/*** This file is part of PulseAudio. This module is based off Lennart Poettering's LADSPA sink and swaps out LADSPA functionality for a dbus-aware STFT OLA based digital equalizer. All new work is published under PulseAudio's original license. Copyright 2009 Jason Newton Original Author: Copyright 2004-2008 Lennart Poettering PulseAudio is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. PulseAudio is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with PulseAudio; if not, see . ***/ #ifdef HAVE_CONFIG_H #include #endif #include #include #include #include #include #include //#undef __SSE2__ #ifdef __SSE2__ #include #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include PA_MODULE_AUTHOR("Jason Newton"); PA_MODULE_DESCRIPTION(_("General Purpose Equalizer")); PA_MODULE_VERSION(PACKAGE_VERSION); PA_MODULE_LOAD_ONCE(false); PA_MODULE_USAGE( _("sink_name= " "sink_properties= " "sink_master= " "format= " "rate= " "channels= " "channel_map= " "autoloaded= " "use_volume_sharing= " )); #define MEMBLOCKQ_MAXLENGTH (16*1024*1024) #define DEFAULT_AUTOLOADED false struct userdata { pa_module *module; pa_sink *sink; pa_sink_input *sink_input; bool autoloaded; size_t channels; size_t fft_size;//length (res) of fft size_t window_size;/* *sliding window size *effectively chooses R */ size_t R;/* the hop size between overlapping windows * the latency of the filter, calculated from window_size * based on constraints of COLA and window function */ //for twiddling with pulseaudio size_t overlap_size;//window_size-R size_t samples_gathered; size_t input_buffer_max; //message float *W;//windowing function (time domain) float *work_buffer, **input, **overlap_accum; fftwf_complex *output_window; fftwf_plan forward_plan, inverse_plan; //size_t samplings; float **Xs; float ***Hs;//thread updatable copies of the freq response filters (magnitude based) pa_aupdate **a_H; pa_memblockq *input_q; char *output_buffer; size_t output_buffer_length; size_t output_buffer_max_length; pa_memblockq *output_q; bool first_iteration; pa_dbus_protocol *dbus_protocol; char *dbus_path; pa_database *database; char **base_profiles; bool automatic_description; }; static const char* const valid_modargs[] = { "sink_name", "sink_properties", "sink_master", "format", "rate", "channels", "channel_map", "autoloaded", "use_volume_sharing", NULL }; #define v_size 4 #define SINKLIST "equalized_sinklist" #define EQDB "equalizer_db" #define EQ_STATE_DB "equalizer-state" #define FILTER_SIZE(u) ((u)->fft_size / 2 + 1) #define CHANNEL_PROFILE_SIZE(u) (FILTER_SIZE(u) + 1) #define FILTER_STATE_SIZE(u) (CHANNEL_PROFILE_SIZE(u) * (u)->channels) static void dbus_init(struct userdata *u); static void dbus_done(struct userdata *u); static void hanning_window(float *W, size_t window_size) { /* h=.5*(1-cos(2*pi*j/(window_size+1)), COLA for R=(M+1)/2 */ for (size_t i = 0; i < window_size; ++i) W[i] = (float).5 * (1 - cos(2*M_PI*i / (window_size+1))); } static void fix_filter(float *H, size_t fft_size) { /* divide out the fft gain */ for (size_t i = 0; i < fft_size / 2 + 1; ++i) H[i] /= fft_size; } static void interpolate(float *samples, size_t length, uint32_t *xs, float *ys, size_t n_points) { /* Note that xs must be monotonically increasing! */ float x_range_lower, x_range_upper, c0; pa_assert(n_points >= 2); pa_assert(xs[0] == 0); pa_assert(xs[n_points - 1] == length - 1); for (size_t x = 0, x_range_lower_i = 0; x < length-1; ++x) { pa_assert(x_range_lower_i < n_points-1); x_range_lower = (float) xs[x_range_lower_i]; x_range_upper = (float) xs[x_range_lower_i+1]; pa_assert_se(x_range_lower < x_range_upper); pa_assert_se(x >= x_range_lower); pa_assert_se(x <= x_range_upper); /* bilinear-interpolation of coefficients specified */ c0 = (x-x_range_lower) / (x_range_upper-x_range_lower); pa_assert(c0 >= 0 && c0 <= 1.0); samples[x] = ((1.0f - c0) * ys[x_range_lower_i] + c0 * ys[x_range_lower_i + 1]); while(x >= xs[x_range_lower_i + 1]) x_range_lower_i++; } samples[length-1] = ys[n_points-1]; } static bool is_monotonic(const uint32_t *xs, size_t length) { pa_assert(xs); if (length < 2) return true; for(size_t i = 1; i < length; ++i) if (xs[i] <= xs[i-1]) return false; return true; } /* ensures memory allocated is a multiple of v_size and aligned */ static void * alloc(size_t x, size_t s) { size_t f; float *t; f = PA_ROUND_UP(x*s, sizeof(float)*v_size); pa_assert_se(t = fftwf_malloc(f)); pa_memzero(t, f); return t; } static void alloc_input_buffers(struct userdata *u, size_t min_buffer_length) { if (min_buffer_length <= u->input_buffer_max) return; pa_assert(min_buffer_length >= u->window_size); for (size_t c = 0; c < u->channels; ++c) { float *tmp = alloc(min_buffer_length, sizeof(float)); if (u->input[c]) { if (!u->first_iteration) memcpy(tmp, u->input[c], u->overlap_size * sizeof(float)); fftwf_free(u->input[c]); } u->input[c] = tmp; } u->input_buffer_max = min_buffer_length; } /* Called from I/O thread context */ static int sink_process_msg_cb(pa_msgobject *o, int code, void *data, int64_t offset, pa_memchunk *chunk) { struct userdata *u = PA_SINK(o)->userdata; switch (code) { case PA_SINK_MESSAGE_GET_LATENCY: { //size_t fs=pa_frame_size(&u->sink->sample_spec); /* The sink is _put() before the sink input is, so let's * make sure we don't access it in that time. Also, the * sink input is first shut down, the sink second. */ if (!PA_SINK_IS_LINKED(u->sink->thread_info.state) || !PA_SINK_INPUT_IS_LINKED(u->sink_input->thread_info.state)) { *((int64_t*) data) = 0; return 0; } *((int64_t*) data) = /* Get the latency of the master sink */ pa_sink_get_latency_within_thread(u->sink_input->sink, true) + /* Add the latency internal to our sink input on top */ pa_bytes_to_usec(pa_memblockq_get_length(u->output_q) + pa_memblockq_get_length(u->input_q), &u->sink_input->sink->sample_spec) + pa_bytes_to_usec(pa_memblockq_get_length(u->sink_input->thread_info.render_memblockq), &u->sink_input->sink->sample_spec); // pa_bytes_to_usec(u->samples_gathered * fs, &u->sink->sample_spec); //+ pa_bytes_to_usec(u->latency * fs, ss) return 0; } } return pa_sink_process_msg(o, code, data, offset, chunk); } /* Called from main context */ static int sink_set_state_in_main_thread_cb(pa_sink *s, pa_sink_state_t state, pa_suspend_cause_t suspend_cause) { struct userdata *u; pa_sink_assert_ref(s); pa_assert_se(u = s->userdata); if (!PA_SINK_IS_LINKED(state) || !PA_SINK_INPUT_IS_LINKED(u->sink_input->state)) return 0; pa_sink_input_cork(u->sink_input, state == PA_SINK_SUSPENDED); return 0; } /* Called from the IO thread. */ static int sink_set_state_in_io_thread_cb(pa_sink *s, pa_sink_state_t new_state, pa_suspend_cause_t new_suspend_cause) { struct userdata *u; pa_assert(s); pa_assert_se(u = s->userdata); /* When set to running or idle for the first time, request a rewind * of the master sink to make sure we are heard immediately */ if (PA_SINK_IS_OPENED(new_state) && s->thread_info.state == PA_SINK_INIT) { pa_log_debug("Requesting rewind due to state change."); pa_sink_input_request_rewind(u->sink_input, 0, false, true, true); } return 0; } /* Called from I/O thread context */ static void sink_request_rewind_cb(pa_sink *s) { struct userdata *u; pa_sink_assert_ref(s); pa_assert_se(u = s->userdata); if (!PA_SINK_IS_LINKED(u->sink->thread_info.state) || !PA_SINK_INPUT_IS_LINKED(u->sink_input->thread_info.state)) return; /* Just hand this one over to the master sink */ pa_sink_input_request_rewind(u->sink_input, s->thread_info.rewind_nbytes+pa_memblockq_get_length(u->input_q), true, false, false); } /* Called from I/O thread context */ static void sink_update_requested_latency_cb(pa_sink *s) { struct userdata *u; pa_sink_assert_ref(s); pa_assert_se(u = s->userdata); if (!PA_SINK_IS_LINKED(u->sink->thread_info.state) || !PA_SINK_INPUT_IS_LINKED(u->sink_input->thread_info.state)) return; /* Just hand this one over to the master sink */ pa_sink_input_set_requested_latency_within_thread( u->sink_input, pa_sink_get_requested_latency_within_thread(s)); } /* Called from main context */ static void sink_set_volume_cb(pa_sink *s) { struct userdata *u; pa_sink_assert_ref(s); pa_assert_se(u = s->userdata); if (!PA_SINK_IS_LINKED(s->state) || !PA_SINK_INPUT_IS_LINKED(u->sink_input->state)) return; pa_sink_input_set_volume(u->sink_input, &s->real_volume, s->save_volume, true); } /* Called from main context */ static void sink_set_mute_cb(pa_sink *s) { struct userdata *u; pa_sink_assert_ref(s); pa_assert_se(u = s->userdata); if (!PA_SINK_IS_LINKED(s->state) || !PA_SINK_INPUT_IS_LINKED(u->sink_input->state)) return; pa_sink_input_set_mute(u->sink_input, s->muted, s->save_muted); } #if 