/***
This file is part of PulseAudio.
Copyright 2004-2006 Lennart Poettering
PulseAudio is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published
by the Free Software Foundation; either version 2.1 of the License,
or (at your option) any later version.
PulseAudio is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with PulseAudio; if not, see .
***/
#ifdef HAVE_CONFIG_H
#include
#endif
#include
#include
#include
#include
#include
#include
#include
#include "volume.h"
int pa_cvolume_equal(const pa_cvolume *a, const pa_cvolume *b) {
int i;
pa_assert(a);
pa_assert(b);
pa_return_val_if_fail(pa_cvolume_valid(a), 0);
if (PA_UNLIKELY(a == b))
return 1;
pa_return_val_if_fail(pa_cvolume_valid(b), 0);
if (a->channels != b->channels)
return 0;
for (i = 0; i < a->channels; i++)
if (a->values[i] != b->values[i])
return 0;
return 1;
}
pa_cvolume* pa_cvolume_init(pa_cvolume *a) {
unsigned c;
pa_assert(a);
a->channels = 0;
for (c = 0; c < PA_CHANNELS_MAX; c++)
a->values[c] = PA_VOLUME_INVALID;
return a;
}
pa_cvolume* pa_cvolume_set(pa_cvolume *a, unsigned channels, pa_volume_t v) {
int i;
pa_assert(a);
pa_assert(pa_channels_valid(channels));
a->channels = (uint8_t) channels;
for (i = 0; i < a->channels; i++)
/* Clamp in case there is stale data that exceeds the current
* PA_VOLUME_MAX */
a->values[i] = PA_CLAMP_VOLUME(v);
return a;
}
pa_volume_t pa_cvolume_avg(const pa_cvolume *a) {
uint64_t sum = 0;
unsigned c;
pa_assert(a);
pa_return_val_if_fail(pa_cvolume_valid(a), PA_VOLUME_MUTED);
for (c = 0; c < a->channels; c++)
sum += a->values[c];
sum /= a->channels;
return (pa_volume_t) sum;
}
pa_volume_t pa_cvolume_avg_mask(const pa_cvolume *a, const pa_channel_map *cm, pa_channel_position_mask_t mask) {
uint64_t sum = 0;
unsigned c, n;
pa_assert(a);
if (!cm)
return pa_cvolume_avg(a);
pa_return_val_if_fail(pa_cvolume_compatible_with_channel_map(a, cm), PA_VOLUME_MUTED);
for (c = n = 0; c < a->channels; c++) {
if (!(PA_CHANNEL_POSITION_MASK(cm->map[c]) & mask))
continue;
sum += a->values[c];
n ++;
}
if (n > 0)
sum /= n;
return (pa_volume_t) sum;
}
pa_volume_t pa_cvolume_max(const pa_cvolume *a) {
pa_volume_t m = PA_VOLUME_MUTED;
unsigned c;
pa_assert(a);
pa_return_val_if_fail(pa_cvolume_valid(a), PA_VOLUME_MUTED);
for (c = 0; c < a->channels; c++)
if (a->values[c] > m)
m = a->values[c];
return m;
}
pa_volume_t pa_cvolume_min(const pa_cvolume *a) {
pa_volume_t m = PA_VOLUME_MAX;
unsigned c;
pa_assert(a);
pa_return_val_if_fail(pa_cvolume_valid(a), PA_VOLUME_MUTED);
for (c = 0; c < a->channels; c++)
if (a->values[c] < m)
m = a->values[c];
return m;
}
pa_volume_t pa_cvolume_max_mask(const pa_cvolume *a, const pa_channel_map *cm, pa_channel_position_mask_t mask) {
pa_volume_t m = PA_VOLUME_MUTED;
unsigned c;
pa_assert(a);
if (!cm)
return pa_cvolume_max(a);
