/***
This file is part of PulseAudio.
Copyright 2006 Lennart Poettering
PulseAudio is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published
by the Free Software Foundation; either version 2.1 of the License,
or (at your option) any later version.
PulseAudio is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with PulseAudio; if not, see .
***/
#ifdef HAVE_CONFIG_H
#include
#endif
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include "rtp.h"
#include "sdp.h"
#include "sap.h"
PA_MODULE_AUTHOR("Lennart Poettering");
PA_MODULE_DESCRIPTION("Receive data from a network via RTP/SAP/SDP");
PA_MODULE_VERSION(PACKAGE_VERSION);
PA_MODULE_LOAD_ONCE(false);
PA_MODULE_USAGE(
"sink= "
"sap_address= "
"latency_msec= "
);
#define SAP_PORT 9875
#define DEFAULT_SAP_ADDRESS "224.0.0.56"
#define DEFAULT_LATENCY_MSEC 500
#define MEMBLOCKQ_MAXLENGTH (1024*1024*40)
#define MAX_SESSIONS 16
#define DEATH_TIMEOUT 20
#define RATE_UPDATE_INTERVAL (5*PA_USEC_PER_SEC)
static const char* const valid_modargs[] = {
"sink",
"sap_address",
"latency_msec",
NULL
};
struct session {
struct userdata *userdata;
PA_LLIST_FIELDS(struct session);
pa_sink_input *sink_input;
pa_memblockq *memblockq;
bool first_packet;
uint32_t offset;
struct pa_sdp_info sdp_info;
pa_rtp_context *rtp_context;
pa_rtpoll_item *rtpoll_item;
pa_atomic_t timestamp;
pa_usec_t intended_latency;
pa_usec_t sink_latency;
unsigned int base_rate;
pa_usec_t last_rate_update;
pa_usec_t last_latency;
double estimated_rate;
double avg_estimated_rate;
};
struct userdata {
pa_module *module;
pa_core *core;
pa_sap_context sap_context;
pa_io_event* sap_event;
pa_time_event *check_death_event;
char *sink_name;
PA_LLIST_HEAD(struct session, sessions);
pa_hashmap *by_origin;
int n_sessions;
pa_usec_t latency;
};
static void session_free(struct session *s);
/* Called from I/O thread context */
static int sink_input_process_msg(pa_msgobject *o, int code, void *data, int64_t offset, pa_memchunk *chunk) {
struct session *s = PA_SINK_INPUT(o)->userdata;
switch (code) {
case PA_SINK_INPUT_MESSAGE_GET_LATENCY:
*((pa_usec_t*) data) = pa_bytes_to_usec(pa_memblockq_get_length(s->memblockq), &s->sink_input->sample_spec);
/* Fall through, the default handler will add in the extra
* latency added by the resampler */
break;
}
return pa_sink_input_process_msg(o, code, data, offset, chunk);
}
/* Called from I/O thread context */
static int sink_input_pop_cb(pa_sink_input *i, size_t length, pa_memchunk *chunk) {
struct session *s;
pa_sink_input_assert_ref(i);
pa_assert_se(s = i->userdata);
if (pa_memblockq_peek(s->memblockq, chunk) < 0)
return -1;
pa_memblockq_drop(s->memblockq, chunk->length);
return 0;
}
/* Called from I/O thread context */
static void sink_input_process_rewind_cb(pa_sink_input *i, size_t nbytes) {
struct session *s;
pa_sink_input_assert_ref(i);
pa_assert_se(s = i->userdata);
pa_memblockq_rewind(s->memblockq, nbytes);
}
/* Called from I/O thread context */
static void sink_input_update_max_rewind_cb(pa_sink_input *i, size_t nbytes) {
struct session *s;
pa_sink_input_assert_ref(i);
pa_assert_se(s = i->userdata);
pa_memblockq_set_maxrewind(s->memblockq, nbytes);
}
/* Called from main context */
static void sink_input_kill(pa_sink_input* i) {
struct session *s;
pa_sink_input_assert_ref(i);
pa_assert_se(s = i->userdata);
pa_hashmap_remove_and_free(s->userdata->by_origin, s->sdp_info.origin);
}
/* Called from IO context */
static void sink_input_suspend_within_thread(pa_sink_input* i, bool b) {
struct session *s;
pa_sink_input_assert_ref(i);
pa_assert_se(s = i->userdata);
if (b)
pa_memblockq_flush_read(s->memblockq);
else
s->first_packet = false;
}