1 //reference implementation static void dsp_logic( float * restrict dst,//used as a temp array too, needs to be fft_length! float * restrict src,/*input data w/ overlap at start, *automatically cycled in routine */ float * restrict overlap, const float X,//multiplier const float * restrict H,//The freq. magnitude scalers filter const float * restrict W,//The windowing function fftwf_complex * restrict output_window,//The transformed windowed src struct userdata *u) { //use a linear-phase sliding STFT and overlap-add method (for each channel) //window the data for(size_t j = 0; j < u->window_size; ++j) { dst[j] = X * W[j] * src[j]; } //zero pad the remaining fft window memset(dst + u->window_size, 0, (u->fft_size - u->window_size) * sizeof(float)); //Processing is done here! //do fft fftwf_execute_dft_r2c(u->forward_plan, dst, output_window); //perform filtering for(size_t j = 0; j < FILTER_SIZE(u); ++j) { u->output_window[j][0] *= H[j]; u->output_window[j][1] *= H[j]; } //inverse fft fftwf_execute_dft_c2r(u->inverse_plan, output_window, dst); ////debug: tests overlapping add ////and negates ALL PREVIOUS processing ////yields a perfect reconstruction if COLA is held //for(size_t j = 0; j < u->window_size; ++j) { // u->work_buffer[j] = u->W[j] * u->input[c][j]; //} //overlap add and preserve overlap component from this window (linear phase) for(size_t j = 0; j < u->overlap_size; ++j) { u->work_buffer[j] += overlap[j]; overlap[j] = dst[u->R + j]; } ////debug: tests if basic buffering works ////shouldn't modify the signal AT ALL (beyond roundoff) //for(size_t j = 0; j < u->window_size;++j) { // u->work_buffer[j] = u->input[c][j]; //} //preserve the needed input for the next window's overlap memmove(src, src + u->R, (u->samples_gathered - u->R) * sizeof(float) ); } #else typedef float v4sf __attribute__ ((__aligned__(v_size * sizeof(float)))); typedef union float_vector { float f[v_size]; v4sf v; __m128 m; } float_vector_t; //regardless of sse enabled, the loops in here assume //16 byte aligned addresses and memory allocations divisible by v_size static void dsp_logic( float * restrict dst,//used as a temp array too, needs to be fft_length! float * restrict src,/*input data w/ overlap at start, *automatically cycled in routine */ float * restrict overlap,//The size of the overlap const float X,//multiplier const float * restrict H,//The freq. magnitude scalers filter const float * restrict W,//The windowing function fftwf_complex * restrict output_window,//The transformed windowed src struct userdata *u) {//Collection of constants const size_t overlap_size = PA_ROUND_UP(u->overlap_size, v_size); float_vector_t x; x.f[0] = x.f[1] = x.f[2] = x.f[3] = X; //assert(u->samples_gathered >= u->R); //use a linear-phase sliding STFT and overlap-add method for(size_t j = 0; j < u->window_size; j += v_size) { //dst[j] = W[j] * src[j]; float_vector_t *d = (float_vector_t*) (dst + j); float_vector_t *w = (float_vector_t*) (W + j); float_vector_t *s = (float_vector_t*) (src + j); //#if __SSE2__ d->m = _mm_mul_ps(x.m, _mm_mul_ps(w->m, s->m)); // d->v = x->v * w->v * s->v; //#endif } //zero pad the remaining fft window memset(dst + u->window_size, 0, (u->fft_size - u->window_size) * sizeof(float)); //Processing is done here! //do fft fftwf_execute_dft_r2c(u->forward_plan, dst, output_window); //perform filtering - purely magnitude based for(size_t j = 0; j < FILTER_SIZE; j += v_size / 2) { //output_window[j][0]*=H[j]; //output_window[j][1]*=H[j]; float_vector_t *d = (float_vector_t*)( ((float *) output_window) + 2 * j); float_vector_t h; h.f[0] = h.f[1] = H[j]; h.f[2] = h.f[3] = H[j + 1]; //#if __SSE2__ d->m = _mm_mul_ps(d->m, h.m); //#else // d->v = d->v * h.v; //#endif } //inverse fft fftwf_execute_dft_c2r(u->inverse_plan, output_window, dst); ////debug: tests overlapping add ////and negates ALL PREVIOUS processing ////yields a perfect reconstruction if COLA is held //for(size_t j = 0; j < u->window_size; ++j) { // dst[j] = W[j] * src[j]; //} //overlap add and preserve overlap component from this window (linear phase) for(size_t j = 0; j < overlap_size; j += v_size) { //dst[j]+=overlap[j]; //overlap[j]+=dst[j+R]; float_vector_t *d = (float_vector_t*)(dst + j); float_vector_t *o = (float_vector_t*)(overlap + j); //#if __SSE2__ d->m = _mm_add_ps(d->m, o->m); o->m = ((float_vector_t*)(dst + u->R + j))->m; //#else // d->v = d->v + o->v; // o->v = ((float_vector_t*)(dst + u->R + j))->v; //#endif } //memcpy(overlap, dst+u->R, u->overlap_size * sizeof(float)); //overlap preserve (debug) //zero out the bit beyond the real overlap so we don't add garbage next iteration memset(overlap + u->overlap_size, 0, overlap_size - u->overlap_size); ////debug: tests if basic buffering works ////shouldn't modify the signal AT ALL (beyond roundoff) //for(size_t j = 0; j < u->window_size; ++j) { // dst[j] = src[j]; //} //preserve the needed input for the next window's overlap memmove(src, src + u->R, (u->samples_gathered - u->R) * sizeof(float) ); } #endif static void flatten_to_memblockq(struct userdata *u) { size_t mbs = pa_mempool_block_size_max(u->sink->core->mempool); pa_memchunk tchunk; char *dst; size_t i = 0; while(i < u->output_buffer_length) { tchunk.index = 0; tchunk.length = PA_MIN((u->output_buffer_length - i), mbs); tchunk.memblock = pa_memblock_new(u->sink->core->mempool, tchunk.length); //pa_log_debug("pushing %ld into the q", tchunk.length); dst = pa_memblock_acquire(tchunk.memblock); memcpy(dst, u->output_buffer + i, tchunk.length); pa_memblock_release(tchunk.memblock); pa_memblockq_push(u->output_q, &tchunk); pa_memblock_unref(tchunk.memblock); i += tchunk.length; } } static void process_samples(struct userdata *u) { size_t fs = pa_frame_size(&(u->sink->sample_spec)); unsigned a_i; float *H, X; size_t iterations, offset; pa_assert(u->samples_gathered >= u->window_size); iterations = (u->samples_gathered - u->overlap_size) / u->R; //make sure there is enough buffer memory allocated if (iterations * u->R * fs > u->output_buffer_max_length) { u->output_buffer_max_length = iterations * u->R * fs; pa_xfree(u->output_buffer); u->output_buffer = pa_xmalloc(u->output_buffer_max_length); } u->output_buffer_length = iterations * u->R * fs; for(size_t iter = 0; iter < iterations; ++iter) { offset = iter * u->R * fs; for(size_t c = 0;c < u->channels; c++) { a_i = pa_aupdate_read_begin(u->a_H[c]); X = u->Xs[c][a_i]; H = u->Hs[c][a_i]; dsp_logic( u->work_buffer, u->input[c], u->overlap_accum[c], X, H, u->W, u->output_window, u ); pa_aupdate_read_end(u->a_H[c]); if (u->first_iteration) { /* The windowing function will make the audio ramped in, as a cheap fix we can * undo the windowing (for non-zero window values) */ for(size_t i = 0; i < u->overlap_size; ++i) { u->work_buffer[i] = u->W[i] <= FLT_EPSILON ? u->work_buffer[i] : u->work_buffer[i] / u->W[i]; } } pa_sample_clamp(PA_SAMPLE_FLOAT32NE, (uint8_t *) (((float *)u->output_buffer) + c) + offset, fs, u->work_buffer, sizeof(float), u->R); } if (u->first_iteration) { u->first_iteration = false; } u->samples_gathered -= u->R; } flatten_to_memblockq(u); } static void input_buffer(struct userdata *u, pa_memchunk *in) { size_t fs = pa_frame_size(&(u->sink->sample_spec)); size_t samples = in->length/fs; float *src = pa_memblock_acquire_chunk(in); pa_assert(u->samples_gathered + samples <= u->input_buffer_max); for(size_t c = 0; c < u->channels; c++) { //buffer with an offset after the overlap from previous //iterations pa_assert_se( u->input[c] + u->samples_gathered + samples <= u->input[c] + u->input_buffer_max ); pa_sample_clamp(PA_SAMPLE_FLOAT32NE, u->input[c] + u->samples_gathered, sizeof(float), src + c, fs, samples); } u->samples_gathered += samples; pa_memblock_release(in->memblock); } /* Called from I/O thread context */ static int sink_input_pop_cb(pa_sink_input *i, size_t nbytes, pa_memchunk *chunk) { struct userdata *u; size_t fs, target_samples; size_t mbs; //struct timeval start, end; pa_memchunk tchunk; pa_sink_input_assert_ref(i); pa_assert_se(u = i->userdata); pa_assert(chunk); pa_assert(u->sink); if (!PA_SINK_IS_LINKED(u->sink->thread_info.state)) return -1; /* FIXME: Please clean this up. I see more commented code lines * than uncommented code lines. I am sorry, but I am too dumb to * understand this. */ fs = pa_frame_size(&(u->sink->sample_spec)); mbs = pa_mempool_block_size_max(u->sink->core->mempool); if (pa_memblockq_get_length(u->output_q) > 0) { //pa_log_debug("qsize is %ld", pa_memblockq_get_length(u->output_q)); goto END; } //nbytes = PA_MIN(nbytes, pa_mempool_block_size_max(u->sink->core->mempool)); target_samples = PA_ROUND_UP(nbytes / fs, u->R); ////pa_log_debug("vanilla mbs = %ld",mbs); //mbs = PA_ROUND_DOWN(mbs / fs, u->R); //mbs = PA_MAX(mbs, u->R); //target_samples = PA_MAX(target_samples, mbs); //pa_log_debug("target samples: %ld", target_samples); if (u->first_iteration) { //allocate request_size target_samples = PA_MAX(target_samples, u->window_size); }else{ //allocate request_size + overlap target_samples += u->overlap_size; } alloc_input_buffers(u, target_samples); //pa_log_debug("post target samples: %ld", target_samples); chunk->memblock = NULL; /* Hmm, process any rewind request that might be queued up */ pa_sink_process_rewind(u->sink, 0); //pa_log_debug("start output-buffered %ld, input-buffered %ld, requested %ld",buffered_samples,u->samples_gathered,samples_requested); //pa_rtclock_get(&start); do{ size_t input_remaining = target_samples - u->samples_gathered; // pa_log_debug("input remaining %ld samples", input_remaining); pa_assert(input_remaining > 0); while (pa_memblockq_peek(u->input_q, &tchunk) < 0) { //pa_sink_render(u->sink, input_remaining * fs, &tchunk); pa_sink_render_full(u->sink, PA_MIN(input_remaining * fs, mbs), &tchunk); pa_memblockq_push(u->input_q, &tchunk); pa_memblock_unref(tchunk.memblock); } pa_assert(tchunk.memblock); tchunk.length = PA_MIN(input_remaining * fs, tchunk.length); pa_memblockq_drop(u->input_q, tchunk.length); //pa_log_debug("asked for %ld input samples, got %ld samples",input_remaining,buffer->length/fs); /* copy new input */ //pa_rtclock_get(start); // pa_log_debug("buffering %ld bytes", tchunk.length); input_buffer(u, &tchunk); //pa_rtclock_get(&end); //pa_log_debug("Took %0.5f seconds to setup", pa_timeval_diff(end, start) / (double) PA_USEC_PER_SEC); pa_memblock_unref(tchunk.memblock); } while(u->samples_gathered < target_samples); //pa_rtclock_get(&end); //pa_log_debug("Took %0.6f seconds to get data", (double) pa_timeval_diff(&end, &start) / PA_USEC_PER_SEC); pa_assert(u->fft_size >= u->window_size); pa_assert(u->R < u->window_size); //pa_rtclock_get(&start); /* process a block */ process_samples(u); //pa_rtclock_get(&end); //pa_log_debug("Took %0.6f seconds to process", (double) pa_timeval_diff(&end, &start) / PA_USEC_PER_SEC); END: pa_assert_se(pa_memblockq_peek(u->output_q, chunk) >= 0); pa_assert(chunk->memblock); pa_memblockq_drop(u->output_q, chunk->length); //pa_log_debug("gave %ld", chunk->length/fs); //pa_log_debug("end pop"); return 0; } /* Called from main context */ static void sink_input_volume_changed_cb(pa_sink_input *i) { struct userdata *u; pa_sink_input_assert_ref(i); pa_assert_se(u = i->userdata); pa_sink_volume_changed(u->sink, &i->volume); } /* Called from main context */ static void sink_input_mute_changed_cb(pa_sink_input *i) { struct userdata *u; pa_sink_input_assert_ref(i); pa_assert_se(u = i->userdata); pa_sink_mute_changed(u->sink, i->muted); } #if 0 static void reset_filter(struct userdata *u) { size_t fs = pa_frame_size(&u->sink->sample_spec); size_t max_request; u->samples_gathered = 0; for(size_t i = 0; i < u->channels; ++i) pa_memzero(u->overlap_accum[i], u->overlap_size * sizeof(float)); u->first_iteration = true; //set buffer size to max request, no overlap copy max_request = PA_ROUND_UP(pa_sink_input_get_max_request(u->sink_input) / fs , u->R); max_request = PA_MAX(max_request, u->window_size); pa_sink_set_max_request_within_thread(u->sink, max_request * fs); } #endif /* Called from I/O thread context */ static void sink_input_process_rewind_cb(pa_sink_input *i, size_t nbytes) { struct userdata *u; size_t amount = 0; pa_log_debug("Rewind callback!"); pa_sink_input_assert_ref(i); pa_assert_se(u = i->userdata); /* If the sink is not yet linked, there is nothing to rewind */ if (!PA_SINK_IS_LINKED(u->sink->thread_info.state)) return; if (u->sink->thread_info.rewind_nbytes > 0) { size_t max_rewrite; //max_rewrite = nbytes; max_rewrite = nbytes + pa_memblockq_get_length(u->input_q); //PA_MIN(pa_memblockq_get_length(u->input_q), nbytes); amount = PA_MIN(u->sink->thread_info.rewind_nbytes, max_rewrite); u->sink->thread_info.rewind_nbytes = 0; if (amount > 0) { //invalidate the output q pa_memblockq_seek(u->input_q, - (int64_t) amount, PA_SEEK_RELATIVE, true); pa_log("Resetting filter"); //reset_filter(u); //this is the "proper" thing to do... } } pa_sink_process_rewind(u->sink, amount); pa_memblockq_rewind(u->input_q, nbytes); } /* Called from I/O thread context */ static void sink_input_update_max_rewind_cb(pa_sink_input *i, size_t nbytes) { struct userdata *u; pa_sink_input_assert_ref(i); pa_assert_se(u = i->userdata); /* FIXME: Too small max_rewind: * https://bugs.freedesktop.org/show_bug.cgi?id=53709 */ pa_memblockq_set_maxrewind(u->input_q, nbytes); pa_sink_set_max_rewind_within_thread(u->sink, nbytes); } /* Called from I/O thread context */ static void sink_input_update_max_request_cb(pa_sink_input *i, size_t nbytes) { struct userdata *u; size_t fs; pa_sink_input_assert_ref(i); pa_assert_se(u = i->userdata); fs = pa_frame_size(&u->sink_input->sample_spec); pa_sink_set_max_request_within_thread(u->sink, PA_ROUND_UP(nbytes / fs, u->R) * fs); } /* Called from I/O thread context */ static void sink_input_update_sink_latency_range_cb(pa_sink_input *i) { struct userdata *u; pa_sink_input_assert_ref(i); pa_assert_se(u = i->userdata); pa_sink_set_latency_range_within_thread(u->sink, i->sink->thread_info.min_latency, i->sink->thread_info.max_latency); } /* Called from I/O thread context */ static void sink_input_update_sink_fixed_latency_cb(pa_sink_input *i) { struct userdata *u; pa_sink_input_assert_ref(i); pa_assert_se(u = i->userdata); pa_sink_set_fixed_latency_within_thread(u->sink, i->sink->thread_info.fixed_latency); } /* Called from I/O thread context */ static void sink_input_detach_cb(pa_sink_input *i) { struct userdata *u; pa_sink_input_assert_ref(i); pa_assert_se(u = i->userdata); if (PA_SINK_IS_LINKED(u->sink->thread_info.state)) pa_sink_detach_within_thread(u->sink); pa_sink_set_rtpoll(u->sink, NULL); } /* Called from I/O thread context */ static void sink_input_attach_cb(pa_sink_input *i) { struct userdata *u; size_t fs, max_request; pa_sink_input_assert_ref(i); pa_assert_se(u = i->userdata); pa_sink_set_rtpoll(u->sink, i->sink->thread_info.rtpoll); pa_sink_set_latency_range_within_thread(u->sink, i->sink->thread_info.min_latency, i->sink->thread_info.max_latency); pa_sink_set_fixed_latency_within_thread(u->sink, i->sink->thread_info.fixed_latency); fs = pa_frame_size(&u->sink_input->sample_spec); /* set buffer size to max request, no overlap copy */ max_request = PA_ROUND_UP(pa_sink_input_get_max_request(u->sink_input) / fs, u->R); max_request = PA_MAX(max_request, u->window_size); pa_sink_set_max_request_within_thread(u->sink, max_request * fs); /* FIXME: Too small max_rewind: * https://bugs.freedesktop.org/show_bug.cgi?id=53709 */ pa_sink_set_max_rewind_within_thread(u->sink, pa_sink_input_get_max_rewind(i)); if (PA_SINK_IS_LINKED(u->sink->thread_info.state)) pa_sink_attach_within_thread(u->sink); } /* Called from main context */ static void sink_input_kill_cb(pa_sink_input *i) { struct userdata *u; pa_sink_input_assert_ref(i); pa_assert_se(u = i->userdata); /* The order here matters! We first kill the sink so that streams * can properly be moved away while the sink input is still connected * to the master. */ pa_sink_input_cork(u->sink_input, true); pa_sink_unlink(u->sink); pa_sink_input_unlink(u->sink_input); pa_sink_input_unref(u->sink_input); u->sink_input = NULL; /* Leave u->sink alone for now, it will be cleaned up on module * unload (and it is needed during unload as well). */ pa_module_unload_request(u->module, true); } static void pack(char **strs, size_t len, char **packed, size_t *length) { size_t t_len = 0; size_t headers = (1+len) * sizeof(uint16_t); char *p; for(size_t i = 0; i < len; ++i) { t_len += strlen(strs[i]); } *length = headers + t_len; p = *packed = pa_xmalloc0(*length); *((uint16_t *) p) = (uint16_t) len; p += sizeof(uint16_t); for(size_t i = 0; i < len; ++i) { uint16_t l = strlen(strs[i]); *((uint16_t *) p) = (uint16_t) l; p += sizeof(uint16_t); memcpy(p, strs[i], l); p += l; } } static void unpack(char *str, size_t length, char ***strs, size_t *len) { char *p = str; *len = *((uint16_t *) p); p += sizeof(uint16_t); *strs = pa_xnew(char *, *len); for(size_t i = 0; i < *len; ++i) { size_t l = *((uint16_t *) p); p += sizeof(uint16_t); (*strs)[i] = pa_xnew(char, l + 1); memcpy((*strs)[i], p, l); (*strs)[i][l] = '\0'; p += l; } } static void save_profile(struct