a->xfast >= M70dB_PCM) { + // vector w is valid for hangover Thold time + a->hangover = Thold; + } else { + if (a->hangover > 1) { + --(a->hangover); + } else if (1 == a->hangover) { + --(a->hangover); + // My Leaky NLMS is to erase vector w when hangover expires + memset(a->w_arr, 0, sizeof(a->w_arr)); + } + } +} + + +#if 0 +void AEC::openwdisplay() { + // open TCP connection to program wdisplay.tcl + fdwdisplay = socket_async("127.0.0.1", 50999); +}; +#endif + + +static REAL AEC_nlms_pw(AEC *a, REAL d, REAL x_, float stepsize) +{ + REAL e; + REAL ef; + a->x[a->j] = x_; + a->xf[a->j] = IIR1_highpass(a->Fx, x_); // pre-whitening of x + + // calculate error value + // (mic signal - estimated mic signal from spk signal) + e = d; + if (a->hangover > 0) { + e -= a->dotp(a->w, a->x + a->j); + } + ef = IIR1_highpass(a->Fe, e); // pre-whitening of e + + // optimize: iterative dotp(xf, xf) + a->dotp_xf_xf += (a->xf[a->j] * a->xf[a->j] - a->xf[a->j + NLMS_LEN - 1] * a->xf[a->j + NLMS_LEN - 1]); + + if (stepsize > 0.0f) { + // calculate variable step size + REAL mikro_ef = stepsize * ef / a->dotp_xf_xf; + +#ifdef DISABLE_ORC + // update tap weights (filter learning) + int i; + for (i = 0; i < NLMS_LEN; i += 2) { + // optimize: partial loop unrolling + a->w[i] += mikro_ef * a->xf[i + a->j]; + a->w[i + 1] += mikro_ef * a->xf[i + a->j + 1]; + } +#else + update_tap_weights(a->w, &a->xf[a->j], mikro_ef, NLMS_LEN); +#endif + } + + if (--(a->j) < 0) { + // optimize: decrease number of memory copies + a->j = NLMS_EXT; + memmove(a->x + a->j + 1, a->x, (NLMS_LEN - 1) * sizeof(REAL)); + memmove(a->xf + a->j + 1, a->xf, (NLMS_LEN - 1) * sizeof(REAL)); + } + + // Saturation + if (e > MAXPCM) { + return MAXPCM; + } else if (e < -MAXPCM) { + return -MAXPCM; + } else { + return e; + } +} + + +int AEC_doAEC(AEC *a, int d_, int x_) +{ + REAL d = (REAL) d_; + REAL x = (REAL) x_; + + // Mic Highpass Filter - to remove DC + d = IIR_HP_highpass(a->acMic, d); + + // Mic Highpass Filter - cut-off below 300Hz + d = FIR_HP_300Hz_highpass(a->cutoff, d); + + // Amplify, for e.g. Soundcards with -6dB max. volume + d *= a->gain; + + // Spk Highpass Filter - to remove DC + x = IIR_HP_highpass(a->acSpk, x); + + // Double Talk Detector + a->stepsize = AEC_dtd(a, d, x); + + // Leaky (ageing of vector w) + AEC_leaky(a); + + // Acoustic Echo Cancellation + d = AEC_nlms_pw(a, d, x, a->stepsize); + +#if 0 + if (fdwdisplay >= 0) { + if (++dumpcnt >= (WIDEB*RATE/10)) { + // wdisplay creates 10 dumps per seconds = large CPU load! + dumpcnt = 0; + write(fdwdisplay, ws, DUMP_LEN*sizeof(float)); + // we don't check return value. This is not production quality!!! + memset(ws, 0, sizeof(ws)); + } else { + int i; + for (i = 0; i < DUMP_LEN; i += 2) { + // optimize: partial loop unrolling + ws[i] += w[i]; + ws[i + 1] += w[i + 1]; + } + } + } +#endif + + return (int) d; +} |