/*** This file is part of PulseAudio. Copyright 2010 Wim Taymans Based on module-virtual-sink.c module-virtual-source.c module-loopback.c Copyright 2010 Intel Corporation Contributor: Pierre-Louis Bossart PulseAudio is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. PulseAudio is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with PulseAudio; if not, see . ***/ #ifdef HAVE_CONFIG_H #include #endif #include #include #include "echo-cancel.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include PA_MODULE_AUTHOR("Wim Taymans"); PA_MODULE_DESCRIPTION("Echo Cancellation"); PA_MODULE_VERSION(PACKAGE_VERSION); PA_MODULE_LOAD_ONCE(false); PA_MODULE_USAGE( _("source_name= " "source_properties= " "source_master= " "sink_name= " "sink_properties= " "sink_master= " "adjust_time= " "adjust_threshold= " "format= " "rate= " "channels= " "channel_map= " "aec_method= " "aec_args= " "save_aec= " "autoloaded= " "use_volume_sharing= " "use_master_format= " )); /* NOTE: Make sure the enum and ec_table are maintained in the correct order */ typedef enum { PA_ECHO_CANCELLER_INVALID = -1, PA_ECHO_CANCELLER_NULL, #ifdef HAVE_SPEEX PA_ECHO_CANCELLER_SPEEX, #endif #ifdef HAVE_ADRIAN_EC PA_ECHO_CANCELLER_ADRIAN, #endif #ifdef HAVE_WEBRTC PA_ECHO_CANCELLER_WEBRTC, #endif } pa_echo_canceller_method_t; #ifdef HAVE_WEBRTC #define DEFAULT_ECHO_CANCELLER "webrtc" #else #define DEFAULT_ECHO_CANCELLER "speex" #endif static const pa_echo_canceller ec_table[] = { { /* Null, Dummy echo canceller (just copies data) */ .init = pa_null_ec_init, .run = pa_null_ec_run, .done = pa_null_ec_done, }, #ifdef HAVE_SPEEX { /* Speex */ .init = pa_speex_ec_init, .run = pa_speex_ec_run, .done = pa_speex_ec_done, }, #endif #ifdef HAVE_ADRIAN_EC { /* Adrian Andre's NLMS implementation */ .init = pa_adrian_ec_init, .run = pa_adrian_ec_run, .done = pa_adrian_ec_done, }, #endif #ifdef HAVE_WEBRTC { /* WebRTC's audio processing engine */ .init = pa_webrtc_ec_init, .play = pa_webrtc_ec_play, .record = pa_webrtc_ec_record, .set_drift = pa_webrtc_ec_set_drift, .run = pa_webrtc_ec_run, .done = pa_webrtc_ec_done, }, #endif }; #define DEFAULT_RATE 32000 #define DEFAULT_CHANNELS 1 #define DEFAULT_ADJUST_TIME_USEC (1*PA_USEC_PER_SEC) #define DEFAULT_ADJUST_TOLERANCE (5*PA_USEC_PER_MSEC) #define DEFAULT_SAVE_AEC false #define DEFAULT_AUTOLOADED false #define DEFAULT_USE_MASTER_FORMAT false #define MEMBLOCKQ_MAXLENGTH (16*1024*1024) #define MAX_LATENCY_BLOCKS 10 /* Can only be used in main context */ #define IS_ACTIVE(u) (((u)->source->state == PA_SOURCE_RUNNING) && \ ((u)->sink->state == PA_SINK_RUNNING)) /* This module creates a new (virtual) source and sink. * * The data sent to the new sink is kept in a memblockq before being * forwarded to the real sink_master. * * Data read from source_master is matched against the saved sink data and * echo canceled data is then pushed onto the new source. * * Both source and sink masters have their own threads to push/pull data * respectively. We however perform all our actions in the source IO thread. * To do this we send all played samples to the source IO thread where they * are then pushed into the memblockq. * * Alignment is performed in two steps: * * 1) when something happens that requires quick adjustment of the alignment of * capture and playback samples, we perform a resync. This adjusts the * position in the playback memblock to the requested sample. Quick * adjustments include moving the playback samples before the capture * samples (because else the echo canceller does not work) or when the * playback pointer drifts too far away. * * 2) periodically check the difference between capture and playback. We use a * low and high watermark for adjusting the alignment. Playback should always * be before capture and the difference should not be bigger than one frame * size. We would ideally like to resample the sink_input but most driver * don't give enough accuracy to be able to do that right now. */ struct userdata; struct pa_echo_canceller_msg { pa_msgobject parent; bool dead; struct userdata *userdata; }; PA_DEFINE_PRIVATE_CLASS(pa_echo_canceller_msg, pa_msgobject); #define PA_ECHO_CANCELLER_MSG(o) (pa_echo_canceller_msg_cast(o)) struct snapshot { pa_usec_t sink_now; pa_usec_t sink_latency; size_t sink_delay; int64_t send_counter; pa_usec_t source_now; pa_usec_t source_latency; size_t source_delay; int64_t recv_counter; size_t rlen; size_t plen; }; struct userdata { pa_core *core; pa_module *module; bool dead; bool save_aec; pa_echo_canceller *ec; uint32_t source_output_blocksize; uint32_t source_blocksize; uint32_t sink_blocksize; bool need_realign; /* to wakeup the source I/O thread */ pa_asyncmsgq *asyncmsgq; pa_rtpoll_item *rtpoll_item_read, *rtpoll_item_write; pa_source *source; bool source_auto_desc; pa_source_output *source_output; pa_memblockq *source_memblockq; /* echo canceller needs fixed sized chunks */ size_t source_skip; pa_sink *sink; bool sink_auto_desc; pa_sink_input *sink_input; pa_memblockq *sink_memblockq; int64_t send_counter; /* updated in sink IO thread */ int64_t recv_counter; size_t sink_skip; /* Bytes left over from previous iteration */ size_t sink_rem; size_t source_rem; pa_atomic_t request_resync; pa_time_event *time_event; pa_usec_t adjust_time; int adjust_threshold; FILE *captured_file; FILE *played_file; FILE *canceled_file; FILE *drift_file; bool use_volume_sharing; struct { pa_cvolume current_volume; } thread_info; }; static void source_output_snapshot_within_thread(struct userdata *u, struct snapshot *snapshot); static const char* const valid_modargs[] = { "source_name", "source_properties", "source_master", "sink_name", "sink_properties", "sink_master", "adjust_time", "adjust_threshold", "format", "rate", "channels", "channel_map", "aec_method", "aec_args", "save_aec", "autoloaded", "use_volume_sharing", "use_master_format", NULL }; enum { SOURCE_OUTPUT_MESSAGE_POST = PA_SOURCE_OUTPUT_MESSAGE_MAX, SOURCE_OUTPUT_MESSAGE_REWIND, SOURCE_OUTPUT_MESSAGE_LATENCY_SNAPSHOT, SOURCE_OUTPUT_MESSAGE_APPLY_DIFF_TIME }; enum { SINK_INPUT_MESSAGE_LATENCY_SNAPSHOT }; enum { ECHO_CANCELLER_MESSAGE_SET_VOLUME, }; static int64_t calc_diff(struct userdata *u, struct snapshot *snapshot) { int64_t diff_time, buffer_latency; pa_usec_t plen, rlen, source_delay, sink_delay, recv_counter, send_counter; /* get latency difference between playback and record */ plen = pa_bytes_to_usec(snapshot->plen, &u->sink_input->sample_spec); rlen = pa_bytes_to_usec(snapshot->rlen, &u->source_output->sample_spec); if (plen > rlen) buffer_latency = plen - rlen; else buffer_latency = 0; source_delay = pa_bytes_to_usec(snapshot->source_delay, &u->source_output->sample_spec); sink_delay = pa_bytes_to_usec(snapshot->sink_delay, &u->sink_input->sample_spec); buffer_latency += source_delay + sink_delay; /* add the latency difference due to samples not yet transferred */ send_counter = pa_bytes_to_usec(snapshot->send_counter, &u->sink->sample_spec); recv_counter = pa_bytes_to_usec(snapshot->recv_counter, &u->sink->sample_spec); if (recv_counter <= send_counter) buffer_latency += (int64_t) (send_counter - recv_counter); else buffer_latency = PA_CLIP_SUB(buffer_latency, (int64_t) (recv_counter - send_counter)); /* capture and playback are perfectly aligned when diff_time is 0 */ diff_time = (snapshot->sink_now + snapshot->sink_latency - buffer_latency) - (snapshot->source_now - snapshot->source_latency); pa_log_debug("Diff %lld (%lld - %lld + %lld) %lld %lld %lld %lld", (long long) diff_time, (long long) snapshot->sink_latency, (long long) buffer_latency, (long long) snapshot->source_latency, (long long) source_delay, (long long) sink_delay, (long long) (send_counter - recv_counter), (long long) (snapshot->sink_now - snapshot->source_now)); return diff_time; } /* Called from main context */ static void time_callback(pa_mainloop_api *a, pa_time_event *e, const struct timeval *t, void *userdata) { struct userdata *u = userdata; uint32_t old_rate, base_rate, new_rate; int64_t diff_time; /*size_t fs*/ struct snapshot latency_snapshot; pa_assert(u); pa_assert(a); pa_assert(u->time_event == e); pa_assert_ctl_context(); if (!IS_ACTIVE(u)) return; /* update our snapshots */ pa_asyncmsgq_send(u->source_output->source->asyncmsgq, PA_MSGOBJECT(u->source_output), SOURCE_OUTPUT_MESSAGE_LATENCY_SNAPSHOT, &latency_snapshot, 0, NULL); pa_asyncmsgq_send(u->sink_input->sink->asyncmsgq, PA_MSGOBJECT(u->sink_input), SINK_INPUT_MESSAGE_LATENCY_SNAPSHOT, &latency_snapshot, 0, NULL); /* calculate drift between capture and playback */ diff_time = calc_diff(u, &latency_snapshot); /*fs = pa_frame_size(&u->source_output->sample_spec);*/ old_rate = u->sink_input->sample_spec.rate; base_rate = u->source_output->sample_spec.rate; if (diff_time < 0) { /* recording before playback, we need to adjust quickly. The echo * canceller does not work in this case. */ pa_asyncmsgq_post(u->asyncmsgq, PA_MSGOBJECT(u->source_output), SOURCE_OUTPUT_MESSAGE_APPLY_DIFF_TIME, NULL, diff_time, NULL, NULL); /*new_rate = base_rate - ((pa_usec_to_bytes(-diff_time, &u->source_output->sample_spec) / fs) * PA_USEC_PER_SEC) / u->adjust_time;*/ new_rate = base_rate; } else { if (diff_time > u->adjust_threshold) { /* diff too big, quickly adjust */ pa_asyncmsgq_post(u->asyncmsgq, PA_MSGOBJECT(u->source_output), SOURCE_OUTPUT_MESSAGE_APPLY_DIFF_TIME, NULL, diff_time, NULL, NULL); } /* recording behind playback, we need to slowly adjust the rate to match */ /*new_rate = base_rate + ((pa_usec_to_bytes(diff_time, &u->source_output->sample_spec) / fs) * PA_USEC_PER_SEC) / u->adjust_time;*/ /* assume equal samplerates for now */ new_rate = base_rate; } /* make sure we don't make too big adjustments because that sounds horrible */ if (new_rate > base_rate * 1.1 || new_rate < base_rate * 0.9) new_rate = base_rate; if (new_rate != old_rate) { pa_log_info("Old rate %lu Hz, new rate %lu Hz", (unsigned long) old_rate, (unsigned long) new_rate); pa_sink_input_set_rate(u->sink_input, new_rate); } pa_core_rttime_restart(u->core, u->time_event, pa_rtclock_now() + u->adjust_time); } /* Called from source I/O thread context */ static int source_process_msg_cb(pa_msgobject *o, int code, void *data, int64_t offset, pa_memchunk *chunk) { struct userdata *u = PA_SOURCE(o)->userdata; switch (code) { case PA_SOURCE_MESSAGE_GET_LATENCY: /* The source is _put() before the source output is, so let's * make sure we don't access it in that time. Also, the * source output is first shut down, the source second. */ if (!PA_SOURCE_IS_LINKED(u->source->thread_info.state) || !PA_SOURCE_OUTPUT_IS_LINKED(u->source_output->thread_info.state)) { *((int64_t*) data) = 0; return 0; } *((int64_t*) data) = /* Get the latency of the master source */ pa_source_get_latency_within_thread(u->source_output->source, true) + /* Add the latency internal to our source output on top */ pa_bytes_to_usec(pa_memblockq_get_length(u->source_output->thread_info.delay_memblockq), &u->source_output->source->sample_spec) + /* and the buffering we do on the source */ pa_bytes_to_usec(u->source_output_blocksize, &u->source_output->source->sample_spec); return 0; case PA_SOURCE_MESSAGE_SET_VOLUME_SYNCED: u->thread_info.current_volume = u->source->reference_volume; break; } return pa_source_process_msg(o, code, data, offset, chunk); } /* Called from sink I/O thread context */ static int sink_process_msg_cb(pa_msgobject *o, int code, void *data, int64_t offset, pa_memchunk *chunk) { struct userdata *u = PA_SINK(o)->userdata; switch (code) { case PA_SINK_MESSAGE_GET_LATENCY: /* The sink is _put() before the sink input is, so let's * make sure we don't access it in that time. Also, the * sink input is first shut down, the sink second. */ if (!PA_SINK_IS_LINKED(u->sink->thread_info.state) || !PA_SINK_INPUT_IS_LINKED(u->sink_input->thread_info.state)) { *((int64_t*) data) = 0; return 0; } *((int64_t*) data) = /* Get the latency of the master sink */ pa_sink_get_latency_within_thread(u->sink_input->sink, true) + /* Add the latency internal to our sink input on top */ pa_bytes_to_usec(pa_memblockq_get_length(u->sink_input->thread_info.render_memblockq), &u->sink_input->sink->sample_spec); return 0; } return pa_sink_process_msg(o, code, data, offset, chunk); } /* Called from main context */ static int source_set_state_in_main_thread_cb(pa_source *s, pa_source_state_t state, pa_suspend_cause_t suspend_cause) { struct userdata *u; pa_source_assert_ref(s); pa_assert_se(u = s->userdata); if (!PA_SOURCE_IS_LINKED(state) || !PA_SOURCE_OUTPUT_IS_LINKED(u->source_output->state)) return 0; if (state == PA_SOURCE_RUNNING) { /* restart timer when both sink and source are active */ if ((u->sink->state == PA_SINK_RUNNING) && u->adjust_time) pa_core_rttime_restart(u->core, u->time_event, pa_rtclock_now() + u->adjust_time); pa_atomic_store(&u->request_resync, 1); pa_source_output_cork(u->source_output, false); } else if (state == PA_SOURCE_SUSPENDED) { pa_source_output_cork(u->source_output, true); } return 0; } /* Called from main context */ static int sink_set_state_in_main_thread_cb(pa_sink *s, pa_sink_state_t state, pa_suspend_cause_t suspend_cause) { struct userdata *u; pa_sink_assert_ref(s); pa_assert_se(u = s->userdata); if (!PA_SINK_IS_LINKED(state) || !PA_SINK_INPUT_IS_LINKED(u->sink_input->state)) return 0; if (state == PA_SINK_RUNNING) { /* restart timer when both sink and source are active */ if ((u->source->state == PA_SOURCE_RUNNING) && u->adjust_time) pa_core_rttime_restart(u->core, u->time_event, pa_rtclock_now() + u->adjust_time); pa_atomic_store(&u->request_resync, 1); pa_sink_input_cork(u->sink_input, false); } else if (state == PA_SINK_SUSPENDED) { pa_sink_input_cork(u->sink_input, true); } return 0; } /* Called from the IO thread. */ static int sink_set_state_in_io_thread_cb(pa_sink *s, pa_sink_state_t new_state, pa_suspend_cause_t new_suspend_cause) { struct userdata *u; pa_assert(s); pa_assert_se(u = s->userdata); /* When set to running or idle for the first time, request a rewind * of the master sink to make sure we are heard immediately */ if (PA_SINK_IS_OPENED(new_state) && s->thread_info.state == PA_SINK_INIT) { pa_log_debug("Requesting rewind due to state change."); pa_sink_input_request_rewind(u->sink_input, 0, false, true, true); } return 0; } /* Called from source I/O thread context */ static void source_update_requested_latency_cb(pa_source *s) { struct userdata *u; pa_usec_t latency; pa_source_assert_ref(s); pa_assert_se(u = s->userdata); if (!PA_SOURCE_IS_LINKED(u->source->thread_info.state) || !PA_SOURCE_OUTPUT_IS_LINKED(u->source_output->thread_info.state)) return; pa_log_debug("Source update requested latency"); /* Cap the maximum latency so we don't have to process too large chunks */ latency = PA_MIN(pa_source_get_requested_latency_within_thread(s), pa_bytes_to_usec(u->source_blocksize, &s->sample_spec) * MAX_LATENCY_BLOCKS); pa_source_output_set_requested_latency_within_thread(u->source_output, latency); } /* Called from sink I/O thread context */ static void sink_update_requested_latency_cb(pa_sink *s) { struct userdata *u; pa_usec_t latency; pa_sink_assert_ref(s); pa_assert_se(u = s->userdata); if (!PA_SINK_IS_LINKED(u->sink->thread_info.state) || !PA_SINK_INPUT_IS_LINKED(u->sink_input->thread_info.state)) return; pa_log_debug("Sink update requested latency"); /* Cap the maximum latency so we don't have to process too large chunks */ latency = PA_MIN(pa_sink_get_requested_latency_within_thread(s), pa_bytes_to_usec(u->sink_blocksize, &s->sample_spec) * MAX_LATENCY_BLOCKS); pa_sink_input_set_requested_latency_within_thread(u->sink_input, latency); } /* Called from sink I/O thread context */ static void sink_request_rewind_cb(pa_sink *s) { struct userdata *u; pa_sink_assert_ref(s); pa_assert_se(u = s->userdata); if (!PA_SINK_IS_LINKED(u->sink->thread_info.state) || !PA_SINK_INPUT_IS_LINKED(u->sink_input->thread_info.state)) return; pa_log_debug("Sink request rewind %lld", (long long) s->thread_info.rewind_nbytes); /* Just hand this one over to the master sink */ pa_sink_input_request_rewind(u->sink_input, s->thread_info.rewind_nbytes, true, false, false); } /* Called from main context */ static void source_set_volume_cb(pa_source *s) { struct userdata *u; pa_source_assert_ref(s); pa_assert_se(u = s->userdata); if (!PA_SOURCE_IS_LINKED(s->state) || !PA_SOURCE_OUTPUT_IS_LINKED(u->source_output->state)) return; pa_source_output_set_volume(u->source_output, &s->real_volume, s->save_volume, true); } /* Called from main context */ static void sink_set_volume_cb(pa_sink *s) { struct userdata *u; pa_sink_assert_ref(s); pa_assert_se(u = s->userdata); if (!PA_SINK_IS_LINKED(s->state) || !PA_SINK_INPUT_IS_LINKED(u->sink_input->state)) return; pa_sink_input_set_volume(u->sink_input, &s->real_volume, s->save_volume, true); } /* Called from main context. */ static void source_get_volume_cb(pa_source *s) { struct userdata *u; pa_cvolume v; pa_source_assert_ref(s); pa_assert_se(u = s->userdata); if (!PA_SOURCE_IS_LINKED(s->state) || !PA_SOURCE_OUTPUT_IS_LINKED(u->source_output->state)) return; pa_source_output_get_volume(u->source_output, &v, true); if (pa_cvolume_equal(&s->real_volume, &v)) /* no change */ return; s->real_volume = v; pa_source_set_soft_volume(s, NULL); } /* Called from main context */ static void source_set_mute_cb(pa_source *s) { struct userdata *u; pa_source_assert_ref(s); pa_assert_se(u = s->userdata); if (!PA_SOURCE_IS_LINKED(s->state) || !PA_SOURCE_OUTPUT_IS_LINKED(u->source_output->state)) return; pa_source_output_set_mute(u->source_output, s->muted, s->save_muted); } /* Called from main context */ static void sink_set_mute_cb(pa_sink *s) { struct userdata *u; pa_sink_assert_ref(s); pa_assert_se(u = s->userdata); if (!PA_SINK_IS_LINKED(s->state) || !PA_SINK_INPUT_IS_LINKED(u->sink_input->state)) return; pa_sink_input_set_mute(u->sink_input, s->muted, s->save_muted); } /* Called from source I/O thread context. */ static void apply_diff_time(struct userdata *u, int64_t diff_time) { int64_t diff; if (diff_time < 0) { diff = pa_usec_to_bytes(-diff_time, &u->sink_input->sample_spec); if (diff > 0) { /* add some extra safety samples to compensate for jitter in the * timings */ diff += 10 * pa_frame_size (&u->sink_input->sample_spec); pa_log("Playback after capture (%lld), drop sink %lld", (long long) diff_time, (long long) diff); u->sink_skip = diff; u->source_skip = 0; } } else if (diff_time > 0) { diff = pa_usec_to_bytes(diff_time, &u->source_output->sample_spec); if (diff > 0) { pa_log("Playback too far ahead (%lld), drop source %lld", (long long) diff_time, (long long) diff); u->source_skip = diff; u->sink_skip = 0; } } } /* Called from source I/O thread context. */ static void do_resync(struct userdata *u) { int64_t diff_time; struct snapshot latency_snapshot; pa_log("Doing resync"); /* update our snapshot */ /* 1. Get sink input latency snapshot, might cause buffers to be sent to source thread */ pa_asyncmsgq_send(u->sink_input->sink->asyncmsgq, PA_MSGOBJECT(u->sink_input), SINK_INPUT_MESSAGE_LATENCY_SNAPSHOT, &latency_snapshot, 0, NULL); /* 2. Pick up any in-flight buffers (and discard if needed) */ while (pa_asyncmsgq_process_one(u->asyncmsgq)) ; /* 3. Now get the source output latency snapshot */ source_output_snapshot_within_thread(u, &latency_snapshot); /* calculate drift between capture and playback */ diff_time = calc_diff(u, &latency_snapshot); /* and adjust for the drift */ apply_diff_time(u, diff_time); } /* 1. Calculate drift at this point, pass to canceller * 2. Push out playback samples in blocksize chunks * 3. Push out capture samples in blocksize chunks * 4. ??? * 5. Profit * * Called from source I/O thread context. */ static void do_push_drift_comp(struct userdata *u) { size_t rlen, plen; pa_memchunk rchunk, pchunk, cchunk; uint8_t *rdata, *pdata, *cdata; float drift; int unused PA_GCC_UNUSED; rlen = pa_memblockq_get_length(u->source_memblockq); plen = pa_memblockq_get_length(u->sink_memblockq); /* Estimate snapshot drift as follows: * pd: amount of data consumed since last time * rd: amount of data consumed since last time * * drift = (pd - rd) / rd; * * We calculate pd and rd as the memblockq length less the number of * samples left from the last iteration (to avoid double counting * those remainder samples. */ drift = ((float)(plen - u->sink_rem) - (rlen - u->source_rem)) / ((float)(rlen - u->source_rem)); u->sink_rem = plen % u->sink_blocksize; u->source_rem = rlen % u->source_output_blocksize; if (u->save_aec) { if (u->drift_file) fprintf(u->drift_file, "d %a\n", drift); } /* Send in the playback samples first */ while (plen >= u->sink_blocksize) { pa_memblockq_peek_fixed_size(u->sink_memblockq, u->sink_blocksize, &pchunk); pdata = pa_memblock_acquire(pchunk.memblock); pdata += pchunk.index; u->ec->play(u->ec, pdata); if (u->save_aec) { if (u->drift_file) fprintf(u->drift_file, "p %d\n", u->sink_blocksize); if (u->played_file) unused = fwrite(pdata, 1, u->sink_blocksize, u->played_file); } pa_memblock_release(pchunk.memblock); pa_memblockq_drop(u->sink_memblockq, u->sink_blocksize); pa_memblock_unref(pchunk.memblock); plen -= u->sink_blocksize; } /* And now the capture samples */ while (rlen >= u->source_output_blocksize) { pa_memblockq_peek_fixed_size(u->source_memblockq, u->source_output_blocksize, &rchunk); rdata = pa_memblock_acquire(rchunk.memblock); rdata += rchunk.index; cchunk.index = 0; cchunk.length = u->source_output_blocksize; cchunk.memblock = pa_memblock_new(u->source->core->mempool, cchunk.length); cdata = pa_memblock_acquire(cchunk.memblock); u->ec->set_drift(u->ec, drift); u->ec->record(u->ec, rdata, cdata); if (u->save_aec) { if (u->drift_file) fprintf(u->drift_file, "c %d\n", u->source_output_blocksize); if (u->captured_file) unused = fwrite(rdata, 1, u->source_output_blocksize, u->captured_file); if (u->canceled_file) unused = fwrite(cdata, 1, u->source_output_blocksize, u->canceled_file); } pa_memblock_release(cchunk.memblock); pa_memblock_release(rchunk.memblock); pa_memblock_unref(rchunk.memblock); pa_source_post(u->source, &cchunk); pa_memblock_unref(cchunk.memblock); pa_memblockq_drop(u->source_memblockq, u->source_output_blocksize); rlen -= u->source_output_blocksize; } } /* This one's simpler than the drift compensation case -- we just iterate over * the capture buffer, and pass the canceller blocksize bytes of playback and * capture data. If playback is currently inactive, we just push silence. * * Called from source I/O thread context. */ static void do_push(struct userdata *u) { size_t rlen, plen; pa_memchunk rchunk, pchunk, cchunk; uint8_t *rdata, *pdata, *cdata; int unused PA_GCC_UNUSED; rlen = pa_memblockq_get_length(u->source_memblockq); plen = pa_memblockq_get_length(u->sink_memblockq); while (rlen >= u->source_output_blocksize) { /* take fixed blocks from recorded and played samples */ pa_memblockq_peek_fixed_size(u->source_memblockq, u->source_output_blocksize, &rchunk); pa_memblockq_peek_fixed_size(u->sink_memblockq, u->sink_blocksize, &pchunk); /* we ran out of played data and pchunk has been filled with silence bytes */ if (plen < u->sink_blocksize) pa_memblockq_seek(u->sink_memblockq, u->sink_blocksize - plen, PA_SEEK_RELATIVE, true); rdata = pa_memblock_acquire(rchunk.memblock); rdata += rchunk.index; pdata = pa_memblock_acquire(pchunk.memblock); pdata += pchunk.index; cchunk.index = 0; cchunk.length = u->source_blocksize; cchunk.memblock = pa_memblock_new(u->source->core->mempool, cchunk.length); cdata = pa_memblock_acquire(cchunk.memblock); if (u->save_aec) { if (u->captured_file) unused = fwrite(rdata, 1, u->source_output_blocksize, u->captured_file); if (u->played_file) unused = fwrite(pdata, 1, u->sink_blocksize, u->played_file); } /* perform echo cancellation */ u->ec->run(u->ec, rdata, pdata, cdata); if (u->save_aec) { if (u->canceled_file) unused = fwrite(cdata, 1, u->source_blocksize, u->canceled_file); } pa_memblock_release(cchunk.memblock); pa_memblock_release(pchunk.memblock); pa_memblock_release(rchunk.memblock); /* drop consumed source samples */ pa_memblockq_drop(u->source_memblockq, u->source_output_blocksize); pa_memblock_unref(rchunk.memblock); rlen -= u->source_output_blocksize; /* drop consumed sink samples */ pa_memblockq_drop(u->sink_memblockq, u->sink_blocksize); pa_memblock_unref(pchunk.memblock); if (plen >= u->sink_blocksize) plen -= u->sink_blocksize; else plen = 0; /* forward the (echo-canceled) data to the virtual source */ pa_source_post(u->source, &cchunk); pa_memblock_unref(cchunk.memblock); } } /* Called from source I/O thread context. */ static void source_output_push_cb(pa_source_output *o, const pa_memchunk *chunk) { struct userdata *u; size_t rlen, plen, to_skip; pa_memchunk rchunk; pa_source_output_assert_ref(o); pa_source_output_assert_io_context(o); pa_assert_se(u = o->userdata); if (!PA_SOURCE_IS_LINKED(u->source->thread_info.state)) return; if (!PA_SOURCE_OUTPUT_IS_LINKED(u->source_output->thread_info.state)) { pa_log("Push when no link?"); return; } /* handle queued messages, do any message sending of our own */ while (pa_asyncmsgq_process_one(u->asyncmsgq) > 0) ; pa_memblockq_push_align(u->source_memblockq, chunk); rlen = pa_memblockq_get_length(u->source_memblockq); plen = pa_memblockq_get_length(u->sink_memblockq); /* Let's not do anything else till we have enough data to process */ if (rlen < u->source_output_blocksize) return; /* See if we need to drop samples in order to sync */ if (pa_atomic_cmpxchg (&u->request_resync, 1, 0)) { do_resync(u); } /* Okay, skip cancellation for skipped source samples if needed. */ if (PA_UNLIKELY(u->source_skip)) { /* The slightly tricky bit here is that we drop all but modulo * blocksize bytes and then adjust for that last bit on the sink side. * We do this because the source data is coming at a fixed rate, which * means the only