userdata *u, size_t channel, char *name) { unsigned a_i; const size_t profile_size = CHANNEL_PROFILE_SIZE(u) * sizeof(float); float *H_n, *profile; const float *H; pa_datum key, data; profile = pa_xnew0(float, profile_size); a_i = pa_aupdate_read_begin(u->a_H[channel]); profile[0] = u->Xs[a_i][channel]; H = u->Hs[channel][a_i]; H_n = profile + 1; for(size_t i = 0 ; i < FILTER_SIZE(u); ++i) { H_n[i] = H[i] * u->fft_size; //H_n[i] = H[i]; } pa_aupdate_read_end(u->a_H[channel]); key.data=name; key.size = strlen(key.data); data.data = profile; data.size = profile_size; pa_database_set(u->database, &key, &data, true); pa_database_sync(u->database); if (u->base_profiles[channel]) { pa_xfree(u->base_profiles[channel]); } u->base_profiles[channel] = pa_xstrdup(name); } static void save_state(struct userdata *u) { unsigned a_i; const size_t filter_state_size = FILTER_STATE_SIZE(u) * sizeof(float); float *H_n, *state; float *H; pa_datum key, data; pa_database *database; char *state_path; char *packed; size_t packed_length; pack(u->base_profiles, u->channels, &packed, &packed_length); state = (float *) pa_xmalloc0(filter_state_size + packed_length); memcpy(state + FILTER_STATE_SIZE(u), packed, packed_length); pa_xfree(packed); for(size_t c = 0; c < u->channels; ++c) { a_i = pa_aupdate_read_begin(u->a_H[c]); state[c * CHANNEL_PROFILE_SIZE(u)] = u->Xs[c][a_i]; H = u->Hs[c][a_i]; H_n = &state[c * CHANNEL_PROFILE_SIZE(u) + 1]; memcpy(H_n, H, FILTER_SIZE(u) * sizeof(float)); pa_aupdate_read_end(u->a_H[c]); } key.data = u->sink->name; key.size = strlen(key.data); data.data = state; data.size = filter_state_size + packed_length; //thread safety for 0.9.17? pa_assert_se(state_path = pa_state_path(NULL, false)); pa_assert_se(database = pa_database_open(state_path, EQ_STATE_DB, false, true)); pa_xfree(state_path); pa_database_set(database, &key, &data, true); pa_database_sync(database); pa_database_close(database); pa_xfree(state); } static void remove_profile(pa_core *c, char *name) { pa_datum key; pa_database *database; key.data = name; key.size = strlen(key.data); pa_assert_se(database = pa_shared_get(c, EQDB)); pa_database_unset(database, &key); pa_database_sync(database); } static const char* load_profile(struct userdata *u, size_t channel, char *name) { unsigned a_i; pa_datum key, value; const size_t profile_size = CHANNEL_PROFILE_SIZE(u) * sizeof(float); key.data = name; key.size = strlen(key.data); if (pa_database_get(u->database, &key, &value) != NULL) { if (value.size == profile_size) { float *profile = (float *) value.data; a_i = pa_aupdate_write_begin(u->a_H[channel]); u->Xs[channel][a_i] = profile[0]; memcpy(u->Hs[channel][a_i], profile + 1, FILTER_SIZE(u) * sizeof(float)); fix_filter(u->Hs[channel][a_i], u->fft_size); pa_aupdate_write_end(u->a_H[channel]); pa_xfree(u->base_profiles[channel]); u->base_profiles[channel] = pa_xstrdup(name); }else{ return "incompatible size"; } pa_datum_free(&value); }else{ return "profile doesn't exist"; } return NULL; } static void load_state(struct userdata *u) { unsigned a_i; float *H; pa_datum key, value; pa_database *database; char *state_path; pa_assert_se(state_path = pa_state_path(NULL, false)); database = pa_database_open(state_path, EQ_STATE_DB, false, false); pa_xfree(state_path); if (!database) { pa_log("No resume state"); return; } key.data = u->sink->name; key.size = strlen(key.data); if (pa_database_get(database, &key, &value) != NULL) { if (value.size > FILTER_STATE_SIZE(u) * sizeof(float) + sizeof(uint16_t)) { float *state = (float *) value.data; size_t n_profs; char **names; for(size_t c = 0; c < u->channels; ++c) { a_i = pa_aupdate_write_begin(u->a_H[c]); H = state + c * CHANNEL_PROFILE_SIZE(u) + 1; u->Xs[c][a_i] = state[c * CHANNEL_PROFILE_SIZE(u)]; memcpy(u->Hs[c][a_i], H, FILTER_SIZE(u) * sizeof(float)); pa_aupdate_write_end(u->a_H[c]); } unpack(((char *)value.data) + FILTER_STATE_SIZE(u) * sizeof(float), value.size - FILTER_STATE_SIZE(u) * sizeof(float), &names, &n_profs); n_profs = PA_MIN(n_profs, u->channels); for(size_t c = 0; c < n_profs; ++c) { pa_xfree(u->base_profiles[c]); u->base_profiles[c] = names[c]; } pa_xfree(names); } pa_datum_free(&value); }else{ pa_log("resume state exists but is wrong size!"); } pa_database_close(database); } /* Called from main context */ static bool sink_input_may_move_to_cb(pa_sink_input *i, pa_sink *dest) { struct userdata *u; pa_sink_input_assert_ref(i); pa_assert_se(u = i->userdata); return u->sink != dest; } /* Called from main context */ static void sink_input_moving_cb(pa_sink_input *i, pa_sink *dest) { struct userdata *u; pa_sink_input_assert_ref(i); pa_assert_se(u = i->userdata); if (u->autoloaded) { /* We were autoloaded, and don't support moving. Let's unload ourselves. */ pa_log_debug("Can't move autoloaded stream, unloading"); pa_module_unload_request(u->module, true); } if (dest) { pa_sink_set_asyncmsgq(u->sink, dest->asyncmsgq); pa_sink_update_flags(u->sink, PA_SINK_LATENCY|PA_SINK_DYNAMIC_LATENCY, dest->flags); if (u->automatic_description) { const char *master_description; char *new_description; master_description = pa_proplist_gets(dest->proplist, PA_PROP_DEVICE_DESCRIPTION); new_description = pa_sprintf_malloc(_("FFT based equalizer on %s"), master_description ? master_description : dest->name); pa_sink_set_description(u->sink, new_description); pa_xfree(new_description); } } else pa_sink_set_asyncmsgq(u->sink, NULL); } int pa__init(pa_module*m) { struct userdata *u; pa_sample_spec ss; pa_channel_map map; pa_modargs *ma; pa_sink *master; pa_sink_input_new_data sink_input_data; pa_sink_new_data sink_data; size_t i; unsigned c; float *H; unsigned a_i; bool use_volume_sharing = true; pa_assert(m); pa_log_warn("module-equalizer-sink is currently unsupported, and can sometimes cause " "PulseAudio crashes, increased latency or audible artifacts."); pa_log_warn("If you're facing audio problems, try unloading this module as a potential workaround."); if (!(ma = pa_modargs_new(m->argument, valid_modargs))) { pa_log("Failed to parse module arguments."); goto fail; } if (!(master = pa_namereg_get(m->core, pa_modargs_get_value(ma, "sink_master", NULL), PA_NAMEREG_SINK))) { pa_log("Master sink not found"); goto fail; } ss = master->sample_spec; ss.format = PA_SAMPLE_FLOAT32; map = master->channel_map; if (pa_modargs_get_sample_spec_and_channel_map(ma, &ss, &map, PA_CHANNEL_MAP_DEFAULT) < 0) { pa_log("Invalid sample format specification or channel map"); goto fail; } //fs = pa_frame_size(&ss); if (pa_modargs_get_value_boolean(ma, "use_volume_sharing", &use_volume_sharing) < 0) { pa_log("use_volume_sharing= expects a boolean argument"); goto fail; } u = pa_xnew0(struct userdata, 1); u->module = m; m->userdata = u; u->channels = ss.channels; u->fft_size = pow(2, ceil(log(ss.rate) / log(2)));//probably unstable near corner cases of powers of 2 pa_log_debug("fft size: %zd", u->fft_size); u->window_size = 15999; if (u->window_size % 2 == 0) u->window_size--; u->R = (u->window_size + 1) / 2; u->overlap_size = u->window_size - u->R; u->samples_gathered = 0; u->input_buffer_max = 0; u->a_H = pa_xnew0(pa_aupdate *, u->channels); u->Xs = pa_xnew0(float *, u->channels); u->Hs = pa_xnew0(float **, u->channels); for (c = 0; c < u->channels; ++c) { u->Xs[c] = pa_xnew0(float, 2); u->Hs[c] = pa_xnew0(float *, 2); for (i = 0; i < 2; ++i) u->Hs[c][i] = alloc(FILTER_SIZE(u), sizeof(float)); } u->W = alloc(u->window_size, sizeof(float)); u->work_buffer = alloc(u->fft_size, sizeof(float)); u->input = pa_xnew0(float *, u->channels); u->overlap_accum = pa_xnew0(float *, u->channels); for (c = 0; c < u->channels; ++c) { u->a_H[c] = pa_aupdate_new(); u->input[c] = NULL; u->overlap_accum[c] = alloc(u->overlap_size, sizeof(float)); } u->output_window = alloc(FILTER_SIZE(u), sizeof(fftwf_complex)); u->forward_plan = fftwf_plan_dft_r2c_1d(u->fft_size, u->work_buffer, u->output_window, FFTW_ESTIMATE); u->inverse_plan = fftwf_plan_dft_c2r_1d(u->fft_size, u->output_window, u->work_buffer, FFTW_ESTIMATE); hanning_window(u->W, u->window_size); u->first_iteration = true; u->base_profiles = pa_xnew0(char *, u->channels); for (c = 0; c < u->channels; ++c) u->base_profiles[c] = pa_xstrdup("default"); /* Create sink */ pa_sink_new_data_init(&sink_data); sink_data.driver = __FILE__; sink_data.module = m; if (!