/*** This file is part of PulseAudio. Copyright 2004-2008 Lennart Poettering Copyright 2006 Pierre Ossman for Cendio AB PulseAudio is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. PulseAudio is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with PulseAudio; if not, see . ***/ #ifdef HAVE_CONFIG_H #include #endif #include #include #include #ifdef HAVE_VALGRIND_MEMCHECK_H #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "alsa-util.h" #include "alsa-sink.h" /* #define DEBUG_TIMING */ #define DEFAULT_DEVICE "default" #define DEFAULT_TSCHED_BUFFER_USEC (2*PA_USEC_PER_SEC) /* 2s -- Overall buffer size */ #define DEFAULT_TSCHED_WATERMARK_USEC (20*PA_USEC_PER_MSEC) /* 20ms -- Fill up when only this much is left in the buffer */ #define TSCHED_WATERMARK_INC_STEP_USEC (10*PA_USEC_PER_MSEC) /* 10ms -- On underrun, increase watermark by this */ #define TSCHED_WATERMARK_DEC_STEP_USEC (5*PA_USEC_PER_MSEC) /* 5ms -- When everything's great, decrease watermark by this */ #define TSCHED_WATERMARK_VERIFY_AFTER_USEC (20*PA_USEC_PER_SEC) /* 20s -- How long after a drop out recheck if things are good now */ #define TSCHED_WATERMARK_INC_THRESHOLD_USEC (0*PA_USEC_PER_MSEC) /* 0ms -- If the buffer level ever below this threshold, increase the watermark */ #define TSCHED_WATERMARK_DEC_THRESHOLD_USEC (100*PA_USEC_PER_MSEC) /* 100ms -- If the buffer level didn't drop below this threshold in the verification time, decrease the watermark */ /* Note that TSCHED_WATERMARK_INC_THRESHOLD_USEC == 0 means that we * will increase the watermark only if we hit a real underrun. */ #define TSCHED_MIN_SLEEP_USEC (10*PA_USEC_PER_MSEC) /* 10ms -- Sleep at least 10ms on each iteration */ #define TSCHED_MIN_WAKEUP_USEC (4*PA_USEC_PER_MSEC) /* 4ms -- Wakeup at least this long before the buffer runs empty*/ #define SMOOTHER_WINDOW_USEC (10*PA_USEC_PER_SEC) /* 10s -- smoother windows size */ #define SMOOTHER_ADJUST_USEC (1*PA_USEC_PER_SEC) /* 1s -- smoother adjust time */ #define SMOOTHER_MIN_INTERVAL (2*PA_USEC_PER_MSEC) /* 2ms -- min smoother update interval */ #define SMOOTHER_MAX_INTERVAL (200*PA_USEC_PER_MSEC) /* 200ms -- max smoother update interval */ #define VOLUME_ACCURACY (PA_VOLUME_NORM/100) /* don't require volume adjustments to be perfectly correct. don't necessarily extend granularity in software unless the differences get greater than this level */ #define DEFAULT_REWIND_SAFEGUARD_BYTES (256U) /* 1.33ms @48kHz, we'll never rewind less than this */ #define DEFAULT_REWIND_SAFEGUARD_USEC (1330) /* 1.33ms, depending on channels/rate/sample we may rewind more than 256 above */ #define DEFAULT_WRITE_ITERATION_THRESHOLD 0.03 /* don't iterate write if < 3% of the buffer is available */ struct userdata { pa_core *core; pa_module *module; pa_sink *sink; pa_thread *thread; pa_thread_mq thread_mq; pa_rtpoll *rtpoll; snd_pcm_t *pcm_handle; char *paths_dir; pa_alsa_fdlist *mixer_fdl; pa_alsa_mixer_pdata *mixer_pd; pa_hashmap *mixers; snd_mixer_t *mixer_handle; pa_alsa_path_set *mixer_path_set; pa_alsa_path *mixer_path; pa_cvolume hardware_volume; pa_sample_spec verified_sample_spec; pa_sample_format_t *supported_formats; unsigned int *supported_rates; struct { size_t fragment_size; size_t nfrags; size_t tsched_size; size_t tsched_watermark; size_t rewind_safeguard; } initial_info; size_t frame_size, fragment_size, hwbuf_size, tsched_size, tsched_watermark, tsched_watermark_ref, hwbuf_unused, min_sleep, min_wakeup, watermark_inc_step, watermark_dec_step, watermark_inc_threshold, watermark_dec_threshold, rewind_safeguard; snd_pcm_uframes_t frames_per_block; pa_usec_t watermark_dec_not_before; pa_usec_t min_latency_ref; pa_usec_t tsched_watermark_usec; pa_memchunk memchunk; char *device_name; /* name of the PCM device */ char *control_device; /* name of the control device */ bool use_mmap:1, use_tsched:1, deferred_volume:1, fixed_latency_range:1; bool first, after_rewind; pa_rtpoll_item *alsa_rtpoll_item; pa_smoother *smoother; uint64_t write_count; uint64_t since_start; pa_usec_t smoother_interval; pa_usec_t last_smoother_update; pa_idxset *formats; pa_reserve_wrapper *reserve; pa_hook_slot *reserve_slot; pa_reserve_monitor_wrapper *monitor; pa_hook_slot *monitor_slot; /* ucm context */ pa_alsa_ucm_mapping_context *ucm_context; }; enum { SINK_MESSAGE_SYNC_MIXER = PA_SINK_MESSAGE_MAX }; static void userdata_free(struct userdata *u); static int unsuspend(struct userdata *u, bool recovering); /* FIXME: Is there a better way to do this than device names? */ static bool is_iec958(struct userdata *u) { return (strncmp("iec958", u->device_name, 6) == 0); } static bool is_hdmi(struct userdata *u) { return (strncmp("hdmi", u->device_name, 4) == 0); } static pa_hook_result_t reserve_cb(pa_reserve_wrapper *r, void *forced, struct userdata *u) { pa_assert(r); pa_assert(u); pa_log_debug("Suspending sink %s, because another application requested us to release the device.", u->sink->name); if (pa_sink_suspend(u->sink, true, PA_SUSPEND_APPLICATION) < 0) return PA_HOOK_CANCEL; return PA_HOOK_OK; } static void reserve_done(struct userdata *u) { pa_assert(u); if (u->reserve_slot) { pa_hook_slot_free(u->reserve_slot); u->reserve_slot = NULL; } if (u->reserve) { pa_reserve_wrapper_unref(u->reserve); u->reserve = NULL; } } static void reserve_update(struct userdata *u) { const char *description; pa_assert(u); if (!u->sink || !u->reserve) return; if ((description = pa_proplist_gets(u->sink->proplist, PA_PROP_DEVICE_DESCRIPTION))) pa_reserve_wrapper_set_application_device_name(u->reserve, description); } static int reserve_init(struct userdata *u, const char *dname) { char *rname; pa_assert(u); pa_assert(dname); if (u->reserve) return 0; if (pa_in_system_mode()) return 0; if (!(rname = pa_alsa_get_reserve_name(dname))) return 0; /* We are resuming, try to lock the device */ u->reserve = pa_reserve_wrapper_get(u->core, rname); pa_xfree(rname); if (!(u->reserve)) return -1; reserve_update(u); pa_assert(!u->reserve_slot); u->reserve_slot = pa_hook_connect(pa_reserve_wrapper_hook(u->reserve), PA_HOOK_NORMAL, (pa_hook_cb_t) reserve_cb, u); return 0; } static pa_hook_result_t monitor_cb(pa_reserve_monitor_wrapper *w, void* busy, struct userdata *u) { pa_assert(w); pa_assert(u); if (PA_PTR_TO_UINT(busy) && !u->reserve) { pa_log_debug("Suspending sink %s, because another application is blocking the access to the device.", u->sink->name); pa_sink_suspend(u->sink, true, PA_SUSPEND_APPLICATION); } else { pa_log_debug("Resuming sink %s, because other applications aren't blocking access to the device any more.", u->sink->name); pa_sink_suspend(u->sink, false, PA_SUSPEND_APPLICATION); } return PA_HOOK_OK; } static void monitor_done(struct userdata *u) { pa_assert(u); if (u->monitor_slot) { pa_hook_slot_free(u->monitor_slot); u->monitor_slot = NULL; } if (u->monitor) { pa_reserve_monitor_wrapper_unref(u->monitor); u->monitor = NULL; } } static int reserve_monitor_init(struct userdata *u, const char *dname) { char *rname; pa_assert(u); pa_assert(dname); if (pa_in_system_mode()) return 0; if (!(rname = pa_alsa_get_reserve_name(dname))) return 0; /* We are resuming, try to lock the device */ u->monitor = pa_reserve_monitor_wrapper_get(u->core, rname); pa_xfree(rname); if (!(u->monitor)) return -1; pa_assert(!u->monitor_slot); u->monitor_slot = pa_hook_connect(pa_reserve_monitor_wrapper_hook(u->monitor), PA_HOOK_NORMAL, (pa_hook_cb_t) monitor_cb, u); return 0; } static void fix_min_sleep_wakeup(struct userdata *u) { size_t max_use, max_use_2; pa_assert(u); pa_assert(u->use_tsched); max_use = u->hwbuf_size - u->hwbuf_unused; max_use_2 = pa_frame_align(max_use/2, &u->sink->sample_spec); u->min_sleep = pa_usec_to_bytes(TSCHED_MIN_SLEEP_USEC, &u->sink->sample_spec); u->min_sleep = PA_CLAMP(u->min_sleep, u->frame_size, max_use_2); u->min_wakeup = pa_usec_to_bytes(TSCHED_MIN_WAKEUP_USEC, &u->sink->sample_spec); u->min_wakeup = PA_CLAMP(u->min_wakeup, u->frame_size, max_use_2); } static void fix_tsched_watermark(struct userdata *u) { size_t max_use; pa_assert(u); pa_assert(u->use_tsched); max_use = u->hwbuf_size - u->hwbuf_unused; if (u->tsched_watermark > max_use - u->min_sleep) u->tsched_watermark = max_use - u->min_sleep; if (u->tsched_watermark < u->min_wakeup) u->tsched_watermark = u->min_wakeup; u->tsched_watermark_usec = pa_bytes_to_usec(u->tsched_watermark, &u->sink->sample_spec); } static void increase_watermark(struct userdata *u) { size_t old_watermark; pa_usec_t old_min_latency, new_min_latency; pa_assert(u); pa_assert(u->use_tsched); /* First, just try to increase the watermark */ old_watermark = u->tsched_watermark; u->tsched_watermark = PA_MIN(u->tsched_watermark * 2, u->tsched_watermark + u->watermark_inc_step); fix_tsched_watermark(u); if (old_watermark != u->tsched_watermark) { pa_log_info("Increasing wakeup watermark to %0.2f ms", (double) u->tsched_watermark_usec / PA_USEC_PER_MSEC); return; } /* Hmm, we cannot increase the watermark any further, hence let's raise the latency, unless doing so was disabled in configuration */ if (u->fixed_latency_range) return; old_min_latency = u->sink->thread_info.min_latency; new_min_latency = PA_MIN(old_min_latency * 2, old_min_latency + TSCHED_WATERMARK_INC_STEP_USEC); new_min_latency = PA_MIN(new_min_latency, u->sink->thread_info.max_latency); if (old_min_latency != new_min_latency) { pa_log_info("Increasing minimal latency to %0.2f ms", (double) new_min_latency / PA_USEC_PER_MSEC); pa_sink_set_latency_range_within_thread(u->sink, new_min_latency, u->sink->thread_info.max_latency); } /* When we reach this