pa_return_val_if_fail(pa_cvolume_compatible_with_channel_map(a, cm), PA_VOLUME_MUTED);
for (c = 0; c < a->channels; c++) {
if (!(PA_CHANNEL_POSITION_MASK(cm->map[c]) & mask))
continue;
if (a->values[c] > m)
m = a->values[c];
}
return m;
}
pa_volume_t pa_cvolume_min_mask(const pa_cvolume *a, const pa_channel_map *cm, pa_channel_position_mask_t mask) {
pa_volume_t m = PA_VOLUME_MAX;
unsigned c;
pa_assert(a);
if (!cm)
return pa_cvolume_min(a);
pa_return_val_if_fail(pa_cvolume_compatible_with_channel_map(a, cm), PA_VOLUME_MUTED);
for (c = 0; c < a->channels; c++) {
if (!(PA_CHANNEL_POSITION_MASK(cm->map[c]) & mask))
continue;
if (a->values[c] < m)
m = a->values[c];
}
return m;
}
pa_volume_t pa_sw_volume_multiply(pa_volume_t a, pa_volume_t b) {
uint64_t result;
pa_return_val_if_fail(PA_VOLUME_IS_VALID(a), PA_VOLUME_INVALID);
pa_return_val_if_fail(PA_VOLUME_IS_VALID(b), PA_VOLUME_INVALID);
/* cbrt((a/PA_VOLUME_NORM)^3*(b/PA_VOLUME_NORM)^3)*PA_VOLUME_NORM = a*b/PA_VOLUME_NORM */
result = ((uint64_t) a * (uint64_t) b + (uint64_t) PA_VOLUME_NORM / 2ULL) / (uint64_t) PA_VOLUME_NORM;
if (result > (uint64_t)PA_VOLUME_MAX)
pa_log_warn("pa_sw_volume_multiply: Volume exceeds maximum allowed value and will be clipped. Please check your volume settings.");
return (pa_volume_t) PA_CLAMP_VOLUME(result);
}
pa_volume_t pa_sw_volume_divide(pa_volume_t a, pa_volume_t b) {
uint64_t result;
pa_return_val_if_fail(PA_VOLUME_IS_VALID(a), PA_VOLUME_INVALID);
pa_return_val_if_fail(PA_VOLUME_IS_VALID(b), PA_VOLUME_INVALID);
if (b <= PA_VOLUME_MUTED)
return 0;
result = ((uint64_t) a * (uint64_t) PA_VOLUME_NORM + (uint64_t) b / 2ULL) / (uint64_t) b;
if (result > (uint64_t)PA_VOLUME_MAX)
pa_log_warn("pa_sw_volume_divide: Volume exceeds maximum allowed value and will be clipped. Please check your volume settings.");
return (pa_volume_t) PA_CLAMP_VOLUME(result);
}
/* Amplitude, not power */
static double linear_to_dB(double v) {
return 20.0 * log10(v);
}
static double dB_to_linear(double v) {
return pow(10.0, v / 20.0);
}
pa_volume_t pa_sw_volume_from_dB(double dB) {
if (isinf(dB) < 0 || dB <= PA_DECIBEL_MININFTY)
return PA_VOLUME_MUTED;
return pa_sw_volume_from_linear(dB_to_linear(dB));
}
double pa_sw_volume_to_dB(pa_volume_t v) {
pa_return_val_if_fail(PA_VOLUME_IS_VALID(v), PA_DECIBEL_MININFTY);
if (v <= PA_VOLUME_MUTED)
return PA_DECIBEL_MININFTY;
return linear_to_dB(pa_sw_volume_to_linear(v));
}
pa_volume_t pa_sw_volume_from_linear(double v) {
if (v <= 0.0)
return PA_VOLUME_MUTED;
/*
* We use a cubic mapping here, as suggested and discussed here:
*
* http://www.robotplanet.dk/audio/audio_gui_design/
* http://lists.linuxaudio.org/pipermail/linux-audio-dev/2009-May/thread.html#23151
*
* We make sure that the conversion to linear and back yields the
* same volume value! That's why we need the lround() below!