(sink_data.name = pa_xstrdup(pa_modargs_get_value(ma, "sink_name", NULL)))) sink_data.name = pa_sprintf_malloc("%s.equalizer", master->name); pa_sink_new_data_set_sample_spec(&sink_data, &ss); pa_sink_new_data_set_channel_map(&sink_data, &map); pa_proplist_sets(sink_data.proplist, PA_PROP_DEVICE_MASTER_DEVICE, master->name); pa_proplist_sets(sink_data.proplist, PA_PROP_DEVICE_CLASS, "filter"); if (pa_modargs_get_proplist(ma, "sink_properties", sink_data.proplist, PA_UPDATE_REPLACE) < 0) { pa_log("Invalid properties"); pa_sink_new_data_done(&sink_data); goto fail; } if (!pa_proplist_contains(sink_data.proplist, PA_PROP_DEVICE_DESCRIPTION)) { const char *master_description; master_description = pa_proplist_gets(master->proplist, PA_PROP_DEVICE_DESCRIPTION); pa_proplist_setf(sink_data.proplist, PA_PROP_DEVICE_DESCRIPTION, _("FFT based equalizer on %s"), master_description ? master_description : master->name); u->automatic_description = true; } u->autoloaded = DEFAULT_AUTOLOADED; if (pa_modargs_get_value_boolean(ma, "autoloaded", &u->autoloaded) < 0) { pa_log("Failed to parse autoloaded value"); goto fail; } u->sink = pa_sink_new(m->core, &sink_data, (master->flags & (PA_SINK_LATENCY | PA_SINK_DYNAMIC_LATENCY)) | (use_volume_sharing ? PA_SINK_SHARE_VOLUME_WITH_MASTER : 0)); pa_sink_new_data_done(&sink_data); if (!u->sink) { pa_log("Failed to create sink."); goto fail; } u->sink->parent.process_msg = sink_process_msg_cb; u->sink->set_state_in_main_thread = sink_set_state_in_main_thread_cb; u->sink->set_state_in_io_thread = sink_set_state_in_io_thread_cb; u->sink->update_requested_latency = sink_update_requested_latency_cb; u->sink->request_rewind = sink_request_rewind_cb; pa_sink_set_set_mute_callback(u->sink, sink_set_mute_cb); if (!use_volume_sharing) { pa_sink_set_set_volume_callback(u->sink, sink_set_volume_cb); pa_sink_enable_decibel_volume(u->sink, true); } u->sink->userdata = u; u->input_q = pa_memblockq_new("module-equalizer-sink input_q", 0, MEMBLOCKQ_MAXLENGTH, 0, &ss, 1, 1, 0, &u->sink->silence); u->output_q = pa_memblockq_new("module-equalizer-sink output_q", 0, MEMBLOCKQ_MAXLENGTH, 0, &ss, 1, 1, 0, NULL); u->output_buffer = NULL; u->output_buffer_length = 0; u->output_buffer_max_length = 0; pa_sink_set_asyncmsgq(u->sink, master->asyncmsgq); //pa_sink_set_fixed_latency(u->sink, pa_bytes_to_usec(u->R*fs, &ss)); /* Create sink input */ pa_sink_input_new_data_init(&sink_input_data); sink_input_data.driver = __FILE__; sink_input_data.module = m; pa_sink_input_new_data_set_sink(&sink_input_data, master, false, true); sink_input_data.origin_sink = u->sink; pa_proplist_sets(sink_input_data.proplist, PA_PROP_MEDIA_NAME, "Equalized Stream"); pa_proplist_sets(sink_input_data.proplist, PA_PROP_MEDIA_ROLE, "filter"); pa_sink_input_new_data_set_sample_spec(&sink_input_data, &ss); pa_sink_input_new_data_set_channel_map(&sink_input_data, &map); sink_input_data.flags |= PA_SINK_INPUT_START_CORKED; pa_sink_input_new(&u->sink_input, m->core, &sink_input_data); pa_sink_input_new_data_done(&sink_input_data); if (!u->sink_input) goto fail; u->sink_input->pop = sink_input_pop_cb; u->sink_input->process_rewind = sink_input_process_rewind_cb; u->sink_input->update_max_rewind = sink_input_update_max_rewind_cb; u->sink_input->update_max_request = sink_input_update_max_request_cb; u->sink_input->update_sink_latency_range = sink_input_update_sink_latency_range_cb; u->sink_input->update_sink_fixed_latency = sink_input_update_sink_fixed_latency_cb; u->sink_input->kill = sink_input_kill_cb; u->sink_input->attach = sink_input_attach_cb; u->sink_input->detach = sink_input_detach_cb; u->sink_input->may_move_to = sink_input_may_move_to_cb; u->sink_input->moving = sink_input_moving_cb; if (!use_volume_sharing) u->sink_input->volume_changed = sink_input_volume_changed_cb; u->sink_input->mute_changed = sink_input_mute_changed_cb; u->sink_input->userdata = u; u->sink->input_to_master = u->sink_input; dbus_init(u); /* default filter to these */ for (c = 0; c< u->channels; ++c) { a_i = pa_aupdate_write_begin(u->a_H[c]); H = u->Hs[c][a_i]; u->Xs[c][a_i] = 1.0f; for(i = 0; i < FILTER_SIZE(u); ++i) H[i] = 1.0 / sqrtf(2.0f); fix_filter(H, u->fft_size); pa_aupdate_write_end(u->a_H[c]); } /* load old parameters */ load_state(u); /* The order here is important. The input must be put first, * otherwise streams might attach to the sink before the sink * input is attached to the master. */ pa_sink_input_put(u->sink_input); pa_sink_put(u->sink); pa_sink_input_cork(u->sink_input, false); pa_modargs_free(ma); return 0; fail: if (ma) pa_modargs_free(ma); pa__done(m); return -1; } int pa__get_n_used(pa_module *m) { struct userdata *u; pa_assert(m); pa_assert_se(u = m->userdata); return pa_sink_linked_by(u->sink); } void pa__done(pa_module*m) { struct userdata *u; unsigned c; pa_assert(m); if (!(u = m->userdata)) return; save_state(u); dbus_done(u); for(c = 0; c < u->channels; ++c) pa_xfree(u->base_profiles[c]); pa_xfree(u->base_profiles); /* See comments in sink_input_kill_cb() above regarding * destruction order! */ if (u->sink_input) pa_sink_input_cork(u->sink_input, true); if (u->sink) pa_sink_unlink(u->sink); if (u->sink_input) { pa_sink_input_unlink(u->sink_input); pa_sink_input_unref(u->sink_input); } if (u->sink) pa_sink_unref(u->sink); pa_xfree(u->output_buffer); pa_memblockq_free(u->output_q); pa_memblockq_free(u->input_q); fftwf_destroy_plan(u->inverse_plan); fftwf_destroy_plan(u->forward_plan); fftwf_free(u->output_window); for (c = 0; c < u->channels; ++c) { pa_aupdate_free(u->a_H[c]); fftwf_free(u->overlap_accum[c]); fftwf_free(u->input[c]); } pa_xfree(u->a_H); pa_xfree(u->overlap_accum); pa_xfree(u->input); fftwf_free(u->work_buffer); fftwf_free(u->W); for (c = 0; c < u->channels; ++c) { pa_xfree(u->Xs[c]); for (size_t i = 0; i < 2; ++i) fftwf_free(u->Hs[c][i]); fftwf_free(u->Hs[c]); } pa_xfree(u->Xs); pa_xfree(u->Hs); pa_xfree(u); } /* * DBus Routines and Callbacks */ #define EXTNAME "org.PulseAudio.Ext.Equalizing1" #define MANAGER_PATH "/org/pulseaudio/equalizing1" #define MANAGER_IFACE EXTNAME ".Manager" #define EQUALIZER_IFACE EXTNAME ".Equalizer" static void manager_get_revision(DBusConnection *conn, DBusMessage *msg, void *_u); static void manager_get_sinks(DBusConnection *conn, DBusMessage *msg, void *_u); static void manager_get_profiles(DBusConnection *conn, DBusMessage *msg, void *_u); static void manager_get_all(DBusConnection *conn, DBusMessage *msg, void *_u); static void manager_handle_remove_profile(DBusConnection *conn, DBusMessage *msg, void *_u); static void equalizer_get_revision(DBusConnection *conn, DBusMessage *msg, void *_u); static void equalizer_get_sample_rate(DBusConnection *conn, DBusMessage *msg, void *_u); static void equalizer_get_filter_rate(DBusConnection *conn, DBusMessage *msg, void *_u); static void equalizer_get_n_coefs(DBusConnection *conn, DBusMessage *msg, void *_u); static void equalizer_get_n_channels(DBusConnection *conn, DBusMessage *msg, void *_u); static void equalizer_get_all(DBusConnection *conn, DBusMessage *msg, void *_u); static void equalizer_handle_seed_filter(DBusConnection *conn, DBusMessage *msg, void *_u); static void equalizer_handle_get_filter_points(DBusConnection *conn, DBusMessage *msg, void *_u); static void equalizer_handle_get_filter(DBusConnection *conn, DBusMessage *msg, void *_u); static void equalizer_handle_set_filter(DBusConnection *conn, DBusMessage *msg, void *_u); static void equalizer_handle_save_profile(DBusConnection *conn, DBusMessage *msg, void *_u); static void equalizer_handle_load_profile(DBusConnection *conn, DBusMessage *msg, void *_u); static void equalizer_handle_save_state(DBusConnection *conn, DBusMessage *msg, void *_u); static void equalizer_handle_get_profile_name(DBusConnection *conn, DBusMessage *msg, void *_u); enum manager_method_index { MANAGER_METHOD_REMOVE_PROFILE, MANAGER_METHOD_MAX }; pa_dbus_arg_info remove_profile_args[]={ {"name", "s","in"}, }; static pa_dbus_method_handler manager_methods[MANAGER_METHOD_MAX]={ [MANAGER_METHOD_REMOVE_PROFILE]={ .method_name="RemoveProfile", .arguments=remove_profile_args, .n_arguments=sizeof(remove_profile_args)/sizeof(pa_dbus_arg_info), .receive_cb=manager_handle_remove_profile} }; enum manager_handler_index { MANAGER_HANDLER_REVISION, MANAGER_HANDLER_EQUALIZED_SINKS, MANAGER_HANDLER_PROFILES, MANAGER_HANDLER_MAX }; static pa_dbus_property_handler manager_handlers[MANAGER_HANDLER_MAX]={ [MANAGER_HANDLER_REVISION]={.property_name="InterfaceRevision",.type="u",.get_cb=manager_get_revision,.set_cb=NULL}, [MANAGER_HANDLER_EQUALIZED_SINKS]={.property_name="EqualizedSinks",.type="ao",.get_cb=manager_get_sinks,.set_cb=NULL}, [MANAGER_HANDLER_PROFILES]={.property_name="Profiles",.type="as",.get_cb=manager_get_profiles,.set_cb=NULL} }; pa_dbus_arg_info sink_args[]={ {"sink", "o", NULL} }; enum manager_signal_index{ MANAGER_SIGNAL_SINK_ADDED, MANAGER_SIGNAL_SINK_REMOVED, MANAGER_SIGNAL_PROFILES_CHANGED, MANAGER_SIGNAL_MAX }; static pa_dbus_signal_info manager_signals[MANAGER_SIGNAL_MAX]={ [MANAGER_SIGNAL_SINK_ADDED]={.name="SinkAdded", .arguments=sink_args, .n_arguments=sizeof(sink_args)/sizeof(pa_dbus_arg_info)}, [MANAGER_SIGNAL_SINK_REMOVED]={.name="SinkRemoved", .arguments=sink_args, .n_arguments=sizeof(sink_args)/sizeof(pa_dbus_arg_info)}, [MANAGER_SIGNAL_PROFILES_CHANGED]={.name="ProfilesChanged", .arguments=NULL, .n_arguments=0} }; static pa_dbus_interface_info manager_info={ .name=MANAGER_IFACE, .method_handlers=manager_methods, .n_method_handlers=MANAGER_METHOD_MAX, .property_handlers=manager_handlers, .n_property_handlers=MANAGER_HANDLER_MAX, .get_all_properties_cb=manager_get_all, .signals=manager_signals, .n_signals=MANAGER_SIGNAL_MAX }; enum equalizer_method_index { EQUALIZER_METHOD_FILTER_POINTS, EQUALIZER_METHOD_SEED_FILTER, EQUALIZER_METHOD_SAVE_PROFILE, EQUALIZER_METHOD_LOAD_PROFILE, EQUALIZER_METHOD_SET_FILTER, EQUALIZER_METHOD_GET_FILTER, EQUALIZER_METHOD_SAVE_STATE, EQUALIZER_METHOD_GET_PROFILE_NAME, EQUALIZER_METHOD_MAX }; enum equalizer_handler_index { EQUALIZER_HANDLER_REVISION, EQUALIZER_HANDLER_SAMPLERATE, EQUALIZER_HANDLER_FILTERSAMPLERATE, EQUALIZER_HANDLER_N_COEFS, EQUALIZER_HANDLER_N_CHANNELS, EQUALIZER_HANDLER_MAX }; pa_dbus_arg_info filter_points_args[]={ {"channel", "u","in"}, {"xs", "au","in"}, {"ys", "ad","out"}, {"preamp", "d","out"} }; pa_dbus_arg_info seed_filter_args[]={ {"channel", "u","in"}, {"xs", "au","in"}, {"ys", "ad","in"}, {"preamp", "d","in"} }; pa_dbus_arg_info set_filter_args[]={ {"channel", "u","in"}, {"ys", "ad","in"}, {"preamp", "d","in"} }; pa_dbus_arg_info get_filter_args[]={ {"channel", "u","in"}, {"ys", "ad","out"}, {"preamp", "d","out"} }; pa_dbus_arg_info save_profile_args[]={ {"channel", "u","in"}, {"name", "s","in"} }; pa_dbus_arg_info load_profile_args[]={ {"channel", "u","in"}, {"name", "s","in"} }; pa_dbus_arg_info base_profile_name_args[]={ {"channel", "u","in"}, {"name", "s","out"} }; static pa_dbus_method_handler equalizer_methods[EQUALIZER_METHOD_MAX]={ [EQUALIZER_METHOD_SEED_FILTER]={ .method_name="SeedFilter", .arguments=seed_filter_args, .n_arguments=sizeof(seed_filter_args)/sizeof(pa_dbus_arg_info), .receive_cb=equalizer_handle_seed_filter}, [EQUALIZER_METHOD_FILTER_POINTS]={ .method_name="FilterAtPoints", .arguments=filter_points_args, .n_arguments=sizeof(filter_points_args)/sizeof(pa_dbus_arg_info), .receive_cb=equalizer_handle_get_filter_points}, [EQUALIZER_METHOD_SET_FILTER]={ .method_name="SetFilter", .arguments=set_filter_args, .n_arguments=sizeof(set_filter_args)/sizeof(pa_dbus_arg_info), .receive_cb=equalizer_handle_set_filter}, [EQUALIZER_METHOD_GET_FILTER]={ .method_name="GetFilter", .arguments=get_filter_args, .n_arguments=sizeof(get_filter_args)/sizeof(pa_dbus_arg_info), .receive_cb=equalizer_handle_get_filter}, [EQUALIZER_METHOD_SAVE_PROFILE]={ .method_name="SaveProfile", .arguments=save_profile_args, .n_arguments=sizeof(save_profile_args)/sizeof(pa_dbus_arg_info), .receive_cb=equalizer_handle_save_profile}, [EQUALIZER_METHOD_LOAD_PROFILE]={ .method_name="LoadProfile", .arguments=load_profile_args, .n_arguments=sizeof(load_profile_args)/sizeof(pa_dbus_arg_info), .receive_cb=equalizer_handle_load_profile}, [EQUALIZER_METHOD_SAVE_STATE]={ .method_name="SaveState", .arguments=NULL, .n_arguments=0, .receive_cb=equalizer_handle_save_state}, [EQUALIZER_METHOD_GET_PROFILE_NAME]={ .method_name="BaseProfile", .arguments=base_profile_name_args, .n_arguments=sizeof(base_profile_name_args)/sizeof(pa_dbus_arg_info), .receive_cb=equalizer_handle_get_profile_name} }; static pa_dbus_property_handler equalizer_handlers[EQUALIZER_HANDLER_MAX]={ [EQUALIZER_HANDLER_REVISION]={.property_name="InterfaceRevision",.type="u",.get_cb=equalizer_get_revision,.set_cb=NULL}, [EQUALIZER_HANDLER_SAMPLERATE]={.property_name="SampleRate",.type="u",.get_cb=equalizer_get_sample_rate,.set_cb=NULL}, [EQUALIZER_HANDLER_FILTERSAMPLERATE]={.property_name="FilterSampleRate",.type="u",.get_cb=equalizer_get_filter_rate,.set_cb=NULL}, [EQUALIZER_HANDLER_N_COEFS]={.property_name="NFilterCoefficients",.type="u",.get_cb=equalizer_get_n_coefs,.set_cb=NULL}, [EQUALIZER_HANDLER_N_CHANNELS]={.property_name="NChannels",.type="u",.get_cb=equalizer_get_n_channels,.set_cb=NULL}, }; enum equalizer_signal_index{ EQUALIZER_SIGNAL_FILTER_CHANGED, EQUALIZER_SIGNAL_SINK_RECONFIGURED, EQUALIZER_SIGNAL_MAX }; static pa_dbus_signal_info equalizer_signals[EQUALIZER_SIGNAL_MAX]={ [EQUALIZER_SIGNAL_FILTER_CHANGED]={.name="FilterChanged", .arguments=NULL, .n_arguments=0}, [EQUALIZER_SIGNAL_SINK_RECONFIGURED]={.name="SinkReconfigured", .arguments=NULL, .n_arguments=0}, }; static pa_dbus_interface_info equalizer_info={ .name=EQUALIZER_IFACE, .method_handlers=equalizer_methods, .n_method_handlers=EQUALIZER_METHOD_MAX, .property_handlers=equalizer_handlers, .n_property_handlers=EQUALIZER_HANDLER_MAX, .get_all_properties_cb=equalizer_get_all, .signals=equalizer_signals, .n_signals=EQUALIZER_SIGNAL_MAX }; void dbus_init(struct userdata *u) { uint32_t dummy; DBusMessage *message = NULL; pa_idxset *sink_list = NULL; u->dbus_protocol=pa_dbus_protocol_get(u->sink->core); u->dbus_path=pa_sprintf_malloc("/org/pulseaudio/core1/sink%d", u->sink->index); pa_assert_se(pa_dbus_protocol_add_interface(u->dbus_protocol, u->dbus_path, &equalizer_info, u) >= 0); sink_list = pa_shared_get(u->sink->core, SINKLIST); u->database = pa_shared_get(u->sink->core, EQDB); if (sink_list == NULL) { char *state_path; sink_list=pa_idxset_new(&pa_idxset_trivial_hash_func, &pa_idxset_trivial_compare_func); pa_shared_set(u->sink->core, SINKLIST, sink_list); pa_assert_se(state_path = pa_state_path(NULL, false)); pa_assert_se(u->database = pa_database_open(state_path, "equalizer-presets", false, true)); pa_xfree(state_path); pa_shared_set(u->sink->core, EQDB, u->database); pa_dbus_protocol_add_interface(u->dbus_protocol, MANAGER_PATH, &manager_info, u->sink->core); pa_dbus_protocol_register_extension(u->dbus_protocol, EXTNAME); } pa_idxset_put(sink_list, u, &dummy); pa_assert_se((message = dbus_message_new_signal(MANAGER_PATH, MANAGER_IFACE, manager_signals[MANAGER_SIGNAL_SINK_ADDED].name))); dbus_message_append_args(message, DBUS_TYPE_OBJECT_PATH, &u->dbus_path, DBUS_TYPE_INVALID); pa_dbus_protocol_send_signal(u->dbus_protocol, message); dbus_message_unref(message); } void dbus_done(struct userdata *u) { pa_idxset *sink_list; uint32_t dummy; DBusMessage *message = NULL; pa_assert_se((message = dbus_message_new_signal(MANAGER_PATH, MANAGER_IFACE, manager_signals[MANAGER_SIGNAL_SINK_REMOVED].name))); dbus_message_append_args(message, DBUS_TYPE_OBJECT_PATH, &u->dbus_path, DBUS_TYPE_INVALID); pa_dbus_protocol_send_signal(u->dbus_protocol, message); dbus_message_unref(message); pa_assert_se(sink_list=pa_shared_get(u->sink->core,SINKLIST)); pa_idxset_remove_by_data(sink_list,u,&dummy); if (pa_idxset_size(sink_list) == 0) { pa_dbus_protocol_unregister_extension(u->dbus_protocol, EXTNAME); pa_dbus_protocol_remove_interface(u->dbus_protocol, MANAGER_PATH, manager_info.name); pa_shared_remove(u->sink->core, EQDB); pa_database_close(u->database); pa_shared_remove(u->sink->core, SINKLIST); pa_xfree(sink_list); } pa_dbus_protocol_remove_interface(u->dbus_protocol, u->dbus_path, equalizer_info.name); pa_xfree(u->dbus_path); pa_dbus_protocol_unref(u->dbus_protocol); } void manager_handle_remove_profile(DBusConnection *conn, DBusMessage *msg, void *_u) { DBusError error; pa_core *c = (pa_core *)_u; DBusMessage *message = NULL; pa_dbus_protocol *dbus_protocol; char *name; pa_assert(conn); pa_assert(msg); pa_assert(c); dbus_error_init(&error); if (!dbus_message_get_args(msg, &error, DBUS_TYPE_STRING, &name, DBUS_TYPE_INVALID)) { pa_dbus_send_error(conn, msg, DBUS_ERROR_INVALID_ARGS, "%s", error.message); dbus_error_free(&error); return; } remove_profile(c,name); pa_dbus_send_empty_reply(conn, msg); pa_assert_se((message = dbus_message_new_signal(MANAGER_PATH, MANAGER_IFACE, manager_signals[MANAGER_SIGNAL_PROFILES_CHANGED].name))); dbus_protocol = pa_dbus_protocol_get(c); pa_dbus_protocol_send_signal(dbus_protocol, message); pa_dbus_protocol_unref(dbus_protocol); dbus_message_unref(message); } void manager_get_revision(DBusConnection *conn, DBusMessage *msg, void *_u) { uint32_t rev=1; pa_dbus_send_basic_value_reply(conn, msg, DBUS_TYPE_UINT32, &rev); } static void get_sinks(pa_core *u, char ***names, unsigned *n_sinks) { void *iter = NULL; struct userdata *sink_u = NULL; uint32_t