we're officially fucked! */ } static void decrease_watermark(struct userdata *u) { size_t old_watermark; pa_usec_t now; pa_assert(u); pa_assert(u->use_tsched); now = pa_rtclock_now(); if (u->watermark_dec_not_before <= 0) goto restart; if (u->watermark_dec_not_before > now) return; old_watermark = u->tsched_watermark; if (u->tsched_watermark < u->watermark_dec_step) u->tsched_watermark = u->tsched_watermark / 2; else u->tsched_watermark = PA_MAX(u->tsched_watermark / 2, u->tsched_watermark - u->watermark_dec_step); fix_tsched_watermark(u); if (old_watermark != u->tsched_watermark) pa_log_info("Decreasing wakeup watermark to %0.2f ms", (double) u->tsched_watermark_usec / PA_USEC_PER_MSEC); /* We don't change the latency range*/ restart: u->watermark_dec_not_before = now + TSCHED_WATERMARK_VERIFY_AFTER_USEC; } /* Called from IO Context on unsuspend or from main thread when creating sink */ static void reset_watermark(struct userdata *u, size_t tsched_watermark, pa_sample_spec *ss, bool in_thread) { u->tsched_watermark = pa_convert_size(tsched_watermark, ss, &u->sink->sample_spec); u->watermark_inc_step = pa_usec_to_bytes(TSCHED_WATERMARK_INC_STEP_USEC, &u->sink->sample_spec); u->watermark_dec_step = pa_usec_to_bytes(TSCHED_WATERMARK_DEC_STEP_USEC, &u->sink->sample_spec); u->watermark_inc_threshold = pa_usec_to_bytes_round_up(TSCHED_WATERMARK_INC_THRESHOLD_USEC, &u->sink->sample_spec); u->watermark_dec_threshold = pa_usec_to_bytes_round_up(TSCHED_WATERMARK_DEC_THRESHOLD_USEC, &u->sink->sample_spec); fix_min_sleep_wakeup(u); fix_tsched_watermark(u); if (in_thread) pa_sink_set_latency_range_within_thread(u->sink, u->min_latency_ref, pa_bytes_to_usec(u->hwbuf_size, ss)); else { pa_sink_set_latency_range(u->sink, 0, pa_bytes_to_usec(u->hwbuf_size, ss)); /* work-around assert in pa_sink_set_latency_within_thead, keep track of min_latency and reuse it when this routine is called from IO context */ u->min_latency_ref = u->sink->thread_info.min_latency; } pa_log_info("Time scheduling watermark is %0.2fms", (double) u->tsched_watermark_usec / PA_USEC_PER_MSEC); } static void hw_sleep_time(struct userdata *u, pa_usec_t *sleep_usec, pa_usec_t*process_usec) { pa_usec_t usec, wm; pa_assert(sleep_usec); pa_assert(process_usec); pa_assert(u); pa_assert(u->use_tsched); usec = pa_sink_get_requested_latency_within_thread(u->sink); if (usec == (pa_usec_t) -1) usec = pa_bytes_to_usec(u->hwbuf_size, &u->sink->sample_spec); wm = u->tsched_watermark_usec; if (wm > usec) wm = usec/2; *sleep_usec = usec - wm; *process_usec = wm; #ifdef DEBUG_TIMING pa_log_debug("Buffer time: %lu ms; Sleep time: %lu ms; Process time: %lu ms", (unsigned long) (usec / PA_USEC_PER_MSEC), (unsigned long) (*sleep_usec / PA_USEC_PER_MSEC), (unsigned long) (*process_usec / PA_USEC_PER_MSEC)); #endif } /* Reset smoother and counters */ static void reset_vars(struct userdata *u) { pa_smoother_reset(u->smoother, pa_rtclock_now(), true); u->smoother_interval = SMOOTHER_MIN_INTERVAL; u->last_smoother_update = 0; u->first = true; u->since_start = 0; u->write_count = 0; } /* Called from IO context */ static void close_pcm(struct userdata *u) { /* Let's suspend -- we don't call snd_pcm_drain() here since that might * take awfully long with our long buffer sizes today. */ snd_pcm_close(u->pcm_handle); u->pcm_handle = NULL; if (u->alsa_rtpoll_item) { pa_rtpoll_item_free(u->alsa_rtpoll_item); u->alsa_rtpoll_item = NULL; } } static int try_recover(struct userdata *u, const char *call, int err) { pa_assert(u); pa_assert(call); pa_assert(err < 0); pa_log_debug("%s: %s", call, pa_alsa_strerror(err)); pa_assert(err != -EAGAIN); if (err == -EPIPE) pa_log_debug("%s: Buffer underrun!", call); if (err == -ESTRPIPE) pa_log_debug("%s: System suspended!", call); if ((err = snd_pcm_recover(u->pcm_handle, err, 1)) < 0) { pa_log("%s: %s, trying to restart PCM", call, pa_alsa_strerror(err)); /* As a last measure, restart the PCM and inform the caller about it. */ close_pcm(u); if (unsuspend(u, true) < 0) return -1; return 1; } reset_vars(u); return 0; } static size_t check_left_to_play(struct userdata *u, size_t n_bytes, bool on_timeout) { size_t left_to_play; bool underrun = false; /* We use <= instead of < for this check here because an underrun * only happens after the last sample was processed, not already when * it is removed from the buffer. This is particularly important * when block transfer is used. */ if (n_bytes <= u->hwbuf_size) left_to_play = u->hwbuf_size - n_bytes; else { /* We got a dropout. What a mess! */ left_to_play = 0; underrun = true; #if 0 PA_DEBUG_TRAP; #endif if (!u->first && !u->after_rewind) if (pa_log_ratelimit(PA_LOG_INFO)) pa_log_info("Underrun!"); } #ifdef DEBUG_TIMING pa_log_debug("%0.2f ms left to play; inc threshold = %0.2f ms; dec threshold = %0.2f ms", (double) pa_bytes_to_usec(left_to_play, &u->sink->sample_spec) / PA_USEC_PER_MSEC, (double) pa_bytes_to_usec(u->watermark_inc_threshold, &u->sink->sample_spec) / PA_USEC_PER_MSEC, (double) pa_bytes_to_usec(u->watermark_dec_threshold, &u->sink->sample_spec) / PA_USEC_PER_MSEC); #endif if (u->use_tsched) { bool reset_not_before = true; if (!u->first && !u->after_rewind) { if (underrun || left_to_play < u->watermark_inc_threshold) increase_watermark(u); else if (left_to_play > u->watermark_dec_threshold) { reset_not_before = false; /* We decrease the watermark only if have actually * been woken up by a timeout. If something else woke * us up it's too easy to fulfill the deadlines... */ if (on_timeout) decrease_watermark(u); } } if (reset_not_before) u->watermark_dec_not_before = 0; } return left_to_play; } static int mmap_write(struct userdata *u, pa_usec_t *sleep_usec, bool polled, bool on_timeout) { bool work_done = false; pa_usec_t max_sleep_usec = 0, process_usec = 0; size_t left_to_play, input_underrun; unsigned j = 0; pa_assert(u); pa_sink_assert_ref(u->sink); if (u->use_tsched) hw_sleep_time(u, &max_sleep_usec, &process_usec); for (;;) { snd_pcm_sframes_t n; size_t n_bytes; int r; bool after_avail = true; /* First we determine how many samples are missing to fill the * buffer up to 100% */ if (PA_UNLIKELY((n = pa_alsa_safe_avail(u->pcm_handle, u->hwbuf_size, &u->sink->sample_spec)) < 0)) { if ((r = try_recover(u, "snd_pcm_avail", (int) n)) >= 0) continue; return r; } n_bytes = (size_t) n * u->frame_size; #ifdef DEBUG_TIMING pa_log_debug("avail: %lu", (unsigned long) n_bytes); #endif left_to_play = check_left_to_play(u, n_bytes, on_timeout); on_timeout = false; if (u->use_tsched) /* We won't fill up the playback buffer before at least * half the sleep time is over because otherwise we might * ask for more data from the clients then they expect. We * need to guarantee that clients only have to keep around * a single hw buffer length. */ if (!polled && pa_bytes_to_usec(left_to_play, &u->sink->sample_spec) > process_usec+max_sleep_usec/2) { #ifdef DEBUG_TIMING pa_log_debug("Not filling up, because too early."); #endif break; } if (PA_UNLIKELY(n_bytes <= u->hwbuf_unused)) { if (polled) PA_ONCE_BEGIN { char *dn = pa_alsa_get_driver_name_by_pcm(u->pcm_handle); pa_log(_("ALSA woke us up to write new data to the device, but there was actually nothing to write.\n" "Most likely this is a bug in the ALSA driver '%s'. Please report this issue to the ALSA developers.\n" "We were woken up with POLLOUT set -- however a subsequent snd_pcm_avail() returned 0 or another value < min_avail."), pa_strnull(dn)); pa_xfree(dn); } PA_ONCE_END; #ifdef DEBUG_TIMING pa_log_debug("Not filling up, because not necessary."); #endif break; } j++; if (j > 10) { #ifdef DEBUG_TIMING pa_log_debug("Not filling up, because already too many iterations."); #endif break; } else if (j >= 2 && (n_bytes < (DEFAULT_WRITE_ITERATION_THRESHOLD * (u->hwbuf_size - u->hwbuf_unused)))) { #ifdef DEBUG_TIMING pa_log_debug("Not filling up, because <%g%% available.", DEFAULT_WRITE_ITERATION_THRESHOLD * 100); #endif break; } n_bytes -= u->hwbuf_unused; polled = false; #ifdef DEBUG_TIMING pa_log_debug("Filling up"); #endif for (;;) { pa_memchunk chunk; void *p; int err; const snd_pcm_channel_area_t *areas; snd_pcm_uframes_t offset, frames; snd_pcm_sframes_t sframes; size_t written; frames = (snd_pcm_uframes_t) (n_bytes / u->frame_size); /* pa_log_debug("%lu frames to write", (unsigned long) frames); */ if (PA_UNLIKELY((err = pa_alsa_safe_mmap_begin(u->pcm_handle, &areas, &offset, &frames, u->hwbuf_size, &u->sink->sample_spec)) < 0)) { if (!after_avail && err == -EAGAIN) break; if ((r = try_recover(u, "snd_pcm_mmap_begin", err)) == 0) continue; if (r == 1) break; return r; } /* Make sure that if these memblocks need to be copied they will fit into one slot */ frames = PA_MIN(frames, u->frames_per_block); if (!after_avail && frames == 0) break; pa_assert(frames > 0); after_avail = false; /* Check these are multiples of 8 bit */ pa_assert((areas[0].first & 7) == 0); pa_assert((areas[0].step & 7) == 0); /* We assume a single interleaved memory buffer */ pa_assert((areas[0].first >> 3) == 0); pa_assert((areas[0].step >> 3) == u->frame_size); p = (uint8_t*) areas[0].addr + (offset * u->frame_size); written = frames * u->frame_size; chunk.memblock = pa_memblock_new_fixed(u->core->mempool, p, written, true); chunk.length = pa_memblock_get_length(chunk.memblock); chunk.index = 0; pa_sink_render_into_full(u->sink, &chunk); pa_memblock_unref_fixed(chunk.memblock); if (PA_UNLIKELY((sframes = snd_pcm_mmap_commit(u->pcm_handle, offset, frames)) < 0)) { if ((int) sframes == -EAGAIN) break; if ((r = try_recover(u, "snd_pcm_mmap_commit", (int) sframes)) == 0) continue; if (r == 1) break; return r; } work_done = true; u->write_count += written; u->since_start += written; #ifdef DEBUG_TIMING pa_log_debug("Wrote %lu bytes (of possible %lu bytes)", (unsigned long) written, (unsigned long) n_bytes); #endif if (written >= n_bytes) break; n_bytes -= written; } } input_underrun = pa_sink_process_input_underruns(u->sink, left_to_play); if (u->use_tsched) { pa_usec_t underrun_sleep = pa_bytes_to_usec_round_up(input_underrun, &u->sink->sample_spec); *sleep_usec = pa_bytes_to_usec(left_to_play, &u->sink->sample_spec); process_usec = u->tsched_watermark_usec; if (*sleep_usec > process_usec) *sleep_usec -= process_usec; else *sleep_usec = 0; *sleep_usec = PA_MIN(*sleep_usec, underrun_sleep); } else *sleep_usec = 0; return work_done ? 