/* Called from I/O thread context */
static int rtpoll_work_cb(pa_rtpoll_item *i) {
pa_memchunk chunk;
uint32_t timestamp;
int64_t k, j, delta;
struct timeval now = { 0, 0 };
struct session *s;
struct pollfd *p;
pa_assert_se(s = pa_rtpoll_item_get_work_userdata(i));
p = pa_rtpoll_item_get_pollfd(i, NULL);
if (p->revents & (POLLERR|POLLNVAL|POLLHUP|POLLOUT)) {
pa_log("poll() signalled bad revents.");
return -1;
}
if ((p->revents & POLLIN) == 0)
return 0;
p->revents = 0;
if (pa_rtp_recv(s->rtp_context, &chunk, s->userdata->module->core->mempool, ×tamp, &now) < 0)
return 0;
if (!PA_SINK_IS_OPENED(s->sink_input->sink->thread_info.state)) {
pa_memblock_unref(chunk.memblock);
return 0;
}
if (!s->first_packet) {
s->first_packet = true;
s->offset = timestamp;
}
/* Check whether there was a timestamp overflow */
k = (int64_t) timestamp - (int64_t) s->offset;
j = (int64_t) 0x100000000LL - (int64_t) s->offset + (int64_t) timestamp;
if ((k < 0 ? -k : k) < (j < 0 ? -j : j))
delta = k;
else
delta = j;
pa_memblockq_seek(s->memblockq, delta * (int64_t) pa_rtp_context_get_frame_size(s->rtp_context), PA_SEEK_RELATIVE,
true);
if (now.tv_sec == 0) {
PA_ONCE_BEGIN {
pa_log_warn("Using artificial time instead of timestamp");
} PA_ONCE_END;
pa_rtclock_get(&now);
} else
pa_rtclock_from_wallclock(&now);
if (pa_memblockq_push(s->memblockq, &chunk) < 0) {
pa_log_warn("Queue overrun");
pa_memblockq_seek(s->memblockq, (int64_t) chunk.length, PA_SEEK_RELATIVE, true);
}
/* pa_log("blocks in q: %u", pa_memblockq_get_nblocks(s->memblockq)); */
pa_memblock_unref(chunk.memblock);
/* The next timestamp we expect */
s->offset = timestamp + (uint32_t) (chunk.length / pa_rtp_context_get_frame_size(s->rtp_context));
pa_atomic_store(&s->timestamp, (int) now.tv_sec);
if (s->last_rate_update + RATE_UPDATE_INTERVAL < pa_timeval_load(&now)) {
pa_usec_t wi, ri, render_delay, sink_delay = 0, latency;
uint32_t current_rate = s->sink_input->sample_spec.rate;
uint32_t new_rate;
double estimated_rate, alpha = 0.02;
pa_log_debug("Updating sample rate");
wi = pa_bytes_to_usec((uint64_t) pa_memblockq_get_write_index(s->memblockq), &s->sink_input->sample_spec);
ri = pa_bytes_to_usec((uint64_t) pa_memblockq_get_read_index(s->memblockq), &s->sink_input->sample_spec);
pa_log_debug("wi=%lu ri=%lu", (unsigned long) wi, (unsigned long) ri);
sink_delay = pa_sink_get_latency_within_thread(s->sink_input->sink, false);
render_delay = pa_bytes_to_usec(pa_memblockq_get_length(s->sink_input->thread_info.render_memblockq), &s->sink_input->sink->sample_spec);
if (ri > render_delay+sink_delay)
ri -= render_delay+sink_delay;
else
ri = 0;
if (wi < ri)
latency = 0;
else
latency = wi - ri;
pa_log_debug("Write index deviates by %0.2f ms, expected %0.2f ms", (double) latency/PA_USEC_PER_MSEC, (double) s->intended_latency/PA_USEC_PER_MSEC);
/* The buffer is filling with some unknown rate R̂ samples/second. If the rate of reading in
* the last T seconds was Rⁿ, then the increase in buffer latency ΔLⁿ = Lⁿ - Lⁿ⁻ⁱ in that
* same period is ΔLⁿ = (TR̂ - TRⁿ) / R̂, giving the estimated target rate
* T
* R̂ = ─────────────── Rⁿ . (1)
* T - (Lⁿ - Lⁿ⁻ⁱ)
*
* Setting the sample rate to R̂ results in the latency being constant (if the estimate of R̂
* is correct). But there is also the requirement to keep the buffer at a predefined target
* latency L̂. So instead of setting Rⁿ⁺ⁱ to R̂ immediately, the strategy will be to reduce R
* from Rⁿ⁺ⁱ to R̂ in a steps of T seconds, where Rⁿ⁺ⁱ is chosen such that in the total time
* aT the latency is reduced from Lⁿ to L̂. This strategy translates to the requirements
* ₐ R̂ - Rⁿ⁺ʲ a-j+1 j-1
* Σ T ────────── = L̂ - Lⁿ with Rⁿ⁺ʲ = ───── Rⁿ⁺ⁱ + ───── R̂ .