way to try to catch up is drop sink samples and let * the canceller cope up with this. */ to_skip = rlen >= u->source_skip ? u->source_skip : rlen; to_skip -= to_skip % u->source_output_blocksize; if (to_skip) { pa_memblockq_peek_fixed_size(u->source_memblockq, to_skip, &rchunk); pa_source_post(u->source, &rchunk); pa_memblock_unref(rchunk.memblock); pa_memblockq_drop(u->source_memblockq, to_skip); rlen -= to_skip; u->source_skip -= to_skip; } if (rlen && u->source_skip % u->source_output_blocksize) { u->sink_skip += (uint64_t) (u->source_output_blocksize - (u->source_skip % u->source_output_blocksize)) * u->sink_blocksize / u->source_output_blocksize; u->source_skip -= (u->source_skip % u->source_output_blocksize); } } /* And for the sink, these samples have been played back already, so we can * just drop them and get on with it. */ if (PA_UNLIKELY(u->sink_skip)) { to_skip = plen >= u->sink_skip ? u->sink_skip : plen; pa_memblockq_drop(u->sink_memblockq, to_skip); plen -= to_skip; u->sink_skip -= to_skip; } /* process and push out samples */ if (u->ec->params.drift_compensation) do_push_drift_comp(u); else do_push(u); } /* Called from sink I/O thread context. */ static int sink_input_pop_cb(pa_sink_input *i, size_t nbytes, pa_memchunk *chunk) { struct userdata *u; pa_sink_input_assert_ref(i); pa_assert(chunk); pa_assert_se(u = i->userdata); if (!PA_SINK_IS_LINKED(u->sink->thread_info.state)) return -1; if (u->sink->thread_info.rewind_requested) pa_sink_process_rewind(u->sink, 0); pa_sink_render_full(u->sink, nbytes, chunk); if (i->thread_info.underrun_for > 0) { pa_log_debug("Handling end of underrun."); pa_atomic_store(&u->request_resync, 1); } /* let source thread handle the chunk. pass the sample count as well so that * the source IO thread can update the right variables. */ pa_asyncmsgq_post(u->asyncmsgq, PA_MSGOBJECT(u->source_output), SOURCE_OUTPUT_MESSAGE_POST, NULL, 0, chunk, NULL); u->send_counter += chunk->length; return 0; } /* Called from source I/O thread context. */ static void source_output_process_rewind_cb(pa_source_output *o, size_t nbytes) { struct userdata *u; pa_source_output_assert_ref(o); pa_source_output_assert_io_context(o); pa_assert_se(u = o->userdata); /* If the source is not yet linked, there is nothing to rewind */ if (!PA_SOURCE_IS_LINKED(u->source->thread_info.state)) return; pa_source_process_rewind(u->source, nbytes); /* go back on read side, we need to use older sink data for this */ pa_memblockq_rewind(u->sink_memblockq, nbytes); /* manipulate write index */ pa_memblockq_seek(u->source_memblockq, -nbytes, PA_SEEK_RELATIVE, true); pa_log_debug("Source rewind (%lld) %lld", (long long) nbytes, (long long) pa_memblockq_get_length (u->source_memblockq)); } /* Called from sink I/O thread context. */ static void sink_input_process_rewind_cb(pa_sink_input *i, size_t nbytes) { struct userdata *u; pa_sink_input_assert_ref(i); pa_assert_se(u = i->userdata); /* If the sink is not yet linked, there is nothing to rewind */ if (!PA_SINK_IS_LINKED(u->sink->thread_info.state)) return; pa_log_debug("Sink process rewind %lld", (long long) nbytes); pa_sink_process_rewind(u->sink, nbytes); pa_asyncmsgq_post(u->asyncmsgq, PA_MSGOBJECT(u->source_output), SOURCE_OUTPUT_MESSAGE_REWIND, NULL, (int64_t) nbytes, NULL, NULL); u->send_counter -= nbytes; } /* Called from source I/O thread context. */ static void source_output_snapshot_within_thread(struct userdata *u, struct snapshot *snapshot) { size_t delay, rlen, plen; pa_usec_t now, latency; now = pa_rtclock_now(); latency = pa_source_get_latency_within_thread(u->source_output->source, false); delay = pa_memblockq_get_length(u->source_output->thread_info.delay_memblockq); delay = (u->source_output->thread_info.resampler ? pa_resampler_request(u->source_output->thread_info.resampler, delay) : delay); rlen = pa_memblockq_get_length(u->source_memblockq); plen = pa_memblockq_get_length(u->sink_memblockq); snapshot->source_now = now; snapshot->source_latency = latency; snapshot->source_delay = delay; snapshot->recv_counter = u->recv_counter; snapshot->rlen = rlen + u->sink_skip; snapshot->plen = plen + u->source_skip; } /* Called from source I/O thread context. */ static int source_output_process_msg_cb(pa_msgobject *obj, int code, void *data, int64_t offset, pa_memchunk *chunk) { struct userdata *u = PA_SOURCE_OUTPUT(obj)->userdata; switch (code) { case SOURCE_OUTPUT_MESSAGE_POST: pa_source_output_assert_io_context(u->source_output); if (u->source_output->source->thread_info.state == PA_SOURCE_RUNNING) pa_memblockq_push_align(u->sink_memblockq, chunk); else pa_memblockq_flush_write(u->sink_memblockq, true); u->recv_counter += (int64_t) chunk->length; return 0; case SOURCE_OUTPUT_MESSAGE_REWIND: pa_source_output_assert_io_context(u->source_output); /* manipulate write index, never go past what we have */ if (PA_SOURCE_IS_OPENED(u->source_output->source->thread_info.state)) pa_memblockq_seek(u->sink_memblockq, -offset, PA_SEEK_RELATIVE, true); else pa_memblockq_flush_write(u->sink_memblockq, true); pa_log_debug("Sink rewind (%lld)", (long long) offset); u->recv_counter -= offset; return 0; case SOURCE_OUTPUT_MESSAGE_LATENCY_SNAPSHOT: { struct snapshot *snapshot = (struct snapshot *) data; source_output_snapshot_within_thread(u, snapshot); return 0; } case SOURCE_OUTPUT_MESSAGE_APPLY_DIFF_TIME: apply_diff_time(u, offset); return 0; } return pa_source_output_process_msg(obj, code, data, offset, chunk); } /* Called from sink I/O thread context. */ static int sink_input_process_msg_cb(pa_msgobject *obj, int code, void *data, int64_t offset, pa_memchunk *chunk) { struct userdata *u = PA_SINK_INPUT(obj)->userdata; switch (code) { case SINK_INPUT_MESSAGE_LATENCY_SNAPSHOT: { size_t delay; pa_usec_t now, latency; struct snapshot *snapshot = (struct snapshot *) data; pa_sink_input_assert_io_context(u->sink_input); now = pa_rtclock_now(); latency = pa_sink_get_latency_within_thread(u->sink_input->sink, false); delay = pa_memblockq_get_length(u->sink_input->thread_info.render_memblockq); delay = (u->sink_input->thread_info.resampler ? pa_resampler_request(u->sink_input->thread_info.resampler, delay) : delay); snapshot->sink_now = now; snapshot->sink_latency = latency; snapshot->sink_delay = delay; snapshot->send_counter = u->send_counter; return 0; } } return pa_sink_input_process_msg(obj, code, data, offset, chunk); } /* Called from sink I/O thread context. */ static void sink_input_update_max_rewind_cb(pa_sink_input *i, size_t nbytes) { struct userdata *u; pa_sink_input_assert_ref(i); pa_assert_se(u = i->userdata); pa_log_debug("Sink input update max rewind %lld", (long long) nbytes); /* FIXME: Too small max_rewind: * https://bugs.freedesktop.org/show_bug.cgi?id=53709 */ pa_memblockq_set_maxrewind(u->sink_memblockq, nbytes); pa_sink_set_max_rewind_within_thread(u->sink, nbytes); } /* Called from source I/O thread context. */ static void source_output_update_max_rewind_cb(pa_source_output *o, size_t nbytes) { struct userdata *u; pa_source_output_assert_ref(o); pa_assert_se(u = o->userdata); pa_log_debug("Source output update max rewind %lld", (long long) nbytes); pa_source_set_max_rewind_within_thread(u->source, nbytes); } /* Called from sink I/O thread context. */ static void sink_input_update_max_request_cb(pa_sink_input *i, size_t nbytes) { struct userdata *u; pa_sink_input_assert_ref(i); pa_assert_se(u = i->userdata); pa_log_debug("Sink input update max request %lld", (long long) nbytes); pa_sink_set_max_request_within_thread(u->sink, nbytes); } /* Called from sink I/O thread context. */ static void sink_input_update_sink_requested_latency_cb(pa_sink_input *i) { struct userdata *u; pa_usec_t latency; pa_sink_input_assert_ref(i); pa_assert_se(u = i->userdata); latency = pa_sink_get_requested_latency_within_thread(i->sink); pa_log_debug("Sink input update requested latency %lld", (long long) latency); } /* Called from source I/O thread context. */ static void source_output_update_source_requested_latency_cb(pa_source_output *o) { struct userdata *u; pa_usec_t latency; pa_source_output_assert_ref(o); pa_assert_se(u = o->userdata); latency = pa_source_get_requested_latency_within_thread(o->source); pa_log_debug("Source output update requested latency %lld", (long long) latency); } /* Called from sink I/O thread context. */ static void sink_input_update_sink_latency_range_cb(pa_sink_input *i) { struct userdata *u; pa_sink_input_assert_ref(i); pa_assert_se(u = i->userdata); pa_log_debug("Sink input update latency range %lld %lld", (long long) i->sink->thread_info.min_latency, (long