1 : 0; } static int unix_write(struct userdata *u, pa_usec_t *sleep_usec, bool polled, bool on_timeout) { bool work_done = false; pa_usec_t max_sleep_usec = 0, process_usec = 0; size_t left_to_play, input_underrun; unsigned j = 0; pa_assert(u); pa_sink_assert_ref(u->sink); if (u->use_tsched) hw_sleep_time(u, &max_sleep_usec, &process_usec); for (;;) { snd_pcm_sframes_t n; size_t n_bytes; int r; bool after_avail = true; if (PA_UNLIKELY((n = pa_alsa_safe_avail(u->pcm_handle, u->hwbuf_size, &u->sink->sample_spec)) < 0)) { if ((r = try_recover(u, "snd_pcm_avail", (int) n)) >= 0) continue; return r; } n_bytes = (size_t) n * u->frame_size; #ifdef DEBUG_TIMING pa_log_debug("avail: %lu", (unsigned long) n_bytes); #endif left_to_play = check_left_to_play(u, n_bytes, on_timeout); on_timeout = false; if (u->use_tsched) /* We won't fill up the playback buffer before at least * half the sleep time is over because otherwise we might * ask for more data from the clients then they expect. We * need to guarantee that clients only have to keep around * a single hw buffer length. */ if (!polled && pa_bytes_to_usec(left_to_play, &u->sink->sample_spec) > process_usec+max_sleep_usec/2) break; if (PA_UNLIKELY(n_bytes <= u->hwbuf_unused)) { if (polled) PA_ONCE_BEGIN { char *dn = pa_alsa_get_driver_name_by_pcm(u->pcm_handle); pa_log(_("ALSA woke us up to write new data to the device, but there was actually nothing to write.\n" "Most likely this is a bug in the ALSA driver '%s'. Please report this issue to the ALSA developers.\n" "We were woken up with POLLOUT set -- however a subsequent snd_pcm_avail() returned 0 or another value < min_avail."), pa_strnull(dn)); pa_xfree(dn); } PA_ONCE_END; break; } j++; if (j > 10) { #ifdef DEBUG_TIMING pa_log_debug("Not filling up, because already too many iterations."); #endif break; } else if (j >= 2 && (n_bytes < (DEFAULT_WRITE_ITERATION_THRESHOLD * (u->hwbuf_size - u->hwbuf_unused)))) { #ifdef DEBUG_TIMING pa_log_debug("Not filling up, because <%g%% available.", DEFAULT_WRITE_ITERATION_THRESHOLD * 100); #endif break; } n_bytes -= u->hwbuf_unused; polled = false; for (;;) { snd_pcm_sframes_t frames; void *p; size_t written; /* pa_log_debug("%lu frames to write", (unsigned long) frames); */ if (u->memchunk.length <= 0) pa_sink_render(u->sink, n_bytes, &u->memchunk); pa_assert(u->memchunk.length > 0); frames = (snd_pcm_sframes_t) (u->memchunk.length / u->frame_size); if (frames > (snd_pcm_sframes_t) (n_bytes/u->frame_size)) frames = (snd_pcm_sframes_t) (n_bytes/u->frame_size); p = pa_memblock_acquire(u->memchunk.memblock); frames = snd_pcm_writei(u->pcm_handle, (const uint8_t*) p + u->memchunk.index, (snd_pcm_uframes_t) frames); pa_memblock_release(u->memchunk.memblock); if (PA_UNLIKELY(frames < 0)) { if (!after_avail && (int) frames == -EAGAIN) break; if ((r = try_recover(u, "snd_pcm_writei", (int) frames)) == 0) continue; if (r == 1) break; return r; } if (!after_avail && frames == 0) break; pa_assert(frames > 0); after_avail = false; written = frames * u->frame_size; u->memchunk.index += written; u->memchunk.length -= written; if (u->memchunk.length <= 0) { pa_memblock_unref(u->memchunk.memblock); pa_memchunk_reset(&u->memchunk); } work_done = true; u->write_count += written; u->since_start += written; /* pa_log_debug("wrote %lu frames", (unsigned long) frames); */ if (written >= n_bytes) break; n_bytes -= written; } } input_underrun = pa_sink_process_input_underruns(u->sink, left_to_play); if (u->use_tsched) { pa_usec_t underrun_sleep = pa_bytes_to_usec_round_up(input_underrun, &u->sink->sample_spec); *sleep_usec = pa_bytes_to_usec(left_to_play, &u->sink->sample_spec); process_usec = u->tsched_watermark_usec; if (*sleep_usec > process_usec) *sleep_usec -= process_usec; else *sleep_usec = 0; *sleep_usec = PA_MIN(*sleep_usec, underrun_sleep); } else *sleep_usec = 0; return work_done ? 1 : 0; } static void update_smoother(struct userdata *u) { snd_pcm_sframes_t delay = 0; int64_t position; int err; pa_usec_t now1 = 0, now2; snd_pcm_status_t *status; snd_htimestamp_t htstamp = { 0, 0 }; snd_pcm_status_alloca(&status); pa_assert(u); pa_assert(u->pcm_handle); /* Let's update the time smoother */ if (PA_UNLIKELY((err = pa_alsa_safe_delay(u->pcm_handle, status, &delay, u->hwbuf_size, &u->sink->sample_spec, false)) < 0)) { pa_log_warn("Failed to query DSP status data: %s", pa_alsa_strerror(err)); return; } snd_pcm_status_get_htstamp(status, &htstamp); now1 = pa_timespec_load(&htstamp); /* Hmm, if the timestamp is 0, then it wasn't set and we take the current time */ if (now1 <= 0) now1 = pa_rtclock_now(); /* check if the time since the last update is bigger than the interval */ if (u->last_smoother_update > 0) if (u->last_smoother_update + u->smoother_interval > now1) return; position = (int64_t) u->write_count - ((int64_t) delay * (int64_t) u->frame_size); if (PA_UNLIKELY(position < 0)) position = 0; now2 = pa_bytes_to_usec((uint64_t) position, &u->sink->sample_spec); pa_smoother_put(u->smoother, now1, now2); u->last_smoother_update = now1; /* exponentially increase the update interval up to the MAX limit */ u->smoother_interval = PA_MIN (u->smoother_interval * 2, SMOOTHER_MAX_INTERVAL); } static int64_t sink_get_latency(struct userdata *u) { int64_t delay; pa_usec_t now1, now2; pa_assert(u); now1 = pa_rtclock_now(); now2 = pa_smoother_get(u->smoother, now1); delay = (int64_t) pa_bytes_to_usec(u->write_count, &u->sink->sample_spec) - (int64_t) now2; if (u->memchunk.memblock) delay += pa_bytes_to_usec(u->memchunk.length, &u->sink->sample_spec); return delay; } static int build_pollfd(struct userdata *u) { pa_assert(u); pa_assert(u->pcm_handle); if (u->alsa_rtpoll_item) pa_rtpoll_item_free(u->alsa_rtpoll_item); if (!(u->alsa_rtpoll_item = pa_alsa_build_pollfd(u->pcm_handle, u->rtpoll))) return -1; return 0; } /* Called from IO context */ static void suspend(struct userdata *u) { pa_assert(u); /* Handle may have been invalidated due to a device failure. * In that case there is nothing to do. */ if (!u->pcm_handle) return; pa_smoother_pause(u->smoother, pa_rtclock_now()); /* Close PCM device */ close_pcm(u); /* We reset max_rewind/max_request here to make sure that while we * are suspended the old max_request/max_rewind values set before * the suspend can influence the per-stream buffer of newly * created streams, without their requirements having any * influence on them. */ pa_sink_set_max_rewind_within_thread(u->sink, 0); pa_sink_set_max_request_within_thread(u->sink, 0); pa_log_info("Device suspended..."); } /* Called from IO context */ static int update_sw_params(struct userdata *u, bool may_need_rewind) { size_t old_unused; snd_pcm_uframes_t avail_min; int err; pa_assert(u); /* Use the full buffer if no one asked us for anything specific */ old_unused = u->hwbuf_unused; u->hwbuf_unused = 0; if (u->use_tsched) { pa_usec_t latency; if ((latency = pa_sink_get_requested_latency_within_thread(u->sink)) != (pa_usec_t) -1) { size_t b; pa_log_debug("Latency set to %0.2fms", (double) latency / PA_USEC_PER_MSEC); b = pa_usec_to_bytes(latency, &u->sink->sample_spec); /* We need at least one sample in our buffer */ if (PA_UNLIKELY(b < u->frame_size)) b = u->frame_size; u->hwbuf_unused = PA_LIKELY(b < u->hwbuf_size) ? (u->hwbuf_size - b) : 0; } fix_min_sleep_wakeup(u); fix_tsched_watermark(u); } pa_log_debug("hwbuf_unused=%lu", (unsigned long) u->hwbuf_unused); /* We need at last one frame in the used part of the buffer */ avail_min = (snd_pcm_uframes_t) u->hwbuf_unused / u->frame_size + 1; if (u->use_tsched) { pa_usec_t sleep_usec, process_usec; hw_sleep_time(u, &sleep_usec, &process_usec); avail_min += pa_usec_to_bytes(sleep_usec, &u->sink->sample_spec) / u->frame_size; } pa_log_debug("setting avail_min=%lu", (unsigned long) avail_min); if ((err = pa_alsa_set_sw_params(u->pcm_handle, avail_min, !u->use_tsched)) < 0) { pa_log("Failed to set software parameters: %s", pa_alsa_strerror(err)); return err; } /* If we're lowering the latency, we need to do a rewind, because otherwise * we might end up in a situation where the hw buffer contains more data * than the new configured latency. The rewind has to be requested before * updating max_rewind, because the rewind amount is limited to max_rewind. * * If may_need_rewind is false, it means that we're just starting playback, * and rewinding is never needed in that situation. */ if (may_need_rewind && u->hwbuf_unused > old_unused) { pa_log_debug("Requesting rewind due to latency change."); pa_sink_request_rewind(u->sink, (size_t) -1); } pa_sink_set_max_request_within_thread(u->sink, u->hwbuf_size - u->hwbuf_unused); if (pa_alsa_pcm_is_hw(u->pcm_handle)) pa_sink_set_max_rewind_within_thread(u->sink, u->hwbuf_size - u->hwbuf_unused); else { pa_log_info("Disabling