* ʲ⁼ⁱ R̂ a a
* Solving for Rⁿ⁺ⁱ gives
* T - ²∕ₐ₊₁(L̂ - Lⁿ)
* Rⁿ⁺ⁱ = ───────────────── R̂ . (2)
* T
* In the code below a = 7 is used.
*
* Equation (1) is not directly used in (2), but instead an exponentially weighted average
* of the estimated rate R̂ is used. This average R̅ is defined as
* R̅ⁿ = α R̂ⁿ + (1-α) R̅ⁿ⁻ⁱ .
* Because it is difficult to find a fixed value for the coefficient α such that the
* averaging is without significant lag but oscillations are filtered out, a heuristic is
* used. When the successive estimates R̂ⁿ do not change much then α→1, but when there is a
* sudden spike in the estimated rate α→0, such that the deviation is given little weight.
*/
estimated_rate = (double) current_rate * (double) RATE_UPDATE_INTERVAL / (double) (RATE_UPDATE_INTERVAL + s->last_latency - latency);
if (fabs(s->estimated_rate - s->avg_estimated_rate) > 1) {
double ratio = (estimated_rate + s->estimated_rate - 2*s->avg_estimated_rate) / (s->estimated_rate - s->avg_estimated_rate);
alpha = PA_CLAMP(2 * (ratio + fabs(ratio)) / (4 + ratio*ratio), 0.02, 0.8);
}
s->avg_estimated_rate = alpha * estimated_rate + (1-alpha) * s->avg_estimated_rate;
s->estimated_rate = estimated_rate;
pa_log_debug("Estimated target rate: %.0f Hz, using average of %.0f Hz (α=%.3f)", estimated_rate, s->avg_estimated_rate, alpha);
new_rate = (uint32_t) ((double) (RATE_UPDATE_INTERVAL + latency/4 - s->intended_latency/4) / (double) RATE_UPDATE_INTERVAL * s->avg_estimated_rate);
s->last_latency = latency;
if (new_rate < (uint32_t) (s->base_rate*0.8) || new_rate > (uint32_t) (s->base_rate*1.25)) {
pa_log_warn("Sample rates too different, not adjusting (%u vs. %u).", s->base_rate, new_rate);
new_rate = s->base_rate;
} else {
if (s->base_rate < new_rate + 20 && new_rate < s->base_rate + 20)
new_rate = s->base_rate;
/* Do the adjustment in small steps; 2‰ can be considered inaudible */
if (new_rate < (uint32_t) (current_rate*0.998) || new_rate > (uint32_t) (current_rate*1.002)) {
pa_log_info("New rate of %u Hz not within 2‰ of %u Hz, forcing smaller adjustment", new_rate, current_rate);
new_rate = PA_CLAMP(new_rate, (uint32_t) (current_rate*0.998), (uint32_t) (current_rate*1.002));
}
}
s->sink_input->sample_spec.rate = new_rate;
pa_assert(pa_sample_spec_valid(&s->sink_input->sample_spec));
pa_resampler_set_input_rate(s->sink_input->thread_info.resampler, s->sink_input->sample_spec.rate);
pa_log_debug("Updated sampling rate to %lu Hz.", (unsigned long) s->sink_input->sample_spec.rate);
s->last_rate_update = pa_timeval_load(&now);
}
if (pa_memblockq_is_readable(s->memblockq) &&
s->sink_input->thread_info.underrun_for > 0) {
pa_log_debug("Requesting rewind due to end of underrun");
pa_sink_input_request_rewind(s->sink_input,
(size_t) (s->sink_input->thread_info.underrun_for == (uint64_t) -1 ? 0 : s->sink_input->thread_info.underrun_for),
false, true, false);
}
return 1;
}
/* Called from I/O thread context */
static void sink_input_attach(pa_sink_input *i) {
struct session *s;
pa_sink_input_assert_ref(i);
pa_assert_se(s = i->userdata);
pa_assert(!s->rtpoll_item);
s->rtpoll_item = pa_rtp_context_get_rtpoll_item(s->rtp_context, i->sink->thread_info.rtpoll);