long) i->sink->thread_info.max_latency); pa_sink_set_latency_range_within_thread(u->sink, i->sink->thread_info.min_latency, i->sink->thread_info.max_latency); } /* Called from source I/O thread context. */ static void source_output_update_source_latency_range_cb(pa_source_output *o) { struct userdata *u; pa_source_output_assert_ref(o); pa_assert_se(u = o->userdata); pa_log_debug("Source output update latency range %lld %lld", (long long) o->source->thread_info.min_latency, (long long) o->source->thread_info.max_latency); pa_source_set_latency_range_within_thread(u->source, o->source->thread_info.min_latency, o->source->thread_info.max_latency); } /* Called from sink I/O thread context. */ static void sink_input_update_sink_fixed_latency_cb(pa_sink_input *i) { struct userdata *u; pa_sink_input_assert_ref(i); pa_assert_se(u = i->userdata); pa_log_debug("Sink input update fixed latency %lld", (long long) i->sink->thread_info.fixed_latency); pa_sink_set_fixed_latency_within_thread(u->sink, i->sink->thread_info.fixed_latency); } /* Called from source I/O thread context. */ static void source_output_update_source_fixed_latency_cb(pa_source_output *o) { struct userdata *u; pa_source_output_assert_ref(o); pa_assert_se(u = o->userdata); pa_log_debug("Source output update fixed latency %lld", (long long) o->source->thread_info.fixed_latency); pa_source_set_fixed_latency_within_thread(u->source, o->source->thread_info.fixed_latency); } /* Called from source I/O thread context. */ static void source_output_attach_cb(pa_source_output *o) { struct userdata *u; pa_source_output_assert_ref(o); pa_source_output_assert_io_context(o); pa_assert_se(u = o->userdata); pa_source_set_rtpoll(u->source, o->source->thread_info.rtpoll); pa_source_set_latency_range_within_thread(u->source, o->source->thread_info.min_latency, o->source->thread_info.max_latency); pa_source_set_fixed_latency_within_thread(u->source, o->source->thread_info.fixed_latency); pa_source_set_max_rewind_within_thread(u->source, pa_source_output_get_max_rewind(o)); pa_log_debug("Source output %d attach", o->index); if (PA_SOURCE_IS_LINKED(u->source->thread_info.state)) pa_source_attach_within_thread(u->source); u->rtpoll_item_read = pa_rtpoll_item_new_asyncmsgq_read( o->source->thread_info.rtpoll, PA_RTPOLL_LATE, u->asyncmsgq); } /* Called from sink I/O thread context. */ static void sink_input_attach_cb(pa_sink_input *i) { struct userdata *u; pa_sink_input_assert_ref(i); pa_assert_se(u = i->userdata); pa_sink_set_rtpoll(u->sink, i->sink->thread_info.rtpoll); pa_sink_set_latency_range_within_thread(u->sink, i->sink->thread_info.min_latency, i->sink->thread_info.max_latency); /* (8.1) IF YOU NEED A FIXED BLOCK SIZE ADD THE LATENCY FOR ONE * BLOCK MINUS ONE SAMPLE HERE. SEE (7) */ pa_sink_set_fixed_latency_within_thread(u->sink, i->sink->thread_info.fixed_latency); /* (8.2) IF YOU NEED A FIXED BLOCK SIZE ROUND * pa_sink_input_get_max_request(i) UP TO MULTIPLES OF IT * HERE. SEE (6) */ pa_sink_set_max_request_within_thread(u->sink, pa_sink_input_get_max_request(i)); /* FIXME: Too small max_rewind: * https://bugs.freedesktop.org/show_bug.cgi?id=53709 */ pa_sink_set_max_rewind_within_thread(u->sink, pa_sink_input_get_max_rewind(i)); pa_log_debug("Sink input %d attach", i->index); u->rtpoll_item_write = pa_rtpoll_item_new_asyncmsgq_write( i->sink->thread_info.rtpoll, PA_RTPOLL_LATE, u->asyncmsgq); if (PA_SINK_IS_LINKED(u->sink->thread_info.state)) pa_sink_attach_within_thread(u->sink); } /* Called from source I/O thread context. */ static void source_output_detach_cb(pa_source_output *o) { struct userdata *u; pa_source_output_assert_ref(o); pa_source_output_assert_io_context(o); pa_assert_se(u = o->userdata); if (PA_SOURCE_IS_LINKED(u->source->thread_info.state)) pa_source_detach_within_thread(u->source); pa_source_set_rtpoll(u->source, NULL); pa_log_debug("Source output %d detach", o->index); if (u->rtpoll_item_read) { pa_rtpoll_item_free(u->rtpoll_item_read); u->rtpoll_item_read = NULL; } } /* Called from sink I/O thread context. */ static void sink_input_detach_cb(pa_sink_input *i) { struct userdata *u; pa_sink_input_assert_ref(i); pa_assert_se(u = i->userdata); if (PA_SINK_IS_LINKED(u->sink->thread_info.state)) pa_sink_detach_within_thread(u->sink); pa_sink_set_rtpoll(u->sink, NULL); pa_log_debug("Sink input %d detach", i->index); if (u->rtpoll_item_write) { pa_rtpoll_item_free(u->rtpoll_item_write); u->rtpoll_item_write = NULL; } } /* Called from source I/O thread context except when cork() is called without valid source. */ static void source_output_state_change_cb(pa_source_output *o, pa_source_output_state_t state) { struct userdata *u; pa_source_output_assert_ref(o); pa_assert_se(u = o->userdata); pa_log_debug("Source output %d state %d", o->index, state); } /* Called from sink I/O thread context. */ static void sink_input_state_change_cb(pa_sink_input *i, pa_sink_input_state_t state) { struct userdata *u; pa_sink_input_assert_ref(i); pa_assert_se(u = i->userdata); pa_log_debug("Sink input %d state %d", i->index, state); } /* Called from main context. */ static void source_output_kill_cb(pa_source_output *o) { struct userdata *u; pa_source_output_assert_ref(o); pa_assert_ctl_context(); pa_assert_se(u = o->userdata); u->dead = true; /* The order here matters! We first kill the source so that streams can * properly be moved away while the source output is still connected to * the master. */ pa_source_output_cork(u->source_output, true); pa_source_unlink(u->source); pa_source_output_unlink(u->source_output); pa_source_output_unref(u->source_output); u->source_output = NULL; pa_source_unref(u->source); u->source = NULL; pa_log_debug("Source output kill %d", o->index); pa_module_unload_request(u->module, true); } /* Called from main context */ static void sink_input_kill_cb(pa_sink_input *i) { struct userdata *u; pa_sink_input_assert_ref(i); pa_assert_se(u = i->userdata); u->dead = true; /* The order here matters! We first kill the sink so that streams * can properly be moved away while the sink input is still connected * to the master. */ pa_sink_input_cork(u->sink_input, true); pa_sink_unlink(u->sink); pa_sink_input_unlink(u->sink_input); pa_sink_input_unref(u->sink_input); u->sink_input = NULL; pa_sink_unref(u->sink); u->sink = NULL; pa_log_debug("Sink input kill %d", i->index); pa_module_unload_request(u->module, true); } /* Called from main context. */ static bool source_output_may_move_to_cb(pa_source_output *o, pa_source *dest) { struct userdata *u; pa_source_output_assert_ref(o); pa_assert_ctl_context(); pa_assert_se(u = o->userdata); if (u->dead) return false; return (u->source != dest) && (u->sink != dest->monitor_of); } /* Called from main context */ static bool sink_input_may_move_to_cb(pa_sink_input *i, pa_sink *dest) { struct userdata *u; pa_sink_input_assert_ref(i); pa_assert_se(u = i->userdata); if (u->dead) return false; return u->sink != dest; } /* Called from main context. */ static void source_output_moving_cb(pa_source_output *o, pa_source *dest) { struct userdata *u; uint32_t idx; pa_source_output *output; pa_source_output_assert_ref(o); pa_assert_ctl_context(); pa_assert_se(u = o->userdata); if (dest) { pa_source_set_asyncmsgq(u->source, dest->asyncmsgq); pa_source_update_flags(u->source, PA_SOURCE_LATENCY|PA_SOURCE_DYNAMIC_LATENCY, dest->flags); } else pa_source_set_asyncmsgq(u->source, NULL); /* Propagate asyncmsq change to attached virtual sources */ PA_IDXSET_FOREACH(output, u->source->outputs, idx) { if (output->destination_source && output->moving) output->moving(output, u->source); } if (u->source_auto_desc && dest) { const char *y, *z; pa_proplist *pl; pl = pa_proplist_new(); if (u->sink_input->sink) { pa_proplist_sets(pl, PA_PROP_DEVICE_MASTER_DEVICE, u->sink_input->sink->name); y = pa_proplist_gets(u->sink_input->sink->proplist, PA_PROP_DEVICE_DESCRIPTION); } else y = ""; /* Probably in the middle of a move */ z = pa_proplist_gets(dest->proplist, PA_PROP_DEVICE_DESCRIPTION); pa_proplist_setf(pl, PA_PROP_DEVICE_DESCRIPTION, "%s (echo cancelled with %s)", z ? z : dest->name, y ? y : u->sink_input->sink->name); pa_source_update_proplist(u->source, PA_UPDATE_REPLACE, pl); pa_proplist_free(pl); } } /* Called from main context */ static void sink_input_moving_cb(pa_sink_input *i, pa_sink *dest) { struct userdata *u; pa_sink_input_assert_ref(i); pa_assert_se(u = i->userdata); if (dest) { pa_sink_set_asyncmsgq(u->sink, dest->asyncmsgq); pa_sink_update_flags(u->sink, PA_SINK_LATENCY|PA_SINK_DYNAMIC_LATENCY, dest->flags); } else pa_sink_set_asyncmsgq(u->sink, NULL); if (u->sink_auto_desc && dest) { const char *y, *z; pa_proplist *pl; pl = pa_proplist_new(); if (u->source_output->source) { pa_proplist_sets(pl, PA_PROP_DEVICE_MASTER_DEVICE, u->source_output->source->name); y = pa_proplist_gets(u->source_output->source->proplist, PA_PROP_DEVICE_DESCRIPTION); } else y = ""; /* Probably in the middle of a move */ z = pa_proplist_gets(dest->proplist, PA_PROP_DEVICE_DESCRIPTION); pa_proplist_setf(pl, PA_PROP_DEVICE_DESCRIPTION, "%s (echo cancelled with %s)", z ? z : dest->name, y ? y : u->source_output->source->name); pa_sink_update_proplist(u->sink, PA_UPDATE_REPLACE, pl); pa_proplist_free(pl); } } /* Called from main context */ static void sink_input_volume_changed_cb(pa_sink_input *i) { struct userdata *u; pa_sink_input_assert_ref(i); pa_assert_se(u = i->userdata); pa_sink_volume_changed(u->sink, &i->volume); } /* Called from main context */ static void sink_input_mute_changed_cb(pa_sink_input *i) { struct userdata *u; pa_sink_input_assert_ref(i); pa_assert_se(u = i->userdata); pa_sink_mute_changed(u->sink, i->muted); } /* Called from main context */ static int canceller_process_msg_cb(pa_msgobject *o, int code, void *userdata, int64_t offset, pa_memchunk *chunk) { struct pa_echo_canceller_msg *msg; struct userdata *u; pa_assert(o); msg = PA_ECHO_CANCELLER_MSG(o); /* When the module is unloaded, there may still remain queued messages for * the canceller. Messages are sent to the main thread using the master * source's asyncmsgq, and that message queue isn't (and can't be, at least * with the current asyncmsgq API) cleared from the canceller messages when * module-echo-cancel is unloaded. * * The userdata may already have been freed at this point, but the * asyncmsgq holds a reference to the pa_echo_canceller_msg object, which * contains a flag to indicate that all remaining messages have to be * ignored. */ if (msg->dead) return 0; u = msg->userdata; switch (code) { case ECHO_CANCELLER_MESSAGE_SET_VOLUME: { pa_volume_t v = PA_PTR_TO_UINT(userdata); pa_cvolume vol; if (u->use_volume_sharing) { pa_cvolume_set(&vol, u->source->sample_spec.channels, v); pa_source_set_volume(u->source, &vol, true, false); } else { pa_cvolume_set(&vol, u->source_output->sample_spec.channels, v); pa_source_output_set_volume(u->source_output, &vol, false, true); } break; } default: pa_assert_not_reached(); break; } return 0; } /* Called by the canceller, so source I/O thread context. */ pa_volume_t pa_echo_canceller_get_capture_volume(pa_echo_canceller *ec) { #ifndef ECHO_CANCEL_TEST return pa_cvolume_avg(&ec->msg->userdata->thread_info.current_volume); #else return PA_VOLUME_NORM; #endif } /* Called by the canceller, so source I/O thread context. */ void pa_echo_canceller_set_capture_volume(pa_echo_canceller *ec, pa_volume_t v) { #ifndef ECHO_CANCEL_TEST if (pa_cvolume_avg(&ec->msg->userdata->thread_info.current_volume) != v) { pa_asyncmsgq_post(pa_thread_mq_get()->outq, PA_MSGOBJECT(ec->msg), ECHO_CANCELLER_MESSAGE_SET_VOLUME, PA_UINT_TO_PTR(v), 0, NULL, NULL); } #endif } uint32_t pa_echo_canceller_blocksize_power2(unsigned rate, unsigned ms) { unsigned nframes = (rate * ms) / 1000; uint32_t y = 1 << ((8 * sizeof(uint32_t)) - 2); pa_assert(rate >= 4000); pa_assert(ms >= 1); /* nframes should be a power of 2, round down to nearest power of two */ while (y > nframes) y >>= 1; pa_assert(y >= 1); return y; } static pa_echo_canceller_method_t get_ec_method_from_string(const char *method) { if (pa_streq(method, "null")) return PA_ECHO_CANCELLER_NULL; #ifdef HAVE_SPEEX if (pa_streq(method, "speex")) return PA_ECHO_CANCELLER_SPEEX; #endif #ifdef HAVE_ADRIAN_EC if (pa_streq(method, "adrian")) return PA_ECHO_CANCELLER_ADRIAN; #endif #ifdef HAVE_WEBRTC if (pa_streq(method, "webrtc")) return PA_ECHO_CANCELLER_WEBRTC; #endif return PA_ECHO_CANCELLER_INVALID; } /* Common initialisation bits between module-echo-cancel and the standalone * test program. * * Called from main context. */ static int init_common(pa_modargs *ma, struct userdata *u, pa_sample_spec *source_ss, pa_channel_map *source_map) { const char *ec_string; pa_echo_canceller_method_t ec_method; if (pa_modargs_get_sample_spec_and_channel_map(ma, source_ss, source_map, PA_CHANNEL_MAP_DEFAULT) < 0) { pa_log("Invalid sample format specification or channel map"); goto fail; } u->ec = pa_xnew0(pa_echo_canceller, 1); if (!u->ec) { pa_log("Failed to alloc echo canceller"); goto fail; } ec_string = pa_modargs_get_value(ma, "aec_method", DEFAULT_ECHO_CANCELLER); if ((ec_method = get_ec_method_from_string(ec_string)) < 0) { pa_log("Invalid echo canceller implementation '%s'", ec_string); goto fail; } pa_log_info("Using AEC engine: %s", ec_string); u->ec->init = ec_table[ec_method].init; u->ec->play = ec_table[ec_method].play; u->ec->record = ec_table[ec_method].record; u->ec->set_drift = ec_table[ec_method].set_drift; u->ec->run = ec_table[ec_method].run; u->ec->done = ec_table[ec_method].done; return 0; fail: return -1; } /* Called from main context. */ int pa__init(pa_module*m) { struct userdata *u; pa_sample_spec source_output_ss, source_ss, sink_ss; pa_channel_map source_output_map, source_map, sink_map; pa_modargs *ma; pa_source *source_master=NULL; pa_sink *sink_master=NULL; bool autoloaded; pa_source_output_new_data source_output_data; pa_sink_input_new_data sink_input_data; pa_source_new_data source_data; pa_sink_new_data sink_data; pa_memchunk silence; uint32_t temp; uint32_t nframes = 0; bool use_master_format; pa_usec_t blocksize_usec; pa_assert(m); if (!(ma = pa_modargs_new(m->argument, valid_modargs))) { pa_log("Failed to parse module arguments."); goto fail; } if (!(source_master = pa_namereg_get(m->core, pa_modargs_get_value(ma, "source_master", NULL), PA_NAMEREG_SOURCE))) { pa_log("Master source not found"); goto fail; } pa_assert(source_master); if (!(sink_master = pa_namereg_get(m->core, pa_modargs_get_value(ma, "sink_master", NULL), PA_NAMEREG_SINK))) { pa_log("Master sink not found"); goto fail; } pa_assert(sink_master); if (source_master->monitor_of == sink_master) { pa_log("Can't cancel echo between a sink and its monitor"); goto fail; } /* Set to true if we just want to inherit sample spec and channel map from the sink and source master */ use_master_format = DEFAULT_USE_MASTER_FORMAT; if (pa_modargs_get_value_boolean(ma, "use_master_format", &use_master_format) < 0) { pa_log("use_master_format= expects a boolean argument"); goto fail; } source_ss = source_master->sample_spec; sink_ss = sink_master->sample_spec; if (use_master_format) { source_map = source_master->channel_map; sink_map = sink_master->channel_map; } else { source_ss = source_master->sample_spec; source_ss.rate = DEFAULT_RATE; source_ss.channels = DEFAULT_CHANNELS; pa_channel_map_init_auto(&source_map, source_ss.channels, PA_CHANNEL_MAP_DEFAULT); sink_ss = sink_master->sample_spec; sink_ss.rate = DEFAULT_RATE; sink_ss.channels = DEFAULT_CHANNELS; pa_channel_map_init_auto(&sink_map, sink_ss.channels, PA_CHANNEL_MAP_DEFAULT); } u = pa_xnew0(struct userdata, 1); if (!u) { pa_log("Failed to alloc userdata"); goto fail; } u->core = m->core; u->module = m; m->userdata = u; u->dead = false; u->use_volume_sharing = true; if (pa_modargs_get_value_boolean(ma, "use_volume_sharing", &u->use_volume_sharing) < 0) { pa_log("use_volume_sharing= expects a boolean argument"); goto fail; } temp = DEFAULT_ADJUST_TIME_USEC / PA_USEC_PER_SEC; if (pa_modargs_get_value_u32(ma, "adjust_time", &temp) < 0) { pa_log("Failed to parse adjust_time value"); goto fail; } if (temp != DEFAULT_ADJUST_TIME_USEC / PA_USEC_PER_SEC) u->adjust_time = temp * PA_USEC_PER_SEC; else u->adjust_time = DEFAULT_ADJUST_TIME_USEC; temp = DEFAULT_ADJUST_TOLERANCE / PA_USEC_PER_MSEC; if (pa_modargs_get_value_u32(ma, "adjust_threshold", &temp) < 0) { pa_log("Failed to parse adjust_threshold value"); goto fail; } if (temp != DEFAULT_ADJUST_TOLERANCE / PA_USEC_PER_MSEC) u->adjust_threshold = temp * PA_USEC_PER_MSEC; else u->adjust_threshold = DEFAULT_ADJUST_TOLERANCE; u->save_aec = DEFAULT_SAVE_AEC; if (pa_modargs_get_value_boolean(ma, "save_aec", &u->save_aec) < 0) { pa_log("Failed to parse save_aec value"); goto fail; } autoloaded = DEFAULT_AUTOLOADED; if (pa_modargs_get_value_boolean(ma, "autoloaded", &autoloaded) < 0) { pa_log("Failed to parse autoloaded value"); goto fail; } if (init_common(ma, u, &source_ss, &source_map) < 0) goto fail; u->asyncmsgq = pa_asyncmsgq_new(0); if (!u->asyncmsgq) { pa_log("pa_asyncmsgq_new() failed."); goto fail; } u->need_realign = true; source_output_ss = source_ss; source_output_map = source_map; if (sink_ss.rate != source_ss.rate) { pa_log_info("Sample rates of play and out stream differ. Adjusting rate of play stream."); sink_ss.rate = source_ss.rate; } pa_assert(u->ec->init); if (!u->ec->init(u->core, u->ec, &source_output_ss, &source_output_map, &sink_ss, &sink_map, &source_ss, &source_map, &nframes, pa_modargs_get_value(ma, "aec_args", NULL))) { pa_log("Failed to init AEC engine"); goto fail; } pa_assert(source_output_ss.rate == source_ss.rate); pa_assert(sink_ss.rate == source_ss.rate); u->source_output_blocksize = nframes * pa_frame_size(&source_output_ss); u->source_blocksize = nframes * pa_frame_size(&source_ss); u->sink_blocksize = nframes * pa_frame_size(&sink_ss); if (u->ec->params.drift_compensation) pa_assert(u->ec->set_drift); /* Create source */ pa_source_new_data_init(&source_data); source_data.driver = __FILE__; source_data.module = m; if (!