rewind_within_thread for device %s", u->device_name); pa_sink_set_max_rewind_within_thread(u->sink, 0); } return 0; } /* Called from IO Context on unsuspend */ static void update_size(struct userdata *u, pa_sample_spec *ss) { pa_assert(u); pa_assert(ss); u->frame_size = pa_frame_size(ss); u->frames_per_block = pa_mempool_block_size_max(u->core->mempool) / u->frame_size; /* use initial values including module arguments */ u->fragment_size = u->initial_info.fragment_size; u->hwbuf_size = u->initial_info.nfrags * u->fragment_size; u->tsched_size = u->initial_info.tsched_size; u->tsched_watermark = u->initial_info.tsched_watermark; u->rewind_safeguard = u->initial_info.rewind_safeguard; u->tsched_watermark_ref = u->tsched_watermark; pa_log_info("Updated frame_size %zu, frames_per_block %lu, fragment_size %zu, hwbuf_size %zu, tsched(size %zu, watermark %zu), rewind_safeguard %zu", u->frame_size, (unsigned long) u->frames_per_block, u->fragment_size, u->hwbuf_size, u->tsched_size, u->tsched_watermark, u->rewind_safeguard); } /* Called from IO context */ static int unsuspend(struct userdata *u, bool recovering) { pa_sample_spec ss; int err, i; bool b, d; snd_pcm_uframes_t period_frames, buffer_frames; snd_pcm_uframes_t tsched_frames = 0; char *device_name = NULL; bool frame_size_changed = false; pa_assert(u); pa_assert(!u->pcm_handle); pa_log_info("Trying resume..."); if ((is_iec958(u) || is_hdmi(u)) && pa_sink_is_passthrough(u->sink)) { /* Need to open device in NONAUDIO mode */ int len = strlen(u->device_name) + 8; device_name = pa_xmalloc(len); pa_snprintf(device_name, len, "%s,AES0=6", u->device_name); } /* * On some machines, during the system suspend and resume, the thread_func could receive * POLLERR events before the dev nodes in /dev/snd/ are accessible, and thread_func calls * the unsuspend() to try to recover the PCM, this will make the snd_pcm_open() fail, here * we add msleep and retry to make sure those nodes are accessible. */ for (i = 0; i < 4; i++) { if ((err = snd_pcm_open(&u->pcm_handle, device_name ? device_name : u->device_name, SND_PCM_STREAM_PLAYBACK, SND_PCM_NONBLOCK| SND_PCM_NO_AUTO_RESAMPLE| SND_PCM_NO_AUTO_CHANNELS| SND_PCM_NO_AUTO_FORMAT)) < 0 && recovering) pa_msleep(25); else break; } if (err < 0) { pa_log("Error opening PCM device %s: %s", u->device_name, pa_alsa_strerror(err)); goto fail; } if (pa_frame_size(&u->sink->sample_spec) != u->frame_size) { update_size(u, &u->sink->sample_spec); tsched_frames = u->tsched_size / u->frame_size; frame_size_changed = true; } ss = u->sink->sample_spec; period_frames = u->fragment_size / u->frame_size; buffer_frames = u->hwbuf_size / u->frame_size; b = u->use_mmap; d = u->use_tsched; if ((err = pa_alsa_set_hw_params(u->pcm_handle, &ss, &period_frames, &buffer_frames, tsched_frames, &b, &d, true)) < 0) { pa_log("Failed to set hardware parameters: %s", pa_alsa_strerror(err)); goto fail; } if (b != u->use_mmap || d != u->use_tsched) { pa_log_warn("Resume failed, couldn't get original access mode."); goto fail; } if (!pa_sample_spec_equal(&ss, &u->sink->sample_spec)) { pa_log_warn("Resume failed, couldn't restore original sample settings."); goto fail; } if (frame_size_changed) { u->fragment_size = (size_t)(period_frames * u->frame_size); u->hwbuf_size = (size_t)(buffer_frames * u->frame_size); pa_proplist_setf(u->sink->proplist, PA_PROP_DEVICE_BUFFERING_BUFFER_SIZE, "%zu", u->hwbuf_size); pa_proplist_setf(u->sink->proplist, PA_PROP_DEVICE_BUFFERING_FRAGMENT_SIZE, "%zu", u->fragment_size); } else if (period_frames * u->frame_size != u->fragment_size || buffer_frames * u->frame_size != u->hwbuf_size) { pa_log_warn("Resume failed, couldn't restore original fragment settings. (Old: %zu/%zu, New %lu/%lu)", u->hwbuf_size, u->fragment_size, (unsigned long) buffer_frames * u->frame_size, (unsigned long) period_frames * u->frame_size); goto fail; } if (update_sw_params(u, false) < 0) goto fail; if (build_pollfd(u) < 0) goto fail; reset_vars(u); /* reset the watermark to the value defined when sink was created */ if (u->use_tsched && !recovering) reset_watermark(u, u->tsched_watermark_ref, &u->sink->sample_spec, true); pa_log_info("Resumed successfully..."); pa_xfree(device_name); return 0; fail: if (u->pcm_handle) { snd_pcm_close(u->pcm_handle); u->pcm_handle = NULL; } pa_xfree(device_name); return -PA_ERR_IO; } /* Called from the IO thread or the main thread depending on whether deferred * volume is enabled or not (with deferred volume all mixer handling is done * from the IO thread). * * Sets the mixer settings to match the current sink and port state (the port * is given as an argument, because active_port may still point to the old * port, if we're switching ports). */ static void sync_mixer(struct userdata *u, pa_device_port *port) { pa_alsa_setting *setting = NULL; pa_assert(u); if (!u->mixer_path) return; /* port may be NULL, because if we use a synthesized mixer path, then the * sink has no ports. */ if (port && !u->ucm_context) { pa_alsa_port_data *data; data = PA_DEVICE_PORT_DATA(port); setting = data->setting; } pa_alsa_path_select(u->mixer_path, setting, u->mixer_handle, u->sink->muted); if (u->sink->set_mute) u->sink->set_mute(u->sink); if (u->sink->flags & PA_SINK_DEFERRED_VOLUME) { if (u->sink->write_volume) u->sink->write_volume(u->sink); } else { if (u->sink->set_volume) u->sink->set_volume(u->sink); } } /* Called from IO context */ static int sink_process_msg(pa_msgobject *o, int code, void *data, int64_t offset, pa_memchunk *chunk) { struct userdata *u = PA_SINK(o)->userdata; switch (code) { case PA_SINK_MESSAGE_GET_LATENCY: { int64_t r = 0; if (u->pcm_handle) r = sink_get_latency(u); *((int64_t*) data) = r; return 0; } case SINK_MESSAGE_SYNC_MIXER: { pa_device_port *port = data; sync_mixer(u, port); return 0; } } return pa_sink_process_msg(o, code, data, offset, chunk); } /* Called from main context */ static int sink_set_state_in_main_thread_cb(pa_sink *s, pa_sink_state_t new_state, pa_suspend_cause_t new_suspend_cause) { pa_sink_state_t old_state; struct userdata *u; pa_sink_assert_ref(s); pa_assert_se(u = s->userdata); /* When our session becomes active, we need to sync the mixer, because * another user may have changed the mixer settings. * * If deferred volume is enabled, the syncing is done in the * set_state_in_io_thread() callback instead. */ if (!(s->flags & PA_SINK_DEFERRED_VOLUME) && (s->suspend_cause & PA_SUSPEND_SESSION) && !(new_suspend_cause & PA_SUSPEND_SESSION)) sync_mixer(u, s->active_port); old_state = u->sink->state; if (PA_SINK_IS_OPENED(old_state) && new_state == PA_SINK_SUSPENDED) reserve_done(u); else if (old_state == PA_SINK_SUSPENDED && PA_SINK_IS_OPENED(new_state)) if (reserve_init(u, u->device_name) < 0) return -PA_ERR_BUSY; return 0; } /* Called from the IO thread. */ static int sink_set_state_in_io_thread_cb(pa_sink *s, pa_sink_state_t new_state, pa_suspend_cause_t new_suspend_cause) { struct userdata *u; pa_assert(s); pa_assert_se(u = s->userdata); /* When our session becomes active, we need to sync the mixer, because * another user may have changed the mixer settings. * * If deferred volume is disabled, the syncing is done in the * set_state_in_main_thread() callback instead. */ if ((s->flags & PA_SINK_DEFERRED_VOLUME) && (s->suspend_cause & PA_SUSPEND_SESSION) && !(new_suspend_cause & PA_SUSPEND_SESSION)) sync_mixer(u, s->active_port); /* It may be that only the suspend cause is changing, in which case there's * nothing more to do. */ if (new_state == s->thread_info.state) return 0; switch (new_state) { case PA_SINK_SUSPENDED: { pa_assert(PA_SINK_IS_OPENED(s->thread_info.state)); suspend(u); break; } case PA_SINK_IDLE: case PA_SINK_RUNNING: { int r; if (s->thread_info.state == PA_SINK_INIT) { if (build_pollfd(u) < 0) /* FIXME: This will cause an assertion failure, because * with the current design pa_sink_put() is not allowed * to fail and pa_sink_put() has no fallback code that * would start the sink suspended if opening the device * fails. */ return -PA_ERR_IO; } if (s->thread_info.state == PA_SINK_SUSPENDED) { if ((r = unsuspend(u, false)) < 0) return r; } break; } case PA_SINK_UNLINKED: case PA_SINK_INIT: case PA_SINK_INVALID_STATE: break; } return 0; } static int ctl_mixer_callback(snd_mixer_elem_t *elem, unsigned int mask) { struct userdata *u = snd_mixer_elem_get_callback_private(elem); pa_assert(u); pa_assert(u->mixer_handle); if (mask == SND_CTL_EVENT_MASK_REMOVE) return 0; if (!PA_SINK_IS_LINKED(u->sink->state)) return 0; if (u->sink->suspend_cause & PA_SUSPEND_SESSION) return 0; if (mask & SND_CTL_EVENT_MASK_VALUE) { pa_sink_get_volume(u->sink, true); pa_sink_get_mute(u->sink, true); } return 0; } static int io_mixer_callback(snd_mixer_elem_t *elem, unsigned int mask) { struct userdata *u = snd_mixer_elem_get_callback_private(elem); pa_assert(u); pa_assert(u->mixer_handle); if (mask == SND_CTL_EVENT_MASK_REMOVE) return 0; if (u->sink->suspend_cause & PA_SUSPEND_SESSION) return 0; if (mask & SND_CTL_EVENT_MASK_VALUE) pa_sink_update_volume_and_mute(u->sink); return 0; } static void sink_get_volume_cb(pa_sink *s) { struct userdata *u = s->userdata; pa_cvolume r; char volume_buf[PA_CVOLUME_SNPRINT_VERBOSE_MAX]; pa_assert(u); pa_assert(u->mixer_path); pa_assert(u->mixer_handle); if (pa_alsa_path_get_volume(u->mixer_path, u->mixer_handle, &s->channel_map, &r) < 0) return; /* Shift down by the base volume, so that 0dB becomes maximum volume */ pa_sw_cvolume_multiply_scalar(&r, &r, s->base_volume); pa_log_debug("Read hardware volume: %s", pa_cvolume_snprint_verbose(volume_buf, sizeof(volume_buf), &r, &s->channel_map, u->mixer_path->has_dB)); if (pa_cvolume_equal(&u->hardware_volume, &r)) return; s->real_volume = u->hardware_volume = r; /* Hmm, so the hardware volume changed, let's reset our software volume */ if (u->mixer_path->has_dB) pa_sink_set_soft_volume(s, NULL); } static void sink_set_volume_cb(pa_sink *s) { struct userdata *u = s->userdata; pa_cvolume r; char volume_buf[PA_CVOLUME_SNPRINT_VERBOSE_MAX]; bool deferred_volume = !!