*/
return (pa_volume_t) PA_CLAMP_VOLUME((uint64_t) lround(cbrt(v) * PA_VOLUME_NORM));
}
double pa_sw_volume_to_linear(pa_volume_t v) {
double f;
pa_return_val_if_fail(PA_VOLUME_IS_VALID(v), 0.0);
if (v <= PA_VOLUME_MUTED)
return 0.0;
if (v == PA_VOLUME_NORM)
return 1.0;
f = ((double) v / PA_VOLUME_NORM);
return f*f*f;
}
char *pa_cvolume_snprint(char *s, size_t l, const pa_cvolume *c) {
unsigned channel;
bool first = true;
char *e;
pa_assert(s);
pa_assert(l > 0);
pa_assert(c);
pa_init_i18n();
if (!pa_cvolume_valid(c)) {
pa_snprintf(s, l, _("(invalid)"));
return s;
}
*(e = s) = 0;
for (channel = 0; channel < c->channels && l > 1; channel++) {
l -= pa_snprintf(e, l, "%s%u: %3u%%",
first ? "" : " ",
channel,
(unsigned)(((uint64_t)c->values[channel] * 100 + (uint64_t)PA_VOLUME_NORM / 2) / (uint64_t)PA_VOLUME_NORM));
e = strchr(e, 0);
first = false;
}
return s;
}
char *pa_volume_snprint(char *s, size_t l, pa_volume_t v) {
pa_assert(s);
pa_assert(l > 0);
pa_init_i18n();
if (!PA_VOLUME_IS_VALID(v)) {
pa_snprintf(s, l, _("(invalid)"));
return s;
}
pa_snprintf(s, l, "%3u%%", (unsigned)(((uint64_t)v * 100 + (uint64_t)PA_VOLUME_NORM / 2) / (uint64_t)PA_VOLUME_NORM));
return s;
}
char *pa_sw_cvolume_snprint_dB(char *s, size_t l, const pa_cvolume *c) {
unsigned channel;
bool first = true;
char *e;
pa_assert(s);
pa_assert(l > 0);
pa_assert(c);
pa_init_i18n();
if (!pa_cvolume_valid(c)) {
pa_snprintf(s, l, _("(invalid)"));
return s;
}
*(e = s) = 0;
for (channel = 0; channel < c->channels && l > 1; channel++) {
double f = pa_sw_volume_to_dB(c->values[channel]);
l -= pa_snprintf(e, l, "%s%u: %0.2f dB",
first ? "" : " ",
channel,
isinf(f) < 0 || f <= PA_DECIBEL_MININFTY ? -INFINITY : f);
e = strchr(e, 0);
first = false;
}
return s;
}
char *pa_cvolume_snprint_verbose(char *s, size_t l, const pa_cvolume *c, const pa_channel_map *map, int print_dB) {
char *current = s;
bool first = true;
pa_assert(s);
pa_assert(l > 0);
pa_assert(c);
pa_init_i18n();
if (!pa_cvolume_valid(c)) {
pa_snprintf(s, l, _("(invalid)"));
return s;
}
pa_assert(!map || (map->channels == c->channels));
pa_assert(!map || pa_channel_map_valid(map));
current[0] = 0;
for (unsigned channel = 0; channel < c->channels && l > 1; channel++) {
char channel_position[32];
size_t bytes_printed;
char buf[PA_VOLUME_SNPRINT_VERBOSE_MAX];
if (map)
pa_snprintf(channel_position, sizeof(channel_position), "%s", pa_channel_position_to_string(map->map[channel]));
else
pa_snprintf(channel_position, sizeof(channel_position), "%u", channel);
bytes_printed = pa_snprintf(current, l, "%s%s: %s",
first ? "" : ", ",
channel_position,
pa_volume_snprint_verbose(buf, sizeof(buf), c->values[channel], print_dB));
l -= bytes_printed;
current += bytes_printed;
first = false;
}
return s;
}
char *pa_sw_volume_snprint_dB(char *s, size_t l, pa_volume_t v) {
double f;
pa_assert(s);
pa_assert(l > 0);
pa_init_i18n();
if (!PA_VOLUME_IS_VALID(v)) {
pa_snprintf(s, l, _("(invalid)"));
return s;
}
f = pa_sw_volume_to_dB(v);
pa_snprintf(s, l, "%0.2f dB", isinf(f) < 0 || f <= PA_DECIBEL_MININFTY ? -INFINITY : f);
return s;
}