(source_data.name = pa_xstrdup(pa_modargs_get_value(ma, "source_name", NULL)))) source_data.name = pa_sprintf_malloc("%s.echo-cancel", source_master->name); pa_source_new_data_set_sample_spec(&source_data, &source_ss); pa_source_new_data_set_channel_map(&source_data, &source_map); pa_proplist_sets(source_data.proplist, PA_PROP_DEVICE_MASTER_DEVICE, source_master->name); pa_proplist_sets(source_data.proplist, PA_PROP_DEVICE_CLASS, "filter"); if (!autoloaded) pa_proplist_sets(source_data.proplist, PA_PROP_DEVICE_INTENDED_ROLES, "phone"); if (pa_modargs_get_proplist(ma, "source_properties", source_data.proplist, PA_UPDATE_REPLACE) < 0) { pa_log("Invalid properties"); pa_source_new_data_done(&source_data); goto fail; } if ((u->source_auto_desc = !pa_proplist_contains(source_data.proplist, PA_PROP_DEVICE_DESCRIPTION))) { const char *y, *z; y = pa_proplist_gets(sink_master->proplist, PA_PROP_DEVICE_DESCRIPTION); z = pa_proplist_gets(source_master->proplist, PA_PROP_DEVICE_DESCRIPTION); pa_proplist_setf(source_data.proplist, PA_PROP_DEVICE_DESCRIPTION, "%s (echo cancelled with %s)", z ? z : source_master->name, y ? y : sink_master->name); } u->source = pa_source_new(m->core, &source_data, (source_master->flags & (PA_SOURCE_LATENCY | PA_SOURCE_DYNAMIC_LATENCY)) | (u->use_volume_sharing ? PA_SOURCE_SHARE_VOLUME_WITH_MASTER : 0)); pa_source_new_data_done(&source_data); if (!u->source) { pa_log("Failed to create source."); goto fail; } u->source->parent.process_msg = source_process_msg_cb; u->source->set_state_in_main_thread = source_set_state_in_main_thread_cb; u->source->update_requested_latency = source_update_requested_latency_cb; pa_source_set_set_mute_callback(u->source, source_set_mute_cb); if (!u->use_volume_sharing) { pa_source_set_get_volume_callback(u->source, source_get_volume_cb); pa_source_set_set_volume_callback(u->source, source_set_volume_cb); pa_source_enable_decibel_volume(u->source, true); } u->source->userdata = u; pa_source_set_asyncmsgq(u->source, source_master->asyncmsgq); /* Create sink */ pa_sink_new_data_init(&sink_data); sink_data.driver = __FILE__; sink_data.module = m; if (!(sink_data.name = pa_xstrdup(pa_modargs_get_value(ma, "sink_name", NULL)))) sink_data.name = pa_sprintf_malloc("%s.echo-cancel", sink_master->name); pa_sink_new_data_set_sample_spec(&sink_data, &sink_ss); pa_sink_new_data_set_channel_map(&sink_data, &sink_map); pa_proplist_sets(sink_data.proplist, PA_PROP_DEVICE_MASTER_DEVICE, sink_master->name); pa_proplist_sets(sink_data.proplist, PA_PROP_DEVICE_CLASS, "filter"); if (!autoloaded) pa_proplist_sets(sink_data.proplist, PA_PROP_DEVICE_INTENDED_ROLES, "phone"); if (pa_modargs_get_proplist(ma, "sink_properties", sink_data.proplist, PA_UPDATE_REPLACE) < 0) { pa_log("Invalid properties"); pa_sink_new_data_done(&sink_data); goto fail; } if ((u->sink_auto_desc = !pa_proplist_contains(sink_data.proplist, PA_PROP_DEVICE_DESCRIPTION))) { const char *y, *z; y = pa_proplist_gets(source_master->proplist, PA_PROP_DEVICE_DESCRIPTION); z = pa_proplist_gets(sink_master->proplist, PA_PROP_DEVICE_DESCRIPTION); pa_proplist_setf(sink_data.proplist, PA_PROP_DEVICE_DESCRIPTION, "%s (echo cancelled with %s)", z ? z : sink_master->name, y ? y : source_master->name); } u->sink = pa_sink_new(m->core, &sink_data, (sink_master->flags & (PA_SINK_LATENCY | PA_SINK_DYNAMIC_LATENCY)) | (u->use_volume_sharing ? PA_SINK_SHARE_VOLUME_WITH_MASTER : 0)); pa_sink_new_data_done(&sink_data); if (!u->sink) { pa_log("Failed to create sink."); goto fail; } u->sink->parent.process_msg = sink_process_msg_cb; u->sink->set_state_in_main_thread = sink_set_state_in_main_thread_cb; u->sink->set_state_in_io_thread = sink_set_state_in_io_thread_cb; u->sink->update_requested_latency = sink_update_requested_latency_cb; u->sink->request_rewind = sink_request_rewind_cb; pa_sink_set_set_mute_callback(u->sink, sink_set_mute_cb); if (!u->use_volume_sharing) { pa_sink_set_set_volume_callback(u->sink, sink_set_volume_cb); pa_sink_enable_decibel_volume(u->sink, true); } u->sink->userdata = u; pa_sink_set_asyncmsgq(u->sink, sink_master->asyncmsgq); /* Create source output */ pa_source_output_new_data_init(&source_output_data); source_output_data.driver = __FILE__; source_output_data.module = m; pa_source_output_new_data_set_source(&source_output_data, source_master, false, true); source_output_data.destination_source = u->source; pa_proplist_sets(source_output_data.proplist, PA_PROP_MEDIA_NAME, "Echo-Cancel Source Stream"); pa_proplist_sets(source_output_data.proplist, PA_PROP_MEDIA_ROLE, "filter"); pa_source_output_new_data_set_sample_spec(&source_output_data, &source_output_ss); pa_source_output_new_data_set_channel_map(&source_output_data, &source_output_map); source_output_data.flags |= PA_SOURCE_OUTPUT_START_CORKED; if (autoloaded) source_output_data.flags |= PA_SOURCE_OUTPUT_DONT_MOVE; pa_source_output_new(&u->source_output, m->core, &source_output_data); pa_source_output_new_data_done(&source_output_data); if (!u->source_output) goto fail; u->source_output->parent.process_msg = source_output_process_msg_cb; u->source_output->push = source_output_push_cb; u->source_output->process_rewind = source_output_process_rewind_cb; u->source_output->update_max_rewind = source_output_update_max_rewind_cb; u->source_output->update_source_requested_latency = source_output_update_source_requested_latency_cb; u->source_output->update_source_latency_range = source_output_update_source_latency_range_cb; u->source_output->update_source_fixed_latency = source_output_update_source_fixed_latency_cb; u->source_output->kill = source_output_kill_cb; u->source_output->attach = source_output_attach_cb; u->source_output->detach = source_output_detach_cb; u->source_output->state_change = source_output_state_change_cb; u->source_output->may_move_to = source_output_may_move_to_cb; u->source_output->moving = source_output_moving_cb; u->source_output->userdata = u; u->source->output_from_master = u->source_output; /* Create sink input */ pa_sink_input_new_data_init(&sink_input_data); sink_input_data.driver = __FILE__; sink_input_data.module = m; pa_sink_input_new_data_set_sink(&sink_input_data, sink_master, false, true); sink_input_data.origin_sink = u->sink; pa_proplist_sets(sink_input_data.proplist, PA_PROP_MEDIA_NAME, "Echo-Cancel Sink Stream"); pa_proplist_sets(sink_input_data.proplist, PA_PROP_MEDIA_ROLE, "filter"); pa_sink_input_new_data_set_sample_spec(&sink_input_data, &sink_ss); pa_sink_input_new_data_set_channel_map(&sink_input_data, &sink_map); sink_input_data.flags = PA_SINK_INPUT_VARIABLE_RATE | PA_SINK_INPUT_START_CORKED; if (autoloaded) sink_input_data.flags |= PA_SINK_INPUT_DONT_MOVE; pa_sink_input_new(&u->sink_input, m->core, &sink_input_data); pa_sink_input_new_data_done(&sink_input_data); if (!u->sink_input) goto fail; u->sink_input->parent.process_msg = sink_input_process_msg_cb; u->sink_input->pop = sink_input_pop_cb; u->sink_input->process_rewind = sink_input_process_rewind_cb; u->sink_input->update_max_rewind = sink_input_update_max_rewind_cb; u->sink_input->update_max_request = sink_input_update_max_request_cb; u->sink_input->update_sink_requested_latency = sink_input_update_sink_requested_latency_cb; u->sink_input->update_sink_latency_range = sink_input_update_sink_latency_range_cb; u->sink_input->update_sink_fixed_latency = sink_input_update_sink_fixed_latency_cb; u->sink_input->kill = sink_input_kill_cb; u->sink_input->attach = sink_input_attach_cb; u->sink_input->detach = sink_input_detach_cb; u->sink_input->state_change = sink_input_state_change_cb; u->sink_input->may_move_to = sink_input_may_move_to_cb; u->sink_input->moving = sink_input_moving_cb; if (!u->use_volume_sharing) u->sink_input->volume_changed = sink_input_volume_changed_cb; u->sink_input->mute_changed = sink_input_mute_changed_cb; u->sink_input->userdata = u; u->sink->input_to_master = u->sink_input; pa_sink_input_get_silence(u->sink_input, &silence); u->source_memblockq = pa_memblockq_new("module-echo-cancel source_memblockq", 0, MEMBLOCKQ_MAXLENGTH, 0, &source_output_ss, 1, 1, 0, &silence); u->sink_memblockq = pa_memblockq_new("module-echo-cancel sink_memblockq", 0, MEMBLOCKQ_MAXLENGTH, 0, &sink_ss, 0, 1, 0, &silence); pa_memblock_unref(silence.memblock); if (!u->source_memblockq || !u->sink_memblockq) { pa_log("Failed to create memblockq."); goto fail; } if (u->adjust_time > 0 && !u->ec->params.drift_compensation) u->time_event = pa_core_rttime_new(m->core, pa_rtclock_now() + u->adjust_time, time_callback, u); else if (u->ec->params.drift_compensation) { pa_log_info("Canceller does drift compensation -- built-in compensation will be disabled"); u->adjust_time = 0; /* Perform resync just once to give the canceller a leg up */ pa_atomic_store(&u->request_resync, 1); } if (u->save_aec) { pa_log("Creating AEC files in /tmp"); u->captured_file = fopen("/tmp/aec_rec.sw", "wb"); if (u->captured_file == NULL) perror ("fopen failed"); u->played_file = fopen("/tmp/aec_play.sw", "wb"); if (u->played_file == NULL) perror ("fopen failed"); u->canceled_file = fopen("/tmp/aec_out.sw", "wb"); if (u->canceled_file == NULL) perror ("fopen failed"); if (u->ec->params.drift_compensation) { u->drift_file = fopen("/tmp/aec_drift.txt", "w"); if (u->drift_file == NULL) perror ("fopen failed"); } } u->ec->msg = pa_msgobject_new(pa_echo_canceller_msg); u->ec->msg->parent.process_msg = canceller_process_msg_cb; u->ec->msg->userdata = u; u->thread_info.current_volume = u->source->reference_volume; /* We don't want to deal with too many chunks at a time */ blocksize_usec = pa_bytes_to_usec(u->source_blocksize, &u->source->sample_spec); if (u->source->flags & PA_SOURCE_DYNAMIC_LATENCY) pa_source_set_latency_range(u->source, blocksize_usec, blocksize_usec * MAX_LATENCY_BLOCKS); pa_source_output_set_requested_latency(u->source_output, blocksize_usec * MAX_LATENCY_BLOCKS); blocksize_usec = pa_bytes_to_usec(u->sink_blocksize, &u->sink->sample_spec); if (u->sink->flags & PA_SINK_DYNAMIC_LATENCY) pa_sink_set_latency_range(u->sink, blocksize_usec, blocksize_usec * MAX_LATENCY_BLOCKS); pa_sink_input_set_requested_latency(u->sink_input, blocksize_usec * MAX_LATENCY_BLOCKS); /* The order here is important. The input/output must be put first, * otherwise streams might attach to the sink/source before the * sink input or source output is attached to the master. */ pa_sink_input_put(u->sink_input); pa_source_output_put(u->source_output); pa_sink_put(u->sink); pa_source_put(u->source); pa_source_output_cork(u->source_output, false); pa_sink_input_cork(u->sink_input, false); pa_modargs_free(ma); return 0; fail: if (ma) pa_modargs_free(ma); pa__done(m); return -1; } /* Called from main context. */ int pa__get_n_used(pa_module *m) { struct userdata *u; pa_assert(m); pa_assert_se(u = m->userdata); return pa_sink_linked_by(u->sink) + pa_source_linked_by(u->source); } /* Called from main context. */ void pa__done(pa_module*m) { struct userdata *u; pa_assert(m); if (!(u = m->userdata)) return; u->dead = true; /* See comments in source_output_kill_cb() above regarding * destruction order! */ if (u->time_event) u->core->mainloop->time_free(u->time_event); if (u->source_output) pa_source_output_cork(u->source_output, true); if (u->sink_input) pa_sink_input_cork(u->sink_input, true); if (u->source) pa_source_unlink(u->source); if (u->sink) pa_sink_unlink(u->sink); if (u->source_output) { pa_source_output_unlink(u->source_output); pa_source_output_unref(u->source_output); } if (u->sink_input) { pa_sink_input_unlink(u->sink_input); pa_sink_input_unref(u->sink_input); } if (u->source) pa_source_unref(u->source); if (u->sink) pa_sink_unref(u->sink); if (u->source_memblockq) pa_memblockq_free(u->source_memblockq); if (u->sink_memblockq) pa_memblockq_free(u->sink_memblockq); if (u->ec) { if (u->ec->done) u->ec->done(u->ec); if (u->ec->msg) { u->ec->msg->dead = true; pa_echo_canceller_msg_unref(u->ec->msg); } pa_xfree(u->ec); } if (u->asyncmsgq) pa_asyncmsgq_unref(u->asyncmsgq); if (u->save_aec) { if (u->played_file) fclose(u->played_file); if (u->captured_file) fclose(u->captured_file); if (u->canceled_file) fclose(u->canceled_file); if (u->drift_file) fclose(u->drift_file); } pa_xfree(u); } #ifdef ECHO_CANCEL_TEST /* * Stand-alone test program for running in the canceller on pre-recorded files. */ int main(int argc, char* argv[]) { struct userdata u; pa_sample_spec source_output_ss, source_ss, sink_ss; pa_channel_map source_output_map, source_map, sink_map; pa_modargs *ma = NULL; uint8_t *rdata = NULL, *pdata = NULL, *cdata = NULL; int unused PA_GCC_UNUSED; int ret = 0, i; char c; float drift; uint32_t nframes; if (!getenv("MAKE_CHECK")) pa_log_set_level(PA_LOG_DEBUG); pa_memzero(&u, sizeof(u)); if (argc < 4 || argc > 7) { goto usage; } u.captured_file = fopen(argv[2], "rb"); if (u.captured_file == NULL) { perror ("Could not open capture file"); goto fail; } u.played_file = fopen(argv[1], "rb"); if (u.played_file == NULL) { perror ("Could not open play file"); goto fail; } u.canceled_file = fopen(argv[3], "wb"); if (u.canceled_file == NULL) { perror ("Could not open canceled file"); goto fail; } u.core = pa_xnew0(pa_core, 1); u.core->cpu_info.cpu_type = PA_CPU_X86; u.core->cpu_info.flags.x86 |= PA_CPU_X86_SSE; if (!(ma = pa_modargs_new(argc > 4 ? argv[4] : NULL, valid_modargs))) { pa_log("Failed to parse module arguments."); goto fail; } source_ss.format = PA_SAMPLE_FLOAT32LE; source_ss.rate = DEFAULT_RATE; source_ss.channels = DEFAULT_CHANNELS; pa_channel_map_init_auto(&source_map, source_ss.channels, PA_CHANNEL_MAP_DEFAULT); sink_ss.format = PA_SAMPLE_FLOAT32LE; sink_ss.rate = DEFAULT_RATE; sink_ss.channels = DEFAULT_CHANNELS; pa_channel_map_init_auto(&sink_map, sink_ss.channels, PA_CHANNEL_MAP_DEFAULT); if (init_common(ma, &u, &source_ss, &source_map) < 0) goto fail; source_output_ss = source_ss; source_output_map = source_map; if (!u.ec->init(u.core, u.ec, &source_output_ss, &source_output_map, &sink_ss, &sink_map, &source_ss, &source_map, &nframes, pa_modargs_get_value(ma, "aec_args", NULL))) { pa_log("Failed to init AEC engine"); goto fail; } u.source_output_blocksize = nframes * pa_frame_size(&source_output_ss); u.source_blocksize = nframes * pa_frame_size(&source_ss); u.sink_blocksize = nframes * pa_frame_size(&sink_ss); if (u.ec->params.drift_compensation) { if (argc < 6) { pa_log("Drift compensation enabled but drift file not specified"); goto fail; } u.drift_file = fopen(argv[5], "rt"); if (u.drift_file == NULL) { perror ("Could not open drift file"); goto fail; } } rdata = pa_xmalloc(u.source_output_blocksize); pdata = pa_xmalloc(u.sink_blocksize); cdata = pa_xmalloc(u.source_blocksize); if (!u.ec->params.drift_compensation) { while (fread(rdata, u.source_output_blocksize, 1, u.captured_file) > 0) { if (fread(pdata, u.sink_blocksize, 1, u.played_file) == 0) { perror("Played file ended before captured file"); goto fail; } u.ec->run(u.ec, rdata, pdata, cdata); unused = fwrite(cdata, u.source_blocksize, 1, u.canceled_file); } } else { while (fscanf(u.drift_file, "%c", &c) > 0) { switch (c) { case 'd': if (!fscanf(u.drift_file, "%a", &drift)) { perror("Drift file incomplete"); goto fail; } u.ec->set_drift(u.ec, drift); break; case 'c': if (!fscanf(u.drift_file, "%d", &i)) { perror("Drift file incomplete"); goto fail; } if (fread(rdata, i, 1, u.captured_file) <= 0) { perror("Captured file ended prematurely"); goto fail; } u.ec->record(u.ec, rdata, cdata); unused = fwrite(cdata, i, 1, u.canceled_file); break; case 'p': if (!fscanf(u.drift_file, "%d", &i)) { perror("Drift file incomplete"); goto fail; } if (fread(pdata, i, 1, u.played_file) <= 0) { perror("Played file ended prematurely"); goto fail; } u.ec->play(u.ec, pdata); break; } } if (fread(rdata, i, 1, u.captured_file) > 0) pa_log("All capture data was not consumed"); if (fread(pdata, i, 1, u.played_file) > 0) pa_log("All playback data was not consumed"); } u.ec->done(u.ec); u.ec->msg->dead = true; pa_echo_canceller_msg_unref(u.ec->msg); out: if (u.captured_file) fclose(u.captured_file); if (u.played_file) fclose(u.played_file); if (u.canceled_file) fclose(u.canceled_file); if (u.drift_file) fclose(u.drift_file); pa_xfree(rdata); pa_xfree(pdata); pa_xfree(cdata); pa_xfree(u.ec); pa_xfree(u.core); if (ma) pa_modargs_free(ma); return ret; usage: pa_log("Usage: %s play_file rec_file out_file [module args] [drift_file]", argv[0]); fail: ret = -1; goto out; } #endif /* ECHO_CANCEL_TEST */