(s->flags & PA_SINK_DEFERRED_VOLUME); pa_assert(u); pa_assert(u->mixer_path); pa_assert(u->mixer_handle); /* Shift up by the base volume */ pa_sw_cvolume_divide_scalar(&r, &s->real_volume, s->base_volume); if (pa_alsa_path_set_volume(u->mixer_path, u->mixer_handle, &s->channel_map, &r, deferred_volume, !deferred_volume) < 0) return; /* Shift down by the base volume, so that 0dB becomes maximum volume */ pa_sw_cvolume_multiply_scalar(&r, &r, s->base_volume); u->hardware_volume = r; if (u->mixer_path->has_dB) { pa_cvolume new_soft_volume; bool accurate_enough; /* Match exactly what the user requested by software */ pa_sw_cvolume_divide(&new_soft_volume, &s->real_volume, &u->hardware_volume); /* If the adjustment to do in software is only minimal we * can skip it. That saves us CPU at the expense of a bit of * accuracy */ accurate_enough = (pa_cvolume_min(&new_soft_volume) >= (PA_VOLUME_NORM - VOLUME_ACCURACY)) && (pa_cvolume_max(&new_soft_volume) <= (PA_VOLUME_NORM + VOLUME_ACCURACY)); pa_log_debug("Requested volume: %s", pa_cvolume_snprint_verbose(volume_buf, sizeof(volume_buf), &s->real_volume, &s->channel_map, true)); pa_log_debug("Got hardware volume: %s", pa_cvolume_snprint_verbose(volume_buf, sizeof(volume_buf), &u->hardware_volume, &s->channel_map, true)); pa_log_debug("Calculated software volume: %s (accurate-enough=%s)", pa_cvolume_snprint_verbose(volume_buf, sizeof(volume_buf), &new_soft_volume, &s->channel_map, true), pa_yes_no(accurate_enough)); if (!accurate_enough) s->soft_volume = new_soft_volume; } else { pa_log_debug("Wrote hardware volume: %s", pa_cvolume_snprint_verbose(volume_buf, sizeof(volume_buf), &r, &s->channel_map, false)); /* We can't match exactly what the user requested, hence let's * at least tell the user about it */ s->real_volume = r; } } static void sink_write_volume_cb(pa_sink *s) { struct userdata *u = s->userdata; pa_cvolume hw_vol = s->thread_info.current_hw_volume; pa_assert(u); pa_assert(u->mixer_path); pa_assert(u->mixer_handle); pa_assert(s->flags & PA_SINK_DEFERRED_VOLUME); /* Shift up by the base volume */ pa_sw_cvolume_divide_scalar(&hw_vol, &hw_vol, s->base_volume); if (pa_alsa_path_set_volume(u->mixer_path, u->mixer_handle, &s->channel_map, &hw_vol, true, true) < 0) pa_log_error("Writing HW volume failed"); else { pa_cvolume tmp_vol; bool accurate_enough; /* Shift down by the base volume, so that 0dB becomes maximum volume */ pa_sw_cvolume_multiply_scalar(&hw_vol, &hw_vol, s->base_volume); pa_sw_cvolume_divide(&tmp_vol, &hw_vol, &s->thread_info.current_hw_volume); accurate_enough = (pa_cvolume_min(&tmp_vol) >= (PA_VOLUME_NORM - VOLUME_ACCURACY)) && (pa_cvolume_max(&tmp_vol) <= (PA_VOLUME_NORM + VOLUME_ACCURACY)); if (!accurate_enough) { char volume_buf[2][PA_CVOLUME_SNPRINT_VERBOSE_MAX]; pa_log_debug("Written HW volume did not match with the request: %s (request) != %s", pa_cvolume_snprint_verbose(volume_buf[0], sizeof(volume_buf[0]), &s->thread_info.current_hw_volume, &s->channel_map, true), pa_cvolume_snprint_verbose(volume_buf[1], sizeof(volume_buf[1]), &hw_vol, &s->channel_map, true)); } } } static int sink_get_mute_cb(pa_sink *s, bool *mute) { struct userdata *u = s->userdata; pa_assert(u); pa_assert(u->mixer_path); pa_assert(u->mixer_handle); if (pa_alsa_path_get_mute(u->mixer_path, u->mixer_handle, mute) < 0) return -1; return 0; } static void sink_set_mute_cb(pa_sink *s) { struct userdata *u = s->userdata; pa_assert(u); pa_assert(u->mixer_path); pa_assert(u->mixer_handle); pa_alsa_path_set_mute(u->mixer_path, u->mixer_handle, s->muted); } static void mixer_volume_init(struct userdata *u) { pa_assert(u); if (!u->mixer_path || !u->mixer_path->has_volume) { pa_sink_set_write_volume_callback(u->sink, NULL); pa_sink_set_get_volume_callback(u->sink, NULL); pa_sink_set_set_volume_callback(u->sink, NULL); pa_log_info("Driver does not support hardware volume control, falling back to software volume control."); } else { pa_sink_set_get_volume_callback(u->sink, sink_get_volume_cb); pa_sink_set_set_volume_callback(u->sink, sink_set_volume_cb); if (u->mixer_path->has_dB && u->deferred_volume) { pa_sink_set_write_volume_callback(u->sink, sink_write_volume_cb); pa_log_info("Successfully enabled deferred volume."); } else pa_sink_set_write_volume_callback(u->sink, NULL); if (u->mixer_path->has_dB) { pa_sink_enable_decibel_volume(u->sink, true); pa_log_info("Hardware volume ranges from %0.2f dB to %0.2f dB.", u->mixer_path->min_dB, u->mixer_path->max_dB); u->sink->base_volume = pa_sw_volume_from_dB(-u->mixer_path->max_dB); u->sink->n_volume_steps = PA_VOLUME_NORM+1; pa_log_info("Fixing base volume to %0.2f dB", pa_sw_volume_to_dB(u->sink->base_volume)); } else { pa_sink_enable_decibel_volume(u->sink, false); pa_log_info("Hardware volume ranges from %li to %li.", u->mixer_path->min_volume, u->mixer_path->max_volume); u->sink->base_volume = PA_VOLUME_NORM; u->sink->n_volume_steps = u->mixer_path->max_volume - u->mixer_path->min_volume + 1; } pa_log_info("Using hardware volume control. Hardware dB scale %s.", u->mixer_path->has_dB ? "supported" : "not supported"); } if (!u->mixer_path || !u->mixer_path->has_mute) { pa_sink_set_get_mute_callback(u->sink, NULL); pa_sink_set_set_mute_callback(u->sink, NULL); pa_log_info("Driver does not support hardware mute control, falling back to software mute control."); } else { pa_sink_set_get_mute_callback(u->sink, sink_get_mute_cb); pa_sink_set_set_mute_callback(u->sink, sink_set_mute_cb); pa_log_info("Using hardware mute control."); } } static int sink_set_port_ucm_cb(pa_sink *s, pa_device_port *p) { struct userdata *u = s->userdata; pa_alsa_ucm_port_data *data; pa_assert(u); pa_assert(p); pa_assert(u->ucm_context); data = PA_DEVICE_PORT_DATA(p); u->mixer_path = data->path; mixer_volume_init(u); if (s->flags & PA_SINK_DEFERRED_VOLUME) pa_asyncmsgq_send(u->sink->asyncmsgq, PA_MSGOBJECT(u->sink), SINK_MESSAGE_SYNC_MIXER, p, 0, NULL); else sync_mixer(u, p); return pa_alsa_ucm_set_port(u->ucm_context, p, true); } static int sink_set_port_cb(pa_sink *s, pa_device_port *p) { struct userdata *u = s->userdata; pa_alsa_port_data *data; pa_assert(u); pa_assert(p); pa_assert(u->mixer_handle); pa_assert(!u->ucm_context); data = PA_DEVICE_PORT_DATA(p); pa_assert_se(u->mixer_path = data->path); mixer_volume_init(u); if (s->flags & PA_SINK_DEFERRED_VOLUME) pa_asyncmsgq_send(u->sink->asyncmsgq, PA_MSGOBJECT(u->sink), SINK_MESSAGE_SYNC_MIXER, p, 0, NULL); else sync_mixer(u, p); if (data->suspend_when_unavailable && p->available == PA_AVAILABLE_NO) pa_sink_suspend(s, true, PA_SUSPEND_UNAVAILABLE); else pa_sink_suspend(s, false, PA_SUSPEND_UNAVAILABLE); return 0; } static void sink_update_requested_latency_cb(pa_sink *s) { struct userdata *u = s->userdata; pa_assert(u); pa_assert(u->use_tsched); /* only when timer scheduling is used * we can dynamically adjust the * latency */ if (!u->pcm_handle) return; update_sw_params(u, true); } static pa_idxset* sink_get_formats(pa_sink *s) { struct userdata *u = s->userdata; pa_assert(u); return pa_idxset_copy(u->formats, (pa_copy_func_t) pa_format_info_copy); } static bool sink_set_formats(pa_sink *s, pa_idxset *formats) { struct userdata *u = s->userdata; pa_format_info *f, *g; uint32_t idx, n; pa_assert(u); /* FIXME: also validate sample rates against what the device supports */ PA_IDXSET_FOREACH(f, formats, idx) { if (is_iec958(u) && f->encoding == PA_ENCODING_EAC3_IEC61937) /* EAC3 cannot be sent over over S/PDIF */ return false; } pa_idxset_free(u->formats, (pa_free_cb_t) pa_format_info_free); u->formats = pa_idxset_new(NULL, NULL); /* Note: the logic below won't apply if we're using software encoding. * This is fine for now since we don't support that via the passthrough * framework, but this must be changed if we do. */ /* Count how many sample rates we support */ for (idx = 0, n = 0; u->supported_rates[idx]; idx++) n++; /* First insert non-PCM formats since we prefer those. */ PA_IDXSET_FOREACH(f, formats, idx) { if (!pa_format_info_is_pcm(f)) { g = pa_format_info_copy(f); pa_format_info_set_prop_int_array(g, PA_PROP_FORMAT_RATE, (int *) u->supported_rates, n); pa_idxset_put(u->formats, g, NULL); } } /* Now add any PCM formats */ PA_IDXSET_FOREACH(f, formats, idx) { if (pa_format_info_is_pcm(f)) { /* We don't set rates here since we'll just tack on a resampler for * unsupported rates */ pa_idxset_put(u->formats, pa_format_info_copy(f), NULL); } } return true; } static void sink_reconfigure_cb(pa_sink *s, pa_sample_spec *spec, bool passthrough) { struct userdata *u = s->userdata; int i; bool format_supported = false; bool rate_supported = false; pa_assert(u); for (i = 0; u->supported_formats[i] != PA_SAMPLE_MAX; i++) { if (u->supported_formats[i] == spec->format) { pa_sink_set_sample_format(u->sink, spec->format); format_supported = true; break; } } if (!format_supported) { pa_log_info("Sink does not support sample format of %s, set it to a verified value", pa_sample_format_to_string(spec->format)); pa_sink_set_sample_format(u->sink, u->verified_sample_spec.format); } for (i = 0; u->supported_rates[i]; i++) { if (u->supported_rates[i] == spec->rate) { pa_sink_set_sample_rate(u->sink, spec->rate); rate_supported = true; break; } } if (!rate_supported) { pa_log_info("Sink does not support sample rate of %u, set it to a verified value", spec->rate); pa_sink_set_sample_rate(u->sink, u->verified_sample_spec.rate); } /* Passthrough status change is handled during unsuspend */ } static int process_rewind(struct userdata *u) { snd_pcm_sframes_t unused; size_t rewind_nbytes, unused_nbytes, limit_nbytes; int err; pa_assert(u); if (!PA_SINK_IS_OPENED(u->sink->thread_info.state)) { pa_sink_process_rewind(u->sink, 0); return 0; } /* Figure out how much we shall rewind and reset the counter */ rewind_nbytes = u->sink->thread_info.rewind_nbytes; pa_log_debug("Requested to rewind %lu bytes.", (unsigned long) rewind_nbytes); if (PA_UNLIKELY((unused = pa_alsa_safe_avail(u->pcm_handle, u->hwbuf_size, &u->sink->sample_spec)) < 0)) { if ((err = try_recover(u, "snd_pcm_avail", (int) unused)) < 0) { pa_log_warn("Trying to recover from underrun failed during rewind"); return -1; } if (err == 1) goto rewind_done; } unused_nbytes = (size_t) unused * u->frame_size; /* make sure rewind doesn't go too far, can cause issues with DMAs */ unused_nbytes += u->rewind_safeguard; if (u->hwbuf_size > unused_nbytes) limit_nbytes = u->hwbuf_size - unused_nbytes; else limit_nbytes = 0; if (rewind_nbytes > limit_nbytes) rewind_nbytes = limit_nbytes; if (rewind_nbytes > 0) { snd_pcm_sframes_t in_frames, out_frames; pa_log_debug("Limited to %lu bytes.", (unsigned long) rewind_nbytes); in_frames = (snd_pcm_sframes_t) (rewind_nbytes / u->frame_size); pa_log_debug("before: %lu", (unsigned long) in_frames); if ((out_frames = snd_pcm_rewind(u->pcm_handle, (snd_pcm_uframes_t) in_frames)) < 0) { pa_log("snd_pcm_rewind() failed: %s", pa_alsa_strerror((int) out_frames)); if ((err = try_recover(u, "process_rewind", out_frames)) < 0) return -1; if (err == 1) goto rewind_done; out_frames = 0; } pa_log_debug("after: %lu", (unsigned long) out_frames); rewind_nbytes = (size_t) out_frames * u->frame_size; if (rewind_nbytes <= 0) pa_log_info("Tried rewind, but was apparently not possible."); else { u->write_count -= rewind_nbytes; pa_log_debug("Rewound %lu bytes.", (unsigned long) rewind_nbytes); pa_sink_process_rewind(u->sink, rewind_nbytes); u->after_rewind = true; return 0; } } else pa_log_debug("Mhmm, actually there is nothing to rewind."); rewind_done: pa_sink_process_rewind(u->sink, 0); return 0; } static void thread_func(void *userdata) { struct userdata *u = userdata; unsigned short revents = 0; pa_assert(u); pa_log_debug("Thread starting up"); if (u->core->realtime_scheduling) pa_thread_make_realtime(u->core->realtime_priority); pa_thread_mq_install(&u->thread_mq); for (;;) { int ret; pa_usec_t rtpoll_sleep = 0, real_sleep; #ifdef DEBUG_TIMING pa_log_debug("Loop"); #endif if (PA_UNLIKELY(u->sink->thread_info.rewind_requested)) { if (process_rewind(u) < 0) goto fail; } /* Render some data and write it to the dsp */ if (PA_SINK_IS_OPENED(u->sink->thread_info.state)) { int work_done; pa_usec_t sleep_usec = 0; bool on_timeout = pa_rtpoll_timer_elapsed(u->rtpoll); if (u->use_mmap) work_done = mmap_write(u, &sleep_usec, revents & POLLOUT, on_timeout); else work_done = unix_write(u, &sleep_usec, revents & POLLOUT, on_timeout); if (work_done < 0) goto fail; /* pa_log_debug("work_done = %i", work_done); */ if (work_done) { if (u->first) { pa_log_info("Starting playback."); snd_pcm_start(u->pcm_handle); pa_smoother_resume(u->smoother, pa_rtclock_now(), true); u->first = false; } update_smoother(u); } if (u->use_tsched) { pa_usec_t cusec; if (u->since_start <= u->hwbuf_size) { /* USB devices on ALSA seem to hit a buffer * underrun during the first iterations much * quicker then we calculate here, probably due to * the transport latency. To accommodate for that * we artificially decrease the sleep time until * we have filled the buffer at least once * completely.*/ if (pa_log_ratelimit(PA_LOG_DEBUG)) pa_log_debug("Cutting sleep time for the initial iterations by half."); sleep_usec /= 2; } /* OK, the playback buffer is now full, let's * calculate when to wake up next */ #ifdef DEBUG_TIMING pa_log_debug("Waking up in %0.2fms (sound card clock).", (double) sleep_usec / PA_USEC_PER_MSEC); #endif /* Convert from the sound card time domain to the * system time domain */ cusec = pa_smoother_translate(u->smoother, pa_rtclock_now(), sleep_usec); #ifdef DEBUG_TIMING pa_log_debug("Waking up in %0.2fms (system clock).", (double) cusec / PA_USEC_PER_MSEC); #endif /* We don't trust the conversion, so we wake up whatever comes first */ rtpoll_sleep = PA_MIN(sleep_usec, cusec); } u->after_rewind = false; } if (u->sink->flags & PA_SINK_DEFERRED_VOLUME) { pa_usec_t volume_sleep; pa_sink_volume_change_apply(u->sink, &volume_sleep); if (volume_sleep > 0) { if (rtpoll_sleep > 0) rtpoll_sleep = PA_MIN(volume_sleep, rtpoll_sleep); else rtpoll_sleep = volume_sleep; } } if (rtpoll_sleep > 0) { pa_rtpoll_set_timer_relative(u->rtpoll, rtpoll_sleep); real_sleep = pa_rtclock_now(); } else pa_rtpoll_set_timer_disabled(u->rtpoll); /* Hmm, nothing to do. Let's sleep */ if ((ret = pa_rtpoll_run(u->rtpoll)) < 0) goto fail; if (rtpoll_sleep > 0) { real_sleep = pa_rtclock_now() - real_sleep; #ifdef DEBUG_TIMING pa_log_debug("Expected sleep: %0.2fms, real sleep: %0.2fms (diff %0.2f ms)", (double) rtpoll_sleep / PA_USEC_PER_MSEC, (double) real_sleep / PA_USEC_PER_MSEC, (double) ((int64_t) real_sleep - (int64_t) rtpoll_sleep) / PA_USEC_PER_MSEC); #endif if (u->use_tsched && real_sleep > rtpoll_sleep + u->tsched_watermark_usec) pa_log_info("Scheduling delay of %0.2f ms > %0.2f ms, you might want to investigate this to improve latency...", (double) (real_sleep - rtpoll_sleep) / PA_USEC_PER_MSEC, (double) (u->tsched_watermark_usec) / PA_USEC_PER_MSEC); } if (u->sink->flags & PA_SINK_DEFERRED_VOLUME) pa_sink_volume_change_apply(u->sink, NULL); if (ret == 0) goto finish; /* Tell ALSA about this and process its response */ if (PA_SINK_IS_OPENED(u->sink->thread_info.state)) { struct pollfd *pollfd; int err; unsigned n; pollfd = pa_rtpoll_item_get_pollfd(u->alsa_rtpoll_item, &n); if ((err = snd_pcm_poll_descriptors_revents(u->pcm_handle, pollfd, n, &revents)) < 0) { pa_log("snd_pcm_poll_descriptors_revents() failed: %s", pa_alsa_strerror(err)); goto fail; } if (revents & ~POLLOUT) { if ((err = pa_alsa_recover_from_poll(u->pcm_handle, revents)) < 0) goto fail; /* Stream needs to be restarted */ if (err == 1) { close_pcm(u); if (unsuspend(u, true) < 0) goto fail; } else reset_vars(u); revents = 0; } else if (revents && u->use_tsched && pa_log_ratelimit(PA_LOG_DEBUG)) pa_log_debug("Wakeup from ALSA!"); } else revents = 0; } fail: /* If this was no regular exit from the loop we have to continue * processing messages until we received PA_MESSAGE_SHUTDOWN */ pa_asyncmsgq_post(u->thread_mq.outq, PA_MSGOBJECT(u->core), PA_CORE_MESSAGE_UNLOAD_MODULE, u->module, 0, NULL, NULL); pa_asyncmsgq_wait_for(u->thread_mq.inq, PA_MESSAGE_SHUTDOWN); finish: pa_log_debug("Thread shutting down"); } static void set_sink_name(pa_sink_new_data *data, pa_modargs *ma, const char *device_id, const char *device_name, pa_alsa_mapping *mapping) { const char *n; char *t; pa_assert(data); pa_assert(ma); pa_assert(device_name); if ((n = pa_modargs_get_value(ma, "sink_name", NULL))) { pa_sink_new_data_set_name(data, n); data->namereg_fail = true; return; } if ((n = pa_modargs_get_value(ma, "name", NULL))) data->namereg_fail = true; else { n = device_id ? device_id : device_name; data->namereg_fail = false; } if (mapping) t = pa_sprintf_malloc("alsa_output.%s.%s", n, mapping->name); else t = pa_sprintf_malloc("alsa_output.%s", n); pa_sink_new_data_set_name(data, t); pa_xfree(t); } static void find_mixer(struct userdata *u, pa_alsa_mapping *mapping, const char *element, bool ignore_dB) { const char *mdev; if (!mapping && !element) return; if (!element && mapping && pa_alsa_path_set_is_empty(mapping->output_path_set)) return; u->mixers = pa_hashmap_new_full(pa_idxset_string_hash_func, pa_idxset_string_compare_func, NULL, (pa_free_cb_t) pa_alsa_mixer_free); mdev = pa_proplist_gets(mapping->proplist, "alsa.mixer_device"); if (mdev) { u->mixer_handle = pa_alsa_open_mixer_by_name(u->mixers, mdev, true); } else { u->mixer_handle = pa_alsa_open_mixer_for_pcm(u->mixers, u->pcm_handle, true); } if (!u->mixer_handle) { pa_log_info("Failed to find a working mixer device."); return; } if (element) { if (!