char *pa_volume_snprint_verbose(char *s, size_t l, pa_volume_t v, int print_dB) {
char dB[PA_SW_VOLUME_SNPRINT_DB_MAX];
pa_assert(s);
pa_assert(l > 0);
pa_init_i18n();
if (!PA_VOLUME_IS_VALID(v)) {
pa_snprintf(s, l, _("(invalid)"));
return s;
}
pa_snprintf(s, l, "%" PRIu32 " / %3u%%%s%s",
v,
(unsigned)(((uint64_t)v * 100 + (uint64_t)PA_VOLUME_NORM / 2) / (uint64_t)PA_VOLUME_NORM),
print_dB ? " / " : "",
print_dB ? pa_sw_volume_snprint_dB(dB, sizeof(dB), v) : "");
return s;
}
int pa_cvolume_channels_equal_to(const pa_cvolume *a, pa_volume_t v) {
unsigned c;
pa_assert(a);
pa_return_val_if_fail(pa_cvolume_valid(a), 0);
pa_return_val_if_fail(PA_VOLUME_IS_VALID(v), 0);
for (c = 0; c < a->channels; c++)
if (a->values[c] != v)
return 0;
return 1;
}
pa_cvolume *pa_sw_cvolume_multiply(pa_cvolume *dest, const pa_cvolume *a, const pa_cvolume *b) {
unsigned i;
pa_assert(dest);
pa_assert(a);
pa_assert(b);
pa_return_val_if_fail(pa_cvolume_valid(a), NULL);
pa_return_val_if_fail(pa_cvolume_valid(b), NULL);
dest->channels = PA_MIN(a->channels, b->channels);
for (i = 0; i < dest->channels; i++)
dest->values[i] = pa_sw_volume_multiply(a->values[i], b->values[i]);
return dest;
}
pa_cvolume *pa_sw_cvolume_multiply_scalar(pa_cvolume *dest, const pa_cvolume *a, pa_volume_t b) {
unsigned i;
pa_assert(dest);
pa_assert(a);
pa_return_val_if_fail(pa_cvolume_valid(a), NULL);
pa_return_val_if_fail(PA_VOLUME_IS_VALID(b), NULL);
for (i = 0; i < a->channels; i++)
dest->values[i] = pa_sw_volume_multiply(a->values[i], b);
dest->channels = (uint8_t) i;
return dest;
}
pa_cvolume *pa_sw_cvolume_divide(pa_cvolume *dest, const pa_cvolume *a, const pa_cvolume *b) {
unsigned i;
pa_assert(dest);
pa_assert(a);
pa_assert(b);
pa_return_val_if_fail(pa_cvolume_valid(a), NULL);
pa_return_val_if_fail(pa_cvolume_valid(b), NULL);
dest->channels = PA_MIN(a->channels, b->channels);
for (i = 0; i < dest->channels; i++)
dest->values[i] = pa_sw_volume_divide(a->values[i], b->values[i]);
return dest;
}
pa_cvolume *pa_sw_cvolume_divide_scalar(pa_cvolume *dest, const pa_cvolume *a, pa_volume_t b) {
unsigned i;
pa_assert(dest);
pa_assert(a);
pa_return_val_if_fail(pa_cvolume_valid(a), NULL);
pa_return_val_if_fail(PA_VOLUME_IS_VALID(b), NULL);
for (i = 0; i < a->channels; i++)
dest->values[i] = pa_sw_volume_divide(a->values[i], b);
dest->channels = (uint8_t) i;
return dest;
}
int pa_cvolume_valid(const pa_cvolume *v) {
unsigned c;
pa_assert(v);
if (!pa_channels_valid(v->channels))
return 0;
for (c = 0; c < v->channels; c++)
if (!PA_VOLUME_IS_VALID(v->values[c]))
return 0;
return 1;
}
static bool on_left(pa_channel_position_t p) {
return !!(PA_CHANNEL_POSITION_MASK(p) & PA_CHANNEL_POSITION_MASK_LEFT);
}
static bool on_right(pa_channel_position_t p) {
return !!(PA_CHANNEL_POSITION_MASK(p) & PA_CHANNEL_POSITION_MASK_RIGHT);
}
static bool on_center(pa_channel_position_t p) {
return !!(PA_CHANNEL_POSITION_MASK(p) & PA_CHANNEL_POSITION_MASK_CENTER);
}
static bool on_hfe(pa_channel_position_t p) {
return !!(PA_CHANNEL_POSITION_MASK(p) & PA_CHANNEL_POSITION_MASK_HFE);
}
static bool on_lfe(pa_channel_position_t p) {