dummy; pa_idxset *sink_list; pa_assert(u); pa_assert(names); pa_assert(n_sinks); pa_assert_se(sink_list = pa_shared_get(u, SINKLIST)); *n_sinks = (unsigned) pa_idxset_size(sink_list); *names = *n_sinks > 0 ? pa_xnew0(char *,*n_sinks) : NULL; for(uint32_t i = 0; i < *n_sinks; ++i) { sink_u = (struct userdata *) pa_idxset_iterate(sink_list, &iter, &dummy); (*names)[i] = pa_xstrdup(sink_u->dbus_path); } } void manager_get_sinks(DBusConnection *conn, DBusMessage *msg, void *_u) { unsigned n; char **names = NULL; pa_assert(conn); pa_assert(msg); pa_assert(_u); get_sinks((pa_core *) _u, &names, &n); pa_dbus_send_basic_array_variant_reply(conn, msg, DBUS_TYPE_OBJECT_PATH, names, n); for(unsigned i = 0; i < n; ++i) { pa_xfree(names[i]); } pa_xfree(names); } static void get_profiles(pa_core *c, char ***names, unsigned *n) { char *name; pa_database *database; pa_datum key, next_key; pa_strlist *head=NULL, *iter; bool done; pa_assert_se(database = pa_shared_get(c, EQDB)); pa_assert(c); pa_assert(names); pa_assert(n); done = !pa_database_first(database, &key, NULL); *n = 0; while(!done) { done = !pa_database_next(database, &key, &next_key, NULL); name=pa_xmalloc(key.size + 1); memcpy(name, key.data, key.size); name[key.size] = '\0'; pa_datum_free(&key); head = pa_strlist_prepend(head, name); pa_xfree(name); key = next_key; (*n)++; } (*names) = *n > 0 ? pa_xnew0(char *, *n) : NULL; iter=head; for(unsigned i = 0; i < *n; ++i) { (*names)[*n - 1 - i] = pa_xstrdup(pa_strlist_data(iter)); iter = pa_strlist_next(iter); } pa_strlist_free(head); } void manager_get_profiles(DBusConnection *conn, DBusMessage *msg, void *_u) { char **names; unsigned n; pa_assert(conn); pa_assert(msg); pa_assert(_u); get_profiles((pa_core *)_u, &names, &n); pa_dbus_send_basic_array_variant_reply(conn, msg, DBUS_TYPE_STRING, names, n); for(unsigned i = 0; i < n; ++i) { pa_xfree(names[i]); } pa_xfree(names); } void manager_get_all(DBusConnection *conn, DBusMessage *msg, void *_u) { pa_core *c; char **names = NULL; unsigned n; DBusMessage *reply = NULL; DBusMessageIter msg_iter, dict_iter; uint32_t rev; pa_assert(conn); pa_assert(msg); pa_assert_se(c = _u); pa_assert_se((reply = dbus_message_new_method_return(msg))); dbus_message_iter_init_append(reply, &msg_iter); pa_assert_se(dbus_message_iter_open_container(&msg_iter, DBUS_TYPE_ARRAY, "{sv}", &dict_iter)); rev = 1; pa_dbus_append_basic_variant_dict_entry(&dict_iter, manager_handlers[MANAGER_HANDLER_REVISION].property_name, DBUS_TYPE_UINT32, &rev); get_sinks(c, &names, &n); pa_dbus_append_basic_array_variant_dict_entry(&dict_iter,manager_handlers[MANAGER_HANDLER_EQUALIZED_SINKS].property_name, DBUS_TYPE_OBJECT_PATH, names, n); for(unsigned i = 0; i < n; ++i) { pa_xfree(names[i]); } pa_xfree(names); get_profiles(c, &names, &n); pa_dbus_append_basic_array_variant_dict_entry(&dict_iter, manager_handlers[MANAGER_HANDLER_PROFILES].property_name, DBUS_TYPE_STRING, names, n); for(unsigned i = 0; i < n; ++i) { pa_xfree(names[i]); } pa_xfree(names); pa_assert_se(dbus_message_iter_close_container(&msg_iter, &dict_iter)); pa_assert_se(dbus_connection_send(conn, reply, NULL)); dbus_message_unref(reply); } void equalizer_handle_seed_filter(DBusConnection *conn, DBusMessage *msg, void *_u) { struct userdata *u = _u; DBusError error; DBusMessage *message = NULL; float *ys; uint32_t *xs, channel, r_channel; double *_ys, preamp; unsigned x_npoints, y_npoints, a_i; float *H; bool points_good = true; pa_assert(conn); pa_assert(msg); pa_assert(u); dbus_error_init(&error); if (!dbus_message_get_args(msg, &error, DBUS_TYPE_UINT32, &channel, DBUS_TYPE_ARRAY, DBUS_TYPE_UINT32, &xs, &x_npoints, DBUS_TYPE_ARRAY, DBUS_TYPE_DOUBLE, &_ys, &y_npoints, DBUS_TYPE_DOUBLE, &preamp, DBUS_TYPE_INVALID)) { pa_dbus_send_error(conn, msg, DBUS_ERROR_INVALID_ARGS, "%s", error.message); dbus_error_free(&error); return; } if (channel > u->channels) { pa_dbus_send_error(conn, msg, DBUS_ERROR_INVALID_ARGS, "invalid channel: %d", channel); dbus_error_free(&error); return; } for(size_t i = 0; i < x_npoints; ++i) { if (xs[i] >= FILTER_SIZE(u)) { points_good = false; break; } } if (!is_monotonic(xs, x_npoints) || !points_good) { pa_dbus_send_error(conn, msg, DBUS_ERROR_INVALID_ARGS, "xs must be monotonic and 0<=x<=%zd", u->fft_size / 2); dbus_error_free(&error); return; }else if (x_npoints != y_npoints || x_npoints < 2 || x_npoints > FILTER_SIZE(u)) { pa_dbus_send_error(conn, msg, DBUS_ERROR_INVALID_ARGS, "xs and ys must be the same length and 2<=l<=%zd!", FILTER_SIZE(u)); dbus_error_free(&error); return; }else if (xs[0] != 0 || xs[x_npoints - 1] != u->fft_size / 2) { pa_dbus_send_error(conn, msg, DBUS_ERROR_INVALID_ARGS, "xs[0] must be 0 and xs[-1]=fft_size/2"); dbus_error_free(&error); return; } ys = pa_xmalloc(x_npoints * sizeof(float)); for(uint32_t i = 0; i < x_npoints; ++i) { ys[i] = (float) _ys[i]; } r_channel = channel == u->channels ? 0 : channel; a_i = pa_aupdate_write_begin(u->a_H[r_channel]); H = u->Hs[r_channel][a_i]; u->Xs[r_channel][a_i] = preamp; interpolate(H, FILTER_SIZE(u), xs, ys, x_npoints); fix_filter(H, u->fft_size); if (channel == u->channels) { for(size_t c = 1; c < u->channels; ++c) { unsigned b_i = pa_aupdate_write_begin(u->a_H[c]); float *H_p = u->Hs[c][b_i]; u->Xs[c][b_i] = preamp; memcpy(H_p, H, FILTER_SIZE(u) * sizeof(float)); pa_aupdate_write_end(u->a_H[c]); } } pa_aupdate_write_end(u->a_H[r_channel]); pa_xfree(ys); pa_dbus_send_empty_reply(conn, msg); pa_assert_se((message = dbus_message_new_signal(u->dbus_path, EQUALIZER_IFACE, equalizer_signals[EQUALIZER_SIGNAL_FILTER_CHANGED].name))); pa_dbus_protocol_send_signal(u->dbus_protocol, message); dbus_message_unref(message); } void equalizer_handle_get_filter_points(DBusConnection *conn, DBusMessage *msg, void *_u) { struct userdata *u = (struct userdata *) _u; uint32_t *xs, channel, r_channel; double *ys, preamp; unsigned x_npoints, a_i; float *H; bool points_good=true; DBusMessage *reply = NULL; DBusMessageIter msg_iter; DBusError error; pa_assert(conn); pa_assert(msg); pa_assert(u); dbus_error_init(&error); if (!dbus_message_get_args(msg, &error, DBUS_TYPE_UINT32, &channel, DBUS_TYPE_ARRAY, DBUS_TYPE_UINT32, &xs, &x_npoints, DBUS_TYPE_INVALID)) { pa_dbus_send_error(conn, msg, DBUS_ERROR_INVALID_ARGS, "%s", error.message); dbus_error_free(&error); return; } if (channel > u->channels) { pa_dbus_send_error(conn, msg, DBUS_ERROR_INVALID_ARGS, "invalid channel: %d", channel); dbus_error_free(&error); return; } for(size_t i = 0; i < x_npoints; ++i) { if (xs[i] >= FILTER_SIZE(u)) { points_good=false; break; } } if (x_npoints > FILTER_SIZE(u) || !points_good) { pa_dbus_send_error(conn, msg, DBUS_ERROR_INVALID_ARGS, "xs indices/length must be <= %zd!", FILTER_SIZE(u)); dbus_error_free(&error); return; } r_channel = channel == u->channels ? 0 : channel; ys = pa_xmalloc(x_npoints * sizeof(double)); a_i = pa_aupdate_read_begin(u->a_H[r_channel]); H = u->Hs[r_channel][a_i]; preamp = u->Xs[r_channel][a_i]; for(uint32_t i = 0; i < x_npoints; ++i) { ys[i] = H[xs[i]] * u->fft_size; } pa_aupdate_read_end(u->a_H[r_channel]); pa_assert_se((reply = dbus_message_new_method_return(msg))); dbus_message_iter_init_append(reply, &msg_iter); pa_dbus_append_basic_array(&msg_iter, DBUS_TYPE_DOUBLE, ys, x_npoints); pa_dbus_append_basic_variant(&msg_iter, DBUS_TYPE_DOUBLE, &preamp); pa_assert_se(dbus_connection_send(conn, reply, NULL)); dbus_message_unref(reply); pa_xfree(ys); } static void get_filter(struct userdata *u, size_t channel, double **H_, double *preamp) { float *H; unsigned a_i; size_t r_channel = channel == u->channels ? 0 : channel; *H_ = pa_xnew0(double, FILTER_SIZE(u)); a_i = pa_aupdate_read_begin(u->a_H[r_channel]); H = u->Hs[r_channel][a_i]; for(size_t i = 0;i < FILTER_SIZE(u); ++i) { (*H_)[i] = H[i] * u->fft_size; } *preamp = u->Xs[r_channel][a_i]; pa_aupdate_read_end(u->a_H[r_channel]); } void equalizer_handle_get_filter(DBusConnection *conn, DBusMessage *msg, void *_u) { struct userdata *u; unsigned n_coefs; uint32_t channel; double *H_, preamp; DBusMessage *reply = NULL; DBusMessageIter msg_iter; DBusError error; pa_assert_se(u = (struct userdata *) _u); pa_assert(conn); pa_assert(msg); dbus_error_init(&error); if (!dbus_message_get_args(msg, &error, DBUS_TYPE_UINT32, &channel, DBUS_TYPE_INVALID)) { pa_dbus_send_error(conn, msg, DBUS_ERROR_INVALID_ARGS, "%s", error.message); dbus_error_free(&error); return; } if (channel > u->channels) { pa_dbus_send_error(conn, msg, DBUS_ERROR_INVALID_ARGS, "invalid channel: %d", channel); dbus_error_free(&error); return; } n_coefs = CHANNEL_PROFILE_SIZE(u); pa_assert(conn); pa_assert(msg); get_filter(u, channel, &H_, &preamp); pa_assert_se((reply = dbus_message_new_method_return(msg))); dbus_message_iter_init_append(reply, &msg_iter); pa_dbus_append_basic_array(&msg_iter, DBUS_TYPE_DOUBLE, H_, n_coefs); pa_dbus_append_basic_variant(&msg_iter, DBUS_TYPE_DOUBLE, &preamp); pa_assert_se(dbus_connection_send(conn, reply, NULL)); dbus_message_unref(reply); pa_xfree(H_); } static void set_filter(struct userdata *u, size_t channel, double *H_, double preamp) { unsigned a_i; size_t r_channel = channel == u->channels ? 