pa_rtpoll_item_set_work_callback(s->rtpoll_item, rtpoll_work_cb, s);
}
/* Called from I/O thread context */
static void sink_input_detach(pa_sink_input *i) {
struct session *s;
pa_sink_input_assert_ref(i);
pa_assert_se(s = i->userdata);
pa_assert(s->rtpoll_item);
pa_rtpoll_item_free(s->rtpoll_item);
s->rtpoll_item = NULL;
}
static int mcast_socket(const struct sockaddr* sa, socklen_t salen) {
int af, fd = -1, r, one;
pa_assert(sa);
pa_assert(salen > 0);
af = sa->sa_family;
if ((fd = pa_socket_cloexec(af, SOCK_DGRAM, 0)) < 0) {
pa_log("Failed to create socket: %s", pa_cstrerror(errno));
goto fail;
}
pa_make_udp_socket_low_delay(fd);
#ifdef SO_TIMESTAMP
one = 1;
if (setsockopt(fd, SOL_SOCKET, SO_TIMESTAMP, &one, sizeof(one)) < 0) {
pa_log("SO_TIMESTAMP failed: %s", pa_cstrerror(errno));
goto fail;
}
#else
pa_log("SO_TIMESTAMP unsupported on this platform");
goto fail;
#endif
one = 1;
if (setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, &one, sizeof(one)) < 0) {
pa_log("SO_REUSEADDR failed: %s", pa_cstrerror(errno));
goto fail;
}
r = 0;
if (af == AF_INET) {
/* IPv4 multicast addresses are in the 224.0.0.0-239.255.255.255 range */
static const uint32_t ipv4_mcast_mask = 0xe0000000;
if ((ntohl(((const struct sockaddr_in*) sa)->sin_addr.s_addr) & ipv4_mcast_mask) == ipv4_mcast_mask) {
struct ip_mreq mr4;
memset(&mr4, 0, sizeof(mr4));
mr4.imr_multiaddr = ((const struct sockaddr_in*) sa)->sin_addr;
r = setsockopt(fd, IPPROTO_IP, IP_ADD_MEMBERSHIP, &mr4, sizeof(mr4));
}
#ifdef HAVE_IPV6
} else if (af == AF_INET6) {
/* IPv6 multicast addresses have 255 as the most significant byte */
if (((const struct sockaddr_in6*) sa)->sin6_addr.s6_addr[0] == 0xff) {
struct ipv6_mreq mr6;
memset(&mr6, 0, sizeof(mr6));
mr6.ipv6mr_multiaddr = ((const struct sockaddr_in6*) sa)->sin6_addr;
r = setsockopt(fd, IPPROTO_IPV6, IPV6_JOIN_GROUP, &mr6, sizeof(mr6));
}
#endif
} else
pa_assert_not_reached();
if (r < 0) {
pa_log_info("Joining mcast group failed: %s", pa_cstrerror(errno));
goto fail;
}
if (bind(fd, sa, salen) < 0) {
pa_log("bind() failed: %s", pa_cstrerror(errno));
goto fail;
}
return fd;
fail:
if (fd >= 0)
close(fd);
return -1;
}
static struct session *session_new(struct userdata *u, const pa_sdp_info *sdp_info) {
struct session *s = NULL;
pa_sink *sink;
int fd = -1;
pa_memchunk silence;
pa_sink_input_new_data data;
struct timeval now;
pa_assert(u);
pa_assert(sdp_info);
if (u->n_sessions >= MAX_SESSIONS) {
pa_log("Session limit reached.");
goto fail;
}
if (!(sink = pa_namereg_get(u->module->core, u->sink_name, PA_NAMEREG_SINK))) {
pa_log("Sink does not exist.");
goto fail;
}
pa_rtclock_get(&now);
s = pa_xnew0(struct session, 1);
s->userdata = u;
s->first_packet = false;
s->sdp_info = *sdp_info;
s->rtpoll_item = NULL;
s->intended_latency = u->latency;
s->last_rate_update = pa_timeval_load(&now);
s->last_latency = u->latency;
pa_atomic_store(&s->timestamp, (int) now.tv_sec);
if ((fd = mcast_socket((const struct sockaddr*) &sdp_info->sa, sdp_info->salen)) < 0)
goto fail;
pa_sink_input_new_data_init(&data);
pa_sink_input_new_data_set_sink(&data, sink, false, true);
data.driver = __FILE__;
pa_proplist_sets(data.proplist, PA_PROP_MEDIA_ROLE, "stream");
pa_proplist_setf(data.proplist, PA_PROP_MEDIA_NAME,