return !!(PA_CHANNEL_POSITION_MASK(p) & PA_CHANNEL_POSITION_MASK_LFE);
}
static bool on_front(pa_channel_position_t p) {
return !!(PA_CHANNEL_POSITION_MASK(p) & PA_CHANNEL_POSITION_MASK_FRONT);
}
static bool on_rear(pa_channel_position_t p) {
return !!(PA_CHANNEL_POSITION_MASK(p) & PA_CHANNEL_POSITION_MASK_REAR);
}
pa_cvolume *pa_cvolume_remap(pa_cvolume *v, const pa_channel_map *from, const pa_channel_map *to) {
int a, b;
pa_cvolume result;
pa_assert(v);
pa_assert(from);
pa_assert(to);
pa_return_val_if_fail(pa_channel_map_valid(to), NULL);
pa_return_val_if_fail(pa_cvolume_compatible_with_channel_map(v, from), NULL);
if (pa_channel_map_equal(from, to))
return v;
result.channels = to->channels;
for (b = 0; b < to->channels; b++) {
pa_volume_t k = 0;
int n = 0;
for (a = 0; a < from->channels; a++)
if (from->map[a] == to->map[b]) {
k += v->values[a];
n ++;
}
if (n <= 0) {
for (a = 0; a < from->channels; a++)
if ((on_left(from->map[a]) && on_left(to->map[b])) ||
(on_right(from->map[a]) && on_right(to->map[b])) ||
(on_center(from->map[a]) && on_center(to->map[b])) ||
(on_lfe(from->map[a]) && on_lfe(to->map[b]))) {
k += v->values[a];
n ++;
}
}
if (n <= 0)
k = pa_cvolume_avg(v);
else
k /= n;
result.values[b] = k;
}
*v = result;
return v;
}
int pa_cvolume_compatible(const pa_cvolume *v, const pa_sample_spec *ss) {
pa_assert(v);
pa_assert(ss);
pa_return_val_if_fail(pa_cvolume_valid(v), 0);
pa_return_val_if_fail(pa_sample_spec_valid(ss), 0);
return v->channels == ss->channels;
}
int pa_cvolume_compatible_with_channel_map(const pa_cvolume *v, const pa_channel_map *cm) {
pa_assert(v);
pa_assert(cm);
pa_return_val_if_fail(pa_cvolume_valid(v), 0);
pa_return_val_if_fail(pa_channel_map_valid(cm), 0);
return v->channels == cm->channels;
}
/*
* Returns the average volume of l and r, where l and r are two disjoint sets of channels
* (e g left and right, or front and rear).
*/
static void get_avg(const pa_channel_map *map, const pa_cvolume *v, pa_volume_t *l, pa_volume_t *r,
bool (*on_l)(pa_channel_position_t), bool (*on_r)(pa_channel_position_t)) {
int c;
pa_volume_t left = 0, right = 0;
unsigned n_left = 0, n_right = 0;
pa_assert(v);
pa_assert(map);
pa_assert(map->channels == v->channels);
pa_assert(l);
pa_assert(r);
for (c = 0; c < map->channels; c++) {
if (on_l(map->map[c])) {
left += v->values[c];
n_left++;
} else if (on_r(map->map[c])) {
right += v->values[c];
n_right++;
}
}
if (n_left <= 0)
*l = PA_VOLUME_NORM;
else
*l = left / n_left;
if (n_right <= 0)
*r = PA_VOLUME_NORM;
else
*r = right / n_right;
}
float pa_cvolume_get_balance(const pa_cvolume *v, const pa_channel_map *map) {
pa_volume_t left, right;
pa_assert(v);
pa_assert(map);
pa_return_val_if_fail(pa_cvolume_compatible_with_channel_map(v, map), 0.0f);
if (!pa_channel_map_can_balance(map))
return 0.0f;
get_avg(map, v, &left, &right, on_left, on_right);
if (left == right)
return 0.0f;
/* 1.0, 0.0 => -1.0
0.0, 1.0 => 1.0
0.0, 0.0 => 0.0
0.5, 0.5 => 0.0
1.0, 0.5 => -0.5
1.0, 0.25 => -0.75
0.75, 0.25 => -0.66
0.5, 0.25 => -0.5 */
if (left > right)
return -1.0f + ((float) right / (float) left);
else