0 : channel; float *H; //all channels a_i = pa_aupdate_write_begin(u->a_H[r_channel]); u->Xs[r_channel][a_i] = (float) preamp; H = u->Hs[r_channel][a_i]; for(size_t i = 0; i < FILTER_SIZE(u); ++i) { H[i] = (float) H_[i]; } fix_filter(H, u->fft_size); if (channel == u->channels) { for(size_t c = 1; c < u->channels; ++c) { unsigned b_i = pa_aupdate_write_begin(u->a_H[c]); u->Xs[c][b_i] = u->Xs[r_channel][a_i]; memcpy(u->Hs[c][b_i], u->Hs[r_channel][a_i], FILTER_SIZE(u) * sizeof(float)); pa_aupdate_write_end(u->a_H[c]); } } pa_aupdate_write_end(u->a_H[r_channel]); } void equalizer_handle_set_filter(DBusConnection *conn, DBusMessage *msg, void *_u) { struct userdata *u; double *H, preamp; uint32_t channel; unsigned _n_coefs; DBusMessage *message = NULL; DBusError error; pa_assert_se(u = (struct userdata *) _u); pa_assert(conn); pa_assert(msg); dbus_error_init(&error); if (!dbus_message_get_args(msg, &error, DBUS_TYPE_UINT32, &channel, DBUS_TYPE_ARRAY, DBUS_TYPE_DOUBLE, &H, &_n_coefs, DBUS_TYPE_DOUBLE, &preamp, DBUS_TYPE_INVALID)) { pa_dbus_send_error(conn, msg, DBUS_ERROR_INVALID_ARGS, "%s", error.message); dbus_error_free(&error); return; } if (channel > u->channels) { pa_dbus_send_error(conn, msg, DBUS_ERROR_INVALID_ARGS, "invalid channel: %d", channel); dbus_error_free(&error); return; } if (_n_coefs != FILTER_SIZE(u)) { pa_dbus_send_error(conn, msg, DBUS_ERROR_INVALID_ARGS, "This filter takes exactly %zd coefficients, you gave %d", FILTER_SIZE(u), _n_coefs); return; } set_filter(u, channel, H, preamp); pa_dbus_send_empty_reply(conn, msg); pa_assert_se((message = dbus_message_new_signal(u->dbus_path, EQUALIZER_IFACE, equalizer_signals[EQUALIZER_SIGNAL_FILTER_CHANGED].name))); pa_dbus_protocol_send_signal(u->dbus_protocol, message); dbus_message_unref(message); } void equalizer_handle_save_profile(DBusConnection *conn, DBusMessage *msg, void *_u) { struct userdata *u = (struct userdata *) _u; char *name; uint32_t channel, r_channel; DBusMessage *message = NULL; DBusError error; pa_assert(conn); pa_assert(msg); pa_assert(u); dbus_error_init(&error); if (!dbus_message_get_args(msg, &error, DBUS_TYPE_UINT32, &channel, DBUS_TYPE_STRING, &name, DBUS_TYPE_INVALID)) { pa_dbus_send_error(conn, msg, DBUS_ERROR_INVALID_ARGS, "%s", error.message); dbus_error_free(&error); return; } if (channel > u->channels) { pa_dbus_send_error(conn, msg, DBUS_ERROR_INVALID_ARGS, "invalid channel: %d", channel); dbus_error_free(&error); return; } r_channel = channel == u->channels ? 0 : channel; save_profile(u, r_channel, name); pa_dbus_send_empty_reply(conn, msg); pa_assert_se((message = dbus_message_new_signal(MANAGER_PATH, MANAGER_IFACE, manager_signals[MANAGER_SIGNAL_PROFILES_CHANGED].name))); pa_dbus_protocol_send_signal(u->dbus_protocol, message); dbus_message_unref(message); } void equalizer_handle_load_profile(DBusConnection *conn, DBusMessage *msg, void *_u) { struct userdata *u = (struct userdata *) _u; char *name; DBusError error; uint32_t channel, r_channel; const char *err_msg = NULL; DBusMessage *message = NULL; pa_assert(conn); pa_assert(msg); pa_assert(u); dbus_error_init(&error); if (!dbus_message_get_args(msg, &error, DBUS_TYPE_UINT32, &channel, DBUS_TYPE_STRING, &name, DBUS_TYPE_INVALID)) { pa_dbus_send_error(conn, msg, DBUS_ERROR_INVALID_ARGS, "%s", error.message); dbus_error_free(&error); return; } if (channel > u->channels) { pa_dbus_send_error(conn, msg, DBUS_ERROR_INVALID_ARGS, "invalid channel: %d", channel); dbus_error_free(&error); return; } r_channel = channel == u->channels ? 0 : channel; err_msg = load_profile(u, r_channel, name); if (err_msg != NULL) { pa_dbus_send_error(conn, msg, DBUS_ERROR_FAILED, "error loading profile %s: %s", name, err_msg); dbus_error_free(&error); return; } if (channel == u->channels) { for(uint32_t c = 1; c < u->channels; ++c) { load_profile(u, c, name); } } pa_dbus_send_empty_reply(conn, msg); pa_assert_se((message = dbus_message_new_signal(u->dbus_path, EQUALIZER_IFACE, equalizer_signals[EQUALIZER_SIGNAL_FILTER_CHANGED].name))); pa_dbus_protocol_send_signal(u->dbus_protocol, message); dbus_message_unref(message); } void equalizer_handle_save_state(DBusConnection *conn, DBusMessage *msg, void *_u) { struct userdata *u = (struct userdata *) _u; pa_assert(conn); pa_assert(msg); pa_assert(u); save_state(u); pa_dbus_send_empty_reply(conn, msg); } void equalizer_handle_get_profile_name(DBusConnection *conn, DBusMessage *msg, void *_u) { struct userdata *u = (struct userdata *) _u; DBusError error; uint32_t channel, r_channel; pa_assert(conn); pa_assert(msg); pa_assert(u); dbus_error_init(&error); if (!dbus_message_get_args(msg, &error, DBUS_TYPE_UINT32, &channel, DBUS_TYPE_INVALID)) { pa_dbus_send_error(conn, msg, DBUS_ERROR_INVALID_ARGS, "%s", error.message); dbus_error_free(&error); return; } if (channel > u->channels) { pa_dbus_send_error(conn, msg, DBUS_ERROR_INVALID_ARGS, "invalid channel: %d", channel); dbus_error_free(&error); return; } r_channel = channel == u->channels ? 0 : channel; pa_assert(u->base_profiles[r_channel]); pa_dbus_send_basic_value_reply(conn,msg, DBUS_TYPE_STRING, &u->base_profiles[r_channel]); } void equalizer_get_revision(DBusConnection *conn, DBusMessage *msg, void *_u) { uint32_t rev=1; pa_dbus_send_basic_value_reply(conn, msg, DBUS_TYPE_UINT32, &rev); } void equalizer_get_n_channels(DBusConnection *conn, DBusMessage *msg, void *_u) { struct userdata *u; uint32_t channels; pa_assert_se(u = (struct userdata *) _u); pa_assert(conn); pa_assert(msg); channels = (uint32_t) u->channels; pa_dbus_send_basic_variant_reply(conn, msg, DBUS_TYPE_UINT32, &channels); } void equalizer_get_n_coefs(DBusConnection *conn, DBusMessage *msg, void *_u) { struct userdata *u; uint32_t n_coefs; pa_assert_se(u = (struct userdata *) _u); pa_assert(conn); pa_assert(msg); n_coefs = (uint32_t) CHANNEL_PROFILE_SIZE(u); pa_dbus_send_basic_variant_reply(conn, msg, DBUS_TYPE_UINT32, &n_coefs); } void equalizer_get_sample_rate(DBusConnection *conn, DBusMessage *msg, void *_u) { struct userdata *u; uint32_t rate; pa_assert_se(u = (struct userdata *) _u); pa_assert(conn); pa_assert(msg); rate = (uint32_t) u->sink->sample_spec.rate; pa_dbus_send_basic_variant_reply(conn, msg, DBUS_TYPE_UINT32, &rate); } void equalizer_get_filter_rate(DBusConnection *conn, DBusMessage *msg, void *_u) { struct userdata *u; uint32_t fft_size; pa_assert_se(u = (struct userdata *) _u); pa_assert(conn); pa_assert(msg); fft_size = (uint32_t) u->fft_size; pa_dbus_send_basic_variant_reply(conn, msg, DBUS_TYPE_UINT32, &fft_size); } void equalizer_get_all(DBusConnection *conn, DBusMessage *msg, void *_u) { struct userdata *u; DBusMessage *reply = NULL; DBusMessageIter msg_iter, dict_iter; uint32_t rev, n_coefs, rate, fft_size, channels; pa_assert_se(u = _u); pa_assert(msg); rev = 1; n_coefs = (uint32_t) CHANNEL_PROFILE_SIZE(u); rate = (uint32_t) u->sink->sample_spec.rate; fft_size = (uint32_t) u->fft_size; channels = (uint32_t) u->channels; pa_assert_se((reply = dbus_message_new_method_return(msg))); dbus_message_iter_init_append(reply, &msg_iter); pa_assert_se(dbus_message_iter_open_container(&msg_iter, DBUS_TYPE_ARRAY, "{sv}", &dict_iter)); pa_dbus_append_basic_variant_dict_entry(&dict_iter, equalizer_handlers[EQUALIZER_HANDLER_REVISION].property_name, DBUS_TYPE_UINT32, &rev); pa_dbus_append_basic_variant_dict_entry(&dict_iter, equalizer_handlers[EQUALIZER_HANDLER_SAMPLERATE].property_name, DBUS_TYPE_UINT32, &rate); pa_dbus_append_basic_variant_dict_entry(&dict_iter, equalizer_handlers[EQUALIZER_HANDLER_FILTERSAMPLERATE].property_name, DBUS_TYPE_UINT32, &fft_size); pa_dbus_append_basic_variant_dict_entry(&dict_iter, equalizer_handlers[EQUALIZER_HANDLER_N_COEFS].property_name, DBUS_TYPE_UINT32, &n_coefs); pa_dbus_append_basic_variant_dict_entry(&dict_iter, equalizer_handlers[EQUALIZER_HANDLER_N_CHANNELS].property_name, DBUS_TYPE_UINT32, &channels); pa_assert_se(dbus_message_iter_close_container(&msg_iter, &dict_iter)); pa_assert_se(dbus_connection_send(conn, reply, NULL)); dbus_message_unref(reply); }