"RTP Stream%s%s%s",
sdp_info->session_name ? " (" : "",
sdp_info->session_name ? sdp_info->session_name : "",
sdp_info->session_name ? ")" : "");
if (sdp_info->session_name)
pa_proplist_sets(data.proplist, "rtp.session", sdp_info->session_name);
pa_proplist_sets(data.proplist, "rtp.origin", sdp_info->origin);
pa_proplist_setf(data.proplist, "rtp.payload", "%u", (unsigned) sdp_info->payload);
data.module = u->module;
pa_sink_input_new_data_set_sample_spec(&data, &sdp_info->sample_spec);
data.flags = PA_SINK_INPUT_VARIABLE_RATE;
pa_sink_input_new(&s->sink_input, u->module->core, &data);
pa_sink_input_new_data_done(&data);
if (!s->sink_input) {
pa_log("Failed to create sink input.");
goto fail;
}
s->base_rate = (double) s->sink_input->sample_spec.rate;
s->estimated_rate = (double) s->sink_input->sample_spec.rate;
s->avg_estimated_rate = (double) s->sink_input->sample_spec.rate;
s->sink_input->userdata = s;
s->sink_input->parent.process_msg = sink_input_process_msg;
s->sink_input->pop = sink_input_pop_cb;
s->sink_input->process_rewind = sink_input_process_rewind_cb;
s->sink_input->update_max_rewind = sink_input_update_max_rewind_cb;
s->sink_input->kill = sink_input_kill;
s->sink_input->attach = sink_input_attach;
s->sink_input->detach = sink_input_detach;
s->sink_input->suspend_within_thread = sink_input_suspend_within_thread;
pa_sink_input_get_silence(s->sink_input, &silence);
s->sink_latency = pa_sink_input_set_requested_latency(s->sink_input, s->intended_latency/2);
if (s->intended_latency < s->sink_latency*2)
s->intended_latency = s->sink_latency*2;
s->memblockq = pa_memblockq_new(
"module-rtp-recv memblockq",
0,
MEMBLOCKQ_MAXLENGTH,
MEMBLOCKQ_MAXLENGTH,
&s->sink_input->sample_spec,
pa_usec_to_bytes(s->intended_latency - s->sink_latency, &s->sink_input->sample_spec),
0,
0,
&silence);
pa_memblock_unref(silence.memblock);
if (!(s->rtp_context = pa_rtp_context_new_recv(fd, sdp_info->payload, &s->sdp_info.sample_spec)))
goto fail;
pa_hashmap_put(s->userdata->by_origin, s->sdp_info.origin, s);
u->n_sessions++;
PA_LLIST_PREPEND(struct session, s->userdata->sessions, s);
pa_sink_input_put(s->sink_input);
pa_log_info("New session '%s'", s->sdp_info.session_name);
return s;
fail:
pa_xfree(s);
if (fd >= 0)
pa_close(fd);
return NULL;
}
static void session_free(struct session *s) {
pa_assert(s);
pa_log_info("Freeing session '%s'", s->sdp_info.session_name);
pa_sink_input_unlink(s->sink_input);
pa_sink_input_unref(s->sink_input);
PA_LLIST_REMOVE(struct session, s->userdata->sessions, s);
pa_assert(s->userdata->n_sessions >= 1);
s->userdata->n_sessions--;
pa_memblockq_free(s->memblockq);
pa_sdp_info_destroy(&s->sdp_info);
pa_rtp_context_free(s->rtp_context);
pa_xfree(s);
}
static void sap_event_cb(pa_mainloop_api *m, pa_io_event *e, int fd, pa_io_event_flags_t flags, void *userdata) {
struct userdata *u = userdata;
bool goodbye = false;
pa_sdp_info info;
struct session *s;
pa_assert(m);
pa_assert(e);
pa_assert(u);
pa_assert(fd == u->sap_context.fd);
pa_assert(flags == PA_IO_EVENT_INPUT);
if (pa_sap_recv(&u->sap_context, &goodbye) < 0)
return;
if (!pa_sdp_parse(u->sap_context.sdp_data, &info, goodbye))
return;
if (goodbye) {
pa_hashmap_remove_and_free(u->by_origin, info.origin);