return 1.0f - ((float) left / (float) right);
}
static pa_cvolume* set_balance(pa_cvolume *v, const pa_channel_map *map, float new_balance,
bool (*on_l)(pa_channel_position_t), bool (*on_r)(pa_channel_position_t)) {
pa_volume_t left, nleft, right, nright, m;
unsigned c;
get_avg(map, v, &left, &right, on_l, on_r);
m = PA_MAX(left, right);
if (new_balance <= 0) {
nright = (new_balance + 1.0f) * m;
nleft = m;
} else {
nleft = (1.0f - new_balance) * m;
nright = m;
}
for (c = 0; c < map->channels; c++) {
if (on_l(map->map[c])) {
if (left == 0)
v->values[c] = nleft;
else
v->values[c] = (pa_volume_t) PA_CLAMP_VOLUME(((uint64_t) v->values[c] * (uint64_t) nleft) / (uint64_t) left);
} else if (on_r(map->map[c])) {
if (right == 0)
v->values[c] = nright;
else
v->values[c] = (pa_volume_t) PA_CLAMP_VOLUME(((uint64_t) v->values[c] * (uint64_t) nright) / (uint64_t) right);
}
}
return v;
}
pa_cvolume* pa_cvolume_set_balance(pa_cvolume *v, const pa_channel_map *map, float new_balance) {
pa_assert(map);
pa_assert(v);
pa_return_val_if_fail(pa_cvolume_compatible_with_channel_map(v, map), NULL);
pa_return_val_if_fail(new_balance >= -1.0f, NULL);
pa_return_val_if_fail(new_balance <= 1.0f, NULL);
if (!pa_channel_map_can_balance(map))
return v;
return set_balance(v, map, new_balance, on_left, on_right);
}
pa_cvolume* pa_cvolume_scale(pa_cvolume *v, pa_volume_t max) {
unsigned c;
pa_volume_t t = 0;
pa_assert(v);
pa_return_val_if_fail(pa_cvolume_valid(v), NULL);
pa_return_val_if_fail(PA_VOLUME_IS_VALID(max), NULL);
t = pa_cvolume_max(v);
if (t <= PA_VOLUME_MUTED)
return pa_cvolume_set(v, v->channels, max);
for (c = 0; c < v->channels; c++)
v->values[c] = (pa_volume_t) PA_CLAMP_VOLUME(((uint64_t) v->values[c] * (uint64_t) max) / (uint64_t) t);
return v;
}
pa_cvolume* pa_cvolume_scale_mask(pa_cvolume *v, pa_volume_t max, const pa_channel_map *cm, pa_channel_position_mask_t mask) {
unsigned c;
pa_volume_t t = 0;
pa_assert(v);
pa_return_val_if_fail(PA_VOLUME_IS_VALID(max), NULL);
if (!cm)
return pa_cvolume_scale(v, max);
pa_return_val_if_fail(pa_cvolume_compatible_with_channel_map(v, cm), NULL);
t = pa_cvolume_max_mask(v, cm, mask);
if (t <= PA_VOLUME_MUTED)
return pa_cvolume_set(v, v->channels, max);
for (c = 0; c < v->channels; c++)
v->values[c] = (pa_volume_t) PA_CLAMP_VOLUME(((uint64_t) v->values[c] * (uint64_t) max) / (uint64_t) t);
return v;
}
float pa_cvolume_get_fade(const pa_cvolume *v, const pa_channel_map *map) {
pa_volume_t rear, front;
pa_assert(v);
pa_assert(map);
pa_return_val_if_fail(pa_cvolume_compatible_with_channel_map(v, map), 0.0f);
if (!pa_channel_map_can_fade(map))
return 0.0f;
get_avg(map, v, &rear, &front, on_rear, on_front);
if (front == rear)
return 0.0f;
if (rear > front)
return -1.0f + ((float) front / (float) rear);
else
return 1.0f - ((float) rear / (float) front);
}
pa_cvolume* pa_cvolume_set_fade(pa_cvolume *v, const pa_channel_map *map, float new_fade) {
pa_assert(map);
pa_assert(v);
pa_return_val_if_fail(pa_cvolume_compatible_with_channel_map(v, map), NULL);
pa_return_val_if_fail(new_fade >= -1.0f, NULL);
pa_return_val_if_fail(new_fade <= 1.0f, NULL);