(u->mixer_path = pa_alsa_path_synthesize(element, PA_ALSA_DIRECTION_OUTPUT))) goto fail; if (pa_alsa_path_probe(u->mixer_path, NULL, u->mixer_handle, ignore_dB) < 0) goto fail; pa_log_debug("Probed mixer path %s:", u->mixer_path->name); pa_alsa_path_dump(u->mixer_path); } else { u->mixer_path_set = mapping->output_path_set; } return; fail: if (u->mixer_path) { pa_alsa_path_free(u->mixer_path); u->mixer_path = NULL; } u->mixer_handle = NULL; pa_hashmap_free(u->mixers); u->mixers = NULL; } static int setup_mixer(struct userdata *u, bool ignore_dB) { bool need_mixer_callback = false; pa_assert(u); /* This code is before the u->mixer_handle check, because if the UCM * configuration doesn't specify volume or mute controls, u->mixer_handle * will be NULL, but the UCM device enable sequence will still need to be * executed. */ if (u->sink->active_port && u->ucm_context) { if (pa_alsa_ucm_set_port(u->ucm_context, u->sink->active_port, true) < 0) return -1; } if (!u->mixer_handle) return 0; if (u->sink->active_port) { if (!u->ucm_context) { pa_alsa_port_data *data; /* We have a list of supported paths, so let's activate the * one that has been chosen as active */ data = PA_DEVICE_PORT_DATA(u->sink->active_port); u->mixer_path = data->path; pa_alsa_path_select(data->path, data->setting, u->mixer_handle, u->sink->muted); } else { pa_alsa_ucm_port_data *data; data = PA_DEVICE_PORT_DATA(u->sink->active_port); /* Now activate volume controls, if any */ if (data->path) { u->mixer_path = data->path; pa_alsa_path_select(u->mixer_path, NULL, u->mixer_handle, u->sink->muted); } } } else { if (!u->mixer_path && u->mixer_path_set) u->mixer_path = pa_hashmap_first(u->mixer_path_set->paths); if (u->mixer_path) { /* Hmm, we have only a single path, then let's activate it */ pa_alsa_path_select(u->mixer_path, u->mixer_path->settings, u->mixer_handle, u->sink->muted); } else return 0; } mixer_volume_init(u); /* Will we need to register callbacks? */ if (u->mixer_path_set && u->mixer_path_set->paths) { pa_alsa_path *p; void *state; PA_HASHMAP_FOREACH(p, u->mixer_path_set->paths, state) { if (p->has_volume || p->has_mute) need_mixer_callback = true; } } else if (u->mixer_path) need_mixer_callback = u->mixer_path->has_volume || u->mixer_path->has_mute; if (need_mixer_callback) { int (*mixer_callback)(snd_mixer_elem_t *, unsigned int); if (u->sink->flags & PA_SINK_DEFERRED_VOLUME) { u->mixer_pd = pa_alsa_mixer_pdata_new(); mixer_callback = io_mixer_callback; if (pa_alsa_set_mixer_rtpoll(u->mixer_pd, u->mixer_handle, u->rtpoll) < 0) { pa_log("Failed to initialize file descriptor monitoring"); return -1; } } else { u->mixer_fdl = pa_alsa_fdlist_new(); mixer_callback = ctl_mixer_callback; if (pa_alsa_fdlist_set_handle(u->mixer_fdl, u->mixer_handle, NULL, u->core->mainloop) < 0) { pa_log("Failed to initialize file descriptor monitoring"); return -1; } } if (u->mixer_path_set) pa_alsa_path_set_set_callback(u->mixer_path_set, u->mixer_handle, mixer_callback, u); else pa_alsa_path_set_callback(u->mixer_path, u->mixer_handle, mixer_callback, u); } return 0; } pa_sink *pa_alsa_sink_new(pa_module *m, pa_modargs *ma, const char*driver, pa_card *card, pa_alsa_mapping *mapping) { struct userdata *u = NULL; const char *dev_id = NULL, *key, *mod_name; pa_sample_spec ss; char *thread_name = NULL; uint32_t alternate_sample_rate; pa_channel_map map; uint32_t nfrags, frag_size, buffer_size, tsched_size, tsched_watermark, rewind_safeguard; snd_pcm_uframes_t period_frames, buffer_frames, tsched_frames; size_t frame_size; bool use_mmap = true; bool use_tsched = true; bool ignore_dB = false; bool namereg_fail = false; bool deferred_volume = false; bool set_formats = false; bool fixed_latency_range = false; bool b; bool d; bool avoid_resampling; pa_sink_new_data data; bool volume_is_set; bool mute_is_set; pa_alsa_profile_set *profile_set = NULL; void *state; pa_assert(m); pa_assert(ma); ss = m->core->default_sample_spec; map = m->core->default_channel_map; avoid_resampling = m->core->avoid_resampling; /* Pick sample spec overrides from the mapping, if any */ if (mapping) { if (mapping->sample_spec.format != PA_SAMPLE_INVALID) ss.format = mapping->sample_spec.format; if (mapping->sample_spec.rate != 0) ss.rate = mapping->sample_spec.rate; if (mapping->sample_spec.channels != 0) { ss.channels = mapping->sample_spec.channels; if (pa_channel_map_valid(&mapping->channel_map)) pa_assert(pa_channel_map_compatible(&mapping->channel_map, &ss)); } } /* Override with modargs if provided */ if (pa_modargs_get_sample_spec_and_channel_map(ma, &ss, &map, PA_CHANNEL_MAP_ALSA) < 0) { pa_log("Failed to parse sample specification and channel map"); goto fail; } alternate_sample_rate = m->core->alternate_sample_rate; if (pa_modargs_get_alternate_sample_rate(ma, &alternate_sample_rate) < 0) { pa_log("Failed to parse alternate sample rate"); goto fail; } frame_size = pa_frame_size(&ss); nfrags = m->core->default_n_fragments; frag_size = (uint32_t) pa_usec_to_bytes(m->core->default_fragment_size_msec*PA_USEC_PER_MSEC, &ss); if (frag_size <= 0) frag_size = (uint32_t) frame_size; tsched_size = (uint32_t) pa_usec_to_bytes(DEFAULT_TSCHED_BUFFER_USEC, &ss); tsched_watermark = (uint32_t) pa_usec_to_bytes(DEFAULT_TSCHED_WATERMARK_USEC, &ss); if (pa_modargs_get_value_u32(ma, "fragments", &nfrags) < 0 || pa_modargs_get_value_u32(ma, "fragment_size", &frag_size) < 0 || pa_modargs_get_value_u32(ma, "tsched_buffer_size", &tsched_size) < 0 || pa_modargs_get_value_u32(ma, "tsched_buffer_watermark", &tsched_watermark) < 0) { pa_log("Failed to parse buffer metrics"); goto fail; } buffer_size = nfrags * frag_size; period_frames = frag_size/frame_size; buffer_frames = buffer_size/frame_size; tsched_frames = tsched_size/frame_size; if (pa_modargs_get_value_boolean(ma, "mmap", &use_mmap) < 0) { pa_log("Failed to parse mmap argument."); goto fail; } if (pa_modargs_get_value_boolean(ma, "tsched", &use_tsched) < 0) { pa_log("Failed to parse tsched argument."); goto fail; } if (pa_modargs_get_value_boolean(ma, "ignore_dB", &ignore_dB) < 0) { pa_log("Failed to parse ignore_dB argument."); goto fail; } rewind_safeguard = PA_MAX(DEFAULT_REWIND_SAFEGUARD_BYTES, pa_usec_to_bytes(DEFAULT_REWIND_SAFEGUARD_USEC, &ss)); if (pa_modargs_get_value_u32(ma, "rewind_safeguard", &rewind_safeguard) < 0) { pa_log("Failed to parse rewind_safeguard argument"); goto fail; } deferred_volume = m->core->deferred_volume; if (pa_modargs_get_value_boolean(ma, "deferred_volume", &deferred_volume) < 0) { pa_log("Failed to parse deferred_volume argument."); goto fail; } if (pa_modargs_get_value_boolean(ma, "fixed_latency_range", &fixed_latency_range) < 0) { pa_log("Failed to parse fixed_latency_range argument."); goto fail; } use_tsched = pa_alsa_may_tsched(use_tsched); u = pa_xnew0(struct userdata, 1); u->core = m->core; u->module = m; u->use_mmap = use_mmap; u->use_tsched = use_tsched; u->tsched_size = tsched_size; u->initial_info.nfrags = (size_t) nfrags; u->initial_info.fragment_size = (size_t) frag_size; u->initial_info.tsched_size = (size_t) tsched_size; u->initial_info.tsched_watermark = (size_t) tsched_watermark; u->initial_info.rewind_safeguard = (size_t) rewind_safeguard; u->deferred_volume = deferred_volume; u->fixed_latency_range = fixed_latency_range; u->first = true; u->rewind_safeguard = rewind_safeguard; u->rtpoll = pa_rtpoll_new(); if (pa_thread_mq_init(&u->thread_mq, m->core->mainloop, u->rtpoll) < 0) { pa_log("pa_thread_mq_init() failed."); goto fail; } u->smoother = pa_smoother_new( SMOOTHER_ADJUST_USEC, SMOOTHER_WINDOW_USEC, true, true, 5, pa_rtclock_now(), true); u->smoother_interval = SMOOTHER_MIN_INTERVAL; /* use ucm */ if (mapping && mapping->ucm_context.ucm) u->ucm_context = &mapping->ucm_context; dev_id = pa_modargs_get_value( ma, "device_id", pa_modargs_get_value(ma, "device", DEFAULT_DEVICE)); u->paths_dir = pa_xstrdup(pa_modargs_get_value(ma, "paths_dir", NULL)); if (reserve_init(u, dev_id) < 0) goto fail; if (reserve_monitor_init(u, dev_id) < 0) goto fail; b = use_mmap; d = use_tsched; /* Force ALSA to reread its configuration if module-alsa-card didn't * do it for us. This matters if our device was hot-plugged after ALSA * has already read its configuration - see * https://bugs.freedesktop.org/show_bug.cgi?id=54029 */ if (!card) snd_config_update_free_global(); if (mapping) { if (!(dev_id = pa_modargs_get_value(ma, "device_id", NULL))) { pa_log("device_id= not set"); goto fail; } if ((mod_name = pa_proplist_gets(mapping->proplist, PA_ALSA_PROP_UCM_MODIFIER))) { if (snd_use_case_set(u->ucm_context->ucm->ucm_mgr, "_enamod", mod_name) < 0) pa_log("Failed to enable ucm modifier %s", mod_name); else pa_log_debug("Enabled ucm modifier %s", mod_name); } if (!(u->pcm_handle = pa_alsa_open_by_device_id_mapping( dev_id, &u->device_name, &ss, &map, SND_PCM_STREAM_PLAYBACK, &period_frames, &buffer_frames, tsched_frames, &b, &d, mapping))) goto fail; } else if ((dev_id = pa_modargs_get_value(ma, "device_id", NULL))) { if (!(profile_set = pa_alsa_profile_set_new(NULL, &map))) goto fail; if (!(u->pcm_handle = pa_alsa_open_by_device_id_auto( dev_id, &u->device_name, &ss, &map, SND_PCM_STREAM_PLAYBACK, &period_frames, &buffer_frames, tsched_frames, &b, &d, profile_set, &mapping))) goto fail; } else { if (!