pa_sdp_info_destroy(&info);
} else {
if (!(s = pa_hashmap_get(u->by_origin, info.origin))) {
if (!session_new(u, &info))
pa_sdp_info_destroy(&info);
} else {
struct timeval now;
pa_rtclock_get(&now);
pa_atomic_store(&s->timestamp, (int) now.tv_sec);
pa_sdp_info_destroy(&info);
}
}
}
static void check_death_event_cb(pa_mainloop_api *m, pa_time_event *t, const struct timeval *tv, void *userdata) {
struct session *s, *n;
struct userdata *u = userdata;
struct timeval now;
pa_assert(m);
pa_assert(t);
pa_assert(u);
pa_rtclock_get(&now);
pa_log_debug("Checking for dead streams ...");
for (s = u->sessions; s; s = n) {
int k;
n = s->next;
k = pa_atomic_load(&s->timestamp);
if (k + DEATH_TIMEOUT < now.tv_sec)
pa_hashmap_remove_and_free(u->by_origin, s->sdp_info.origin);
}
/* Restart timer */
pa_core_rttime_restart(u->module->core, t, pa_rtclock_now() + DEATH_TIMEOUT * PA_USEC_PER_SEC);
}
int pa__init(pa_module*m) {
struct userdata *u;
pa_modargs *ma = NULL;
struct sockaddr_in sa4;
#ifdef HAVE_IPV6
struct sockaddr_in6 sa6;
#endif
struct sockaddr *sa;
socklen_t salen;
const char *sap_address;
uint32_t latency_msec;
int fd = -1;
pa_assert(m);
if (!(ma = pa_modargs_new(m->argument, valid_modargs))) {
pa_log("failed to parse module arguments");
goto fail;
}
sap_address = pa_modargs_get_value(ma, "sap_address", DEFAULT_SAP_ADDRESS);
if (inet_pton(AF_INET, sap_address, &sa4.sin_addr) > 0) {
sa4.sin_family = AF_INET;
sa4.sin_port = htons(SAP_PORT);
sa = (struct sockaddr*) &sa4;
salen = sizeof(sa4);
#ifdef HAVE_IPV6
} else if (inet_pton(AF_INET6, sap_address, &sa6.sin6_addr) > 0) {
sa6.sin6_family = AF_INET6;
sa6.sin6_port = htons(SAP_PORT);
sa = (struct sockaddr*) &sa6;
salen = sizeof(sa6);
#endif
} else {
pa_log("Invalid SAP address '%s'", sap_address);
goto fail;
}
latency_msec = DEFAULT_LATENCY_MSEC;
if (pa_modargs_get_value_u32(ma, "latency_msec", &latency_msec) < 0 || latency_msec < 1 || latency_msec > 300000) {
pa_log("Invalid latency specification");
goto fail;
}
if ((fd = mcast_socket(sa, salen)) < 0)
goto fail;
m->userdata = u = pa_xnew(struct userdata, 1);
u->module = m;
u->core = m->core;
u->sink_name = pa_xstrdup(pa_modargs_get_value(ma, "sink", NULL));
u->latency = (pa_usec_t) latency_msec * PA_USEC_PER_MSEC;
u->sap_event = m->core->mainloop->io_new(m->core->mainloop, fd, PA_IO_EVENT_INPUT, sap_event_cb, u);
pa_sap_context_init_recv(&u->sap_context, fd);
PA_LLIST_HEAD_INIT(struct session, u->sessions);
u->n_sessions = 0;
u->by_origin = pa_hashmap_new_full(pa_idxset_string_hash_func, pa_idxset_string_compare_func, NULL, (pa_free_cb_t) session_free);
u->check_death_event = pa_core_rttime_new(m->core, pa_rtclock_now() + DEATH_TIMEOUT * PA_USEC_PER_SEC, check_death_event_cb, u);
pa_modargs_free(ma);
return 0;
fail:
if (ma)
pa_modargs_free(ma);
if (fd >= 0)
pa_close(fd);
return -1;
}
void pa__done(pa_module*m) {
struct userdata *u;
pa_assert(m);
if (!(u = m->userdata))
return;
if (u->sap_event)
m->core->mainloop->io_free(u->sap_event);
if (u->check_death_event)
m->core->mainloop->time_free(u->check_death_event);
pa_sap_context_destroy(&u->sap_context);
if (u->by_origin)
pa_hashmap_free(u->by_origin);
pa_xfree(u->sink_name);
pa_xfree(u);
}