if (!pa_channel_map_can_fade(map))
return v;
return set_balance(v, map, new_fade, on_rear, on_front);
}
float pa_cvolume_get_lfe_balance(const pa_cvolume *v, const pa_channel_map *map) {
pa_volume_t hfe, lfe;
pa_assert(v);
pa_assert(map);
pa_return_val_if_fail(pa_cvolume_compatible_with_channel_map(v, map), 0.0f);
if (!pa_channel_map_can_lfe_balance(map))
return 0.0f;
get_avg(map, v, &hfe, &lfe, on_hfe, on_lfe);
if (hfe == lfe)
return 0.0f;
if (hfe > lfe)
return -1.0f + ((float) lfe / (float) hfe);
else
return 1.0f - ((float) hfe / (float) lfe);
}
pa_cvolume* pa_cvolume_set_lfe_balance(pa_cvolume *v, const pa_channel_map *map, float new_balance) {
pa_assert(map);
pa_assert(v);
pa_return_val_if_fail(pa_cvolume_compatible_with_channel_map(v, map), NULL);
pa_return_val_if_fail(new_balance >= -1.0f, NULL);
pa_return_val_if_fail(new_balance <= 1.0f, NULL);
if (!pa_channel_map_can_lfe_balance(map))
return v;
return set_balance(v, map, new_balance, on_hfe, on_lfe);
}
pa_cvolume* pa_cvolume_set_position(
pa_cvolume *cv,
const pa_channel_map *map,
pa_channel_position_t t,
pa_volume_t v) {
unsigned c;
bool good = false;
pa_assert(cv);
pa_assert(map);
pa_return_val_if_fail(pa_cvolume_compatible_with_channel_map(cv, map), NULL);
pa_return_val_if_fail(t < PA_CHANNEL_POSITION_MAX, NULL);
pa_return_val_if_fail(PA_VOLUME_IS_VALID(v), NULL);
for (c = 0; c < map->channels; c++)
if (map->map[c] == t) {
cv->values[c] = v;
good = true;
}
return good ? cv : NULL;
}
pa_volume_t pa_cvolume_get_position(
const pa_cvolume *cv,
const pa_channel_map *map,
pa_channel_position_t t) {
unsigned c;
pa_volume_t v = PA_VOLUME_MUTED;
pa_assert(cv);
pa_assert(map);
pa_return_val_if_fail(pa_cvolume_compatible_with_channel_map(cv, map), PA_VOLUME_MUTED);
pa_return_val_if_fail(t < PA_CHANNEL_POSITION_MAX, PA_VOLUME_MUTED);
for (c = 0; c < map->channels; c++)
if (map->map[c] == t)
if (cv->values[c] > v)
v = cv->values[c];
return v;
}
pa_cvolume* pa_cvolume_merge(pa_cvolume *dest, const pa_cvolume *a, const pa_cvolume *b) {
unsigned i;
pa_assert(dest);
pa_assert(a);
pa_assert(b);
pa_return_val_if_fail(pa_cvolume_valid(a), NULL);
pa_return_val_if_fail(pa_cvolume_valid(b), NULL);
dest->channels = PA_MIN(a->channels, b->channels);
for (i = 0; i < dest->channels; i++)
dest->values[i] = PA_MAX(a->values[i], b->values[i]);
return dest;
}
pa_cvolume* pa_cvolume_inc_clamp(pa_cvolume *v, pa_volume_t inc, pa_volume_t limit) {
pa_volume_t m;
pa_assert(v);
pa_return_val_if_fail(pa_cvolume_valid(v), NULL);
pa_return_val_if_fail(PA_VOLUME_IS_VALID(inc), NULL);
m = pa_cvolume_max(v);
if (m >= limit - inc)
m = limit;
else
m += inc;
return pa_cvolume_scale(v, m);
}
pa_cvolume* pa_cvolume_inc(pa_cvolume *v, pa_volume_t inc) {
return pa_cvolume_inc_clamp(v, inc, PA_VOLUME_MAX);
}
pa_cvolume* pa_cvolume_dec(pa_cvolume *v, pa_volume_t dec) {
pa_volume_t m;
pa_assert(v);
pa_return_val_if_fail(pa_cvolume_valid(v), NULL);
pa_return_val_if_fail(PA_VOLUME_IS_VALID(dec), NULL);
m = pa_cvolume_max(v);
if (m <= PA_VOLUME_MUTED + dec)
m = PA_VOLUME_MUTED;
else
m -= dec;
return pa_cvolume_scale(v, m);
}