(u->pcm_handle = pa_alsa_open_by_device_string( pa_modargs_get_value(ma, "device", DEFAULT_DEVICE), &u->device_name, &ss, &map, SND_PCM_STREAM_PLAYBACK, &period_frames, &buffer_frames, tsched_frames, &b, &d, false))) goto fail; } pa_assert(u->device_name); pa_log_info("Successfully opened device %s.", u->device_name); if (pa_alsa_pcm_is_modem(u->pcm_handle)) { pa_log_notice("Device %s is modem, refusing further initialization.", u->device_name); goto fail; } if (mapping) pa_log_info("Selected mapping '%s' (%s).", mapping->description, mapping->name); if (use_mmap && !b) { pa_log_info("Device doesn't support mmap(), falling back to UNIX read/write mode."); u->use_mmap = use_mmap = false; } if (use_tsched && (!b || !d)) { pa_log_info("Cannot enable timer-based scheduling, falling back to sound IRQ scheduling."); u->use_tsched = use_tsched = false; } if (u->use_mmap) pa_log_info("Successfully enabled mmap() mode."); if (u->use_tsched) { pa_log_info("Successfully enabled timer-based scheduling mode."); if (u->fixed_latency_range) pa_log_info("Disabling latency range changes on underrun"); } /* All passthrough formats supported by PulseAudio require * IEC61937 framing with two fake channels. So, passthrough * clients will always send two channels. Multichannel sinks * cannot accept that, because nobody implemented sink channel count * switching so far. So just don't show known non-working settings * to the user. */ if ((is_iec958(u) || is_hdmi(u)) && ss.channels == 2) set_formats = true; u->verified_sample_spec = ss; u->supported_formats = pa_alsa_get_supported_formats(u->pcm_handle, ss.format); if (!u->supported_formats) { pa_log_error("Failed to find any supported sample formats."); goto fail; } u->supported_rates = pa_alsa_get_supported_rates(u->pcm_handle, ss.rate); if (!u->supported_rates) { pa_log_error("Failed to find any supported sample rates."); goto fail; } /* ALSA might tweak the sample spec, so recalculate the frame size */ frame_size = pa_frame_size(&ss); pa_sink_new_data_init(&data); data.driver = driver; data.module = m; data.card = card; set_sink_name(&data, ma, dev_id, u->device_name, mapping); /* We need to give pa_modargs_get_value_boolean() a pointer to a local * variable instead of using &data.namereg_fail directly, because * data.namereg_fail is a bitfield and taking the address of a bitfield * variable is impossible. */ namereg_fail = data.namereg_fail; if (pa_modargs_get_value_boolean(ma, "namereg_fail", &namereg_fail) < 0) { pa_log("Failed to parse namereg_fail argument."); pa_sink_new_data_done(&data); goto fail; } data.namereg_fail = namereg_fail; if (pa_modargs_get_value_boolean(ma, "avoid_resampling", &avoid_resampling) < 0) { pa_log("Failed to parse avoid_resampling argument."); pa_sink_new_data_done(&data); goto fail; } pa_sink_new_data_set_avoid_resampling(&data, avoid_resampling); pa_sink_new_data_set_sample_spec(&data, &ss); pa_sink_new_data_set_channel_map(&data, &map); pa_sink_new_data_set_alternate_sample_rate(&data, alternate_sample_rate); pa_alsa_init_proplist_pcm(m->core, data.proplist, u->pcm_handle); pa_proplist_sets(data.proplist, PA_PROP_DEVICE_STRING, u->device_name); pa_proplist_setf(data.proplist, PA_PROP_DEVICE_BUFFERING_BUFFER_SIZE, "%lu", (unsigned long) (buffer_frames * frame_size)); pa_proplist_setf(data.proplist, PA_PROP_DEVICE_BUFFERING_FRAGMENT_SIZE, "%lu", (unsigned long) (period_frames * frame_size)); pa_proplist_sets(data.proplist, PA_PROP_DEVICE_ACCESS_MODE, u->use_tsched ? "mmap+timer" : (u->use_mmap ? "mmap" : "serial")); if (mapping) { pa_proplist_sets(data.proplist, PA_PROP_DEVICE_PROFILE_NAME, mapping->name); pa_proplist_sets(data.proplist, PA_PROP_DEVICE_PROFILE_DESCRIPTION, mapping->description); state = NULL; while ((key = pa_proplist_iterate(mapping->proplist, &state))) pa_proplist_sets(data.proplist, key, pa_proplist_gets(mapping->proplist, key)); } pa_alsa_init_description(data.proplist, card); if (u->control_device) pa_alsa_init_proplist_ctl(data.proplist, u->control_device); if (pa_modargs_get_proplist(ma, "sink_properties", data.proplist, PA_UPDATE_REPLACE) < 0) { pa_log("Invalid properties"); pa_sink_new_data_done(&data); goto fail; } if (u->ucm_context) { pa_alsa_ucm_add_ports(&data.ports, data.proplist, u->ucm_context, true, card, u->pcm_handle, ignore_dB); find_mixer(u, mapping, pa_modargs_get_value(ma, "control", NULL), ignore_dB); } else { find_mixer(u, mapping, pa_modargs_get_value(ma, "control", NULL), ignore_dB); if (u->mixer_path_set) pa_alsa_add_ports(&data, u->mixer_path_set, card); } u->sink = pa_sink_new(m->core, &data, PA_SINK_HARDWARE | PA_SINK_LATENCY | (u->use_tsched ? PA_SINK_DYNAMIC_LATENCY : 0) | (set_formats ? PA_SINK_SET_FORMATS : 0)); volume_is_set = data.volume_is_set; mute_is_set = data.muted_is_set; pa_sink_new_data_done(&data); if (!u->sink) { pa_log("Failed to create sink object"); goto fail; } if (u->ucm_context) { pa_device_port *port; unsigned h_prio = 0; PA_HASHMAP_FOREACH(port, u->sink->ports, state) { if (!h_prio || port->priority > h_prio) h_prio = port->priority; } /* ucm ports prioriy is 100, 200, ..., 900, change it to units digit */ h_prio = h_prio / 100; u->sink->priority += h_prio; } if (pa_modargs_get_value_u32(ma, "deferred_volume_safety_margin", &u->sink->thread_info.volume_change_safety_margin) < 0) { pa_log("Failed to parse deferred_volume_safety_margin parameter"); goto fail; } if (pa_modargs_get_value_s32(ma, "deferred_volume_extra_delay", &u->sink->thread_info.volume_change_extra_delay) < 0) { pa_log("Failed to parse deferred_volume_extra_delay parameter"); goto fail; } u->sink->parent.process_msg = sink_process_msg; if (u->use_tsched) u->sink->update_requested_latency = sink_update_requested_latency_cb; u->sink->set_state_in_main_thread = sink_set_state_in_main_thread_cb; u->sink->set_state_in_io_thread = sink_set_state_in_io_thread_cb; if (u->ucm_context) u->sink->set_port = sink_set_port_ucm_cb; else u->sink->set_port = sink_set_port_cb; u->sink->reconfigure = sink_reconfigure_cb; u->sink->userdata = u; pa_sink_set_asyncmsgq(u->sink, u->thread_mq.inq); pa_sink_set_rtpoll(u->sink, u->rtpoll); u->frame_size = frame_size; u->frames_per_block = pa_mempool_block_size_max(m->core->mempool) / frame_size; u->fragment_size = frag_size = (size_t) (period_frames * frame_size); u->hwbuf_size = buffer_size = (size_t) (buffer_frames * frame_size); pa_cvolume_mute(&u->hardware_volume, u->sink->sample_spec.channels); pa_log_info("Using %0.1f fragments of size %lu bytes (%0.2fms), buffer size is %lu bytes (%0.2fms)", (double) u->hwbuf_size / (double) u->fragment_size, (long unsigned) u->fragment_size, (double) pa_bytes_to_usec(u->fragment_size, &ss) / PA_USEC_PER_MSEC, (long unsigned) u->hwbuf_size, (double) pa_bytes_to_usec(u->hwbuf_size, &ss) / PA_USEC_PER_MSEC); pa_sink_set_max_request(u->sink, u->hwbuf_size); if (pa_alsa_pcm_is_hw(u->pcm_handle)) pa_sink_set_max_rewind(u->sink, u->hwbuf_size); else { pa_log_info("Disabling rewind for device %s", u->device_name); pa_sink_set_max_rewind(u->sink, 0); } if (u->use_tsched) { u->tsched_watermark_ref = tsched_watermark; reset_watermark(u, u->tsched_watermark_ref, &ss, false); } else pa_sink_set_fixed_latency(u->sink, pa_bytes_to_usec(u->hwbuf_size, &ss)); reserve_update(u); if (update_sw_params(u, false) < 0) goto fail; if (setup_mixer(u, ignore_dB) < 0) goto fail; pa_alsa_dump(PA_LOG_DEBUG, u->pcm_handle); thread_name = pa_sprintf_malloc("alsa-sink-%s", pa_strnull(pa_proplist_gets(u->sink->proplist, "alsa.id"))); if (!(u->thread = pa_thread_new(thread_name, thread_func, u))) { pa_log("Failed to create thread."); goto fail; } pa_xfree(thread_name); thread_name = NULL; /* Get initial mixer settings */ if (volume_is_set) { if (u->sink->set_volume) u->sink->set_volume(u->sink); } else { if (u->sink->get_volume) u->sink->get_volume(u->sink); } if (mute_is_set) { if (u->sink->set_mute) u->sink->set_mute(u->sink); } else { if (u->sink->get_mute) { bool mute; if (u->sink->get_mute(u->sink, &mute) >= 0) pa_sink_set_mute(u->sink, mute, false); } } if ((volume_is_set || mute_is_set) && u->sink->write_volume) u->sink->write_volume(u->sink); if (set_formats) { /* For S/PDIF and HDMI, allow getting/setting custom formats */ pa_format_info *format; /* To start with, we only support PCM formats. Other formats may be added * with pa_sink_set_formats().*/ format = pa_format_info_new(); format->encoding = PA_ENCODING_PCM; u->formats = pa_idxset_new(NULL, NULL); pa_idxset_put(u->formats, format, NULL); u->sink->get_formats = sink_get_formats; u->sink->set_formats = sink_set_formats; } pa_sink_put(u->sink); if (profile_set) pa_alsa_profile_set_free(profile_set); /* Suspend if necessary. FIXME: It would be better to start suspended, but * that would require some core changes. It's possible to set * pa_sink_new_data.suspend_cause, but that has to be done before the * pa_sink_new() call, and we know if we need to suspend only after the * pa_sink_new() call when the initial port has been chosen. Calling * pa_sink_suspend() between pa_sink_new() and pa_sink_put() would * otherwise work, but currently pa_sink_suspend() will crash if * pa_sink_put() hasn't been called. */ if (u->sink->active_port && !u->ucm_context) { pa_alsa_port_data *port_data; port_data = PA_DEVICE_PORT_DATA(u->sink->active_port); if (port_data->suspend_when_unavailable && u->sink->active_port->available == PA_AVAILABLE_NO) pa_sink_suspend(u->sink, true, PA_SUSPEND_UNAVAILABLE); } return u->sink; fail: pa_xfree(thread_name); if (u) userdata_free(u); if (profile_set) pa_alsa_profile_set_free(profile_set); return NULL; } static void userdata_free(struct userdata *u) { pa_assert(u); if (u->sink) pa_sink_unlink(u->sink); if (u->thread) { pa_asyncmsgq_send(u->thread_mq.inq, NULL, PA_MESSAGE_SHUTDOWN, NULL, 0, NULL); pa_thread_free(u->thread); } pa_thread_mq_done(&u->thread_mq); if (u->sink) pa_sink_unref(u->sink); if (u->memchunk.memblock) pa_memblock_unref(u->memchunk.memblock); if (u->mixer_pd) pa_alsa_mixer_pdata_free(u->mixer_pd); if (u->alsa_rtpoll_item) pa_rtpoll_item_free(u->alsa_rtpoll_item); if (u->rtpoll) pa_rtpoll_free(u->rtpoll); if (u->pcm_handle) { snd_pcm_drop(u->pcm_handle); snd_pcm_close(u->pcm_handle); } if (u->mixer_fdl) pa_alsa_fdlist_free(u->mixer_fdl); /* Only free the mixer_path if the sink owns it */ if (u->mixer_path && !u->mixer_path_set && !u->ucm_context) pa_alsa_path_free(u->mixer_path); if (u->mixers) pa_hashmap_free(u->mixers); if (u->smoother) pa_smoother_free(u->smoother); if (u->formats) pa_idxset_free(u->formats, (pa_free_cb_t) pa_format_info_free); if (u->supported_formats) pa_xfree(u->supported_formats); if (u->supported_rates) pa_xfree(u->supported_rates); reserve_done(u); monitor_done(u); pa_xfree(u->device_name); pa_xfree(u->control_device); pa_xfree(u->paths_dir); pa_xfree(u); } void pa_alsa_sink_free(pa_sink *s) { struct userdata *u; pa_sink_assert_ref(s); pa_assert_se(u = s->userdata); userdata_free(u); }