/*** This file is part of PulseAudio. Copyright 2004-2006 Lennart Poettering PulseAudio is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. PulseAudio is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with PulseAudio; if not, see . ***/ #ifdef HAVE_CONFIG_H #include #endif #include #include #include #include #include #include #include #include "volume.h" int pa_cvolume_equal(const pa_cvolume *a, const pa_cvolume *b) { int i; pa_assert(a); pa_assert(b); pa_return_val_if_fail(pa_cvolume_valid(a), 0); if (PA_UNLIKELY(a == b)) return 1; pa_return_val_if_fail(pa_cvolume_valid(b), 0); if (a->channels != b->channels) return 0; for (i = 0; i < a->channels; i++) if (a->values[i] != b->values[i]) return 0; return 1; } pa_cvolume* pa_cvolume_init(pa_cvolume *a) { unsigned c; pa_assert(a); a->channels = 0; for (c = 0; c < PA_CHANNELS_MAX; c++) a->values[c] = PA_VOLUME_INVALID; return a; } pa_cvolume* pa_cvolume_set(pa_cvolume *a, unsigned channels, pa_volume_t v) { int i; pa_assert(a); pa_assert(pa_channels_valid(channels)); a->channels = (uint8_t) channels; for (i = 0; i < a->channels; i++) /* Clamp in case there is stale data that exceeds the current * PA_VOLUME_MAX */ a->values[i] = PA_CLAMP_VOLUME(v); return a; } pa_volume_t pa_cvolume_avg(const pa_cvolume *a) { uint64_t sum = 0; unsigned c; pa_assert(a); pa_return_val_if_fail(pa_cvolume_valid(a), PA_VOLUME_MUTED); for (c = 0; c < a->channels; c++) sum += a->values[c]; sum /= a->channels; return (pa_volume_t) sum; } pa_volume_t pa_cvolume_avg_mask(const pa_cvolume *a, const pa_channel_map *cm, pa_channel_position_mask_t mask) { uint64_t sum = 0; unsigned c, n; pa_assert(a); if (!cm) return pa_cvolume_avg(a); pa_return_val_if_fail(pa_cvolume_compatible_with_channel_map(a, cm), PA_VOLUME_MUTED); for (c = n = 0; c < a->channels; c++) { if (!(PA_CHANNEL_POSITION_MASK(cm->map[c]) & mask)) continue; sum += a->values[c]; n ++; } if (n > 0) sum /= n; return (pa_volume_t) sum; } pa_volume_t pa_cvolume_max(const pa_cvolume *a) { pa_volume_t m = PA_VOLUME_MUTED; unsigned c; pa_assert(a); pa_return_val_if_fail(pa_cvolume_valid(a), PA_VOLUME_MUTED); for (c = 0; c < a->channels; c++) if (a->values[c] > m) m = a->values[c]; return m; } pa_volume_t pa_cvolume_min(const pa_cvolume *a) { pa_volume_t m = PA_VOLUME_MAX; unsigned c; pa_assert(a); pa_return_val_if_fail(pa_cvolume_valid(a), PA_VOLUME_MUTED); for (c = 0; c < a->channels; c++) if (a->values[c] < m) m = a->values[c]; return m; } pa_volume_t pa_cvolume_max_mask(const pa_cvolume *a, const pa_channel_map *cm, pa_channel_position_mask_t mask) { pa_volume_t m = PA_VOLUME_MUTED; unsigned c; pa_assert(a); if (!cm) return pa_cvolume_max(a); pa_return_val_if_fail(pa_cvolume_compatible_with_channel_map(a, cm), PA_VOLUME_MUTED); for (c = 0; c < a->channels; c++) { if (!(PA_CHANNEL_POSITION_MASK(cm->map[c]) & mask)) continue; if (a->values[c] > m) m = a->values[c]; } return m; } pa_volume_t pa_cvolume_min_mask(const pa_cvolume *a, const pa_channel_map *cm, pa_channel_position_mask_t mask) { pa_volume_t m = PA_VOLUME_MAX; unsigned c; pa_assert(a); if (!cm) return pa_cvolume_min(a); pa_return_val_if_fail(pa_cvolume_compatible_with_channel_map(a, cm), PA_VOLUME_MUTED); for (c = 0; c < a->channels; c++) { if (!(PA_CHANNEL_POSITION_MASK(cm->map[c]) & mask)) continue; if (a->values[c] < m) m = a->values[c]; } return m; } pa_volume_t pa_sw_volume_multiply(pa_volume_t a, pa_volume_t b) { uint64_t result; pa_return_val_if_fail(PA_VOLUME_IS_VALID(a), PA_VOLUME_INVALID); pa_return_val_if_fail(PA_VOLUME_IS_VALID(b), PA_VOLUME_INVALID); /* cbrt((a/PA_VOLUME_NORM)^3*(b/PA_VOLUME_NORM)^3)*PA_VOLUME_NORM = a*b/PA_VOLUME_NORM */ result = ((uint64_t) a * (uint64_t) b + (uint64_t) PA_VOLUME_NORM / 2ULL) / (uint64_t) PA_VOLUME_NORM; if (result > (uint64_t)PA_VOLUME_MAX) pa_log_warn("pa_sw_volume_multiply: Volume exceeds maximum allowed value and will be clipped. Please check your volume settings."); return (pa_volume_t) PA_CLAMP_VOLUME(result); } pa_volume_t pa_sw_volume_divide(pa_volume_t a, pa_volume_t b) { uint64_t result; pa_return_val_if_fail(PA_VOLUME_IS_VALID(a), PA_VOLUME_INVALID); pa_return_val_if_fail(PA_VOLUME_IS_VALID(b), PA_VOLUME_INVALID); if (b <= PA_VOLUME_MUTED) return 0; result = ((uint64_t) a * (uint64_t) PA_VOLUME_NORM + (uint64_t) b / 2ULL) / (uint64_t) b; if (result > (uint64_t)PA_VOLUME_MAX) pa_log_warn("pa_sw_volume_divide: Volume exceeds maximum allowed value and will be clipped. Please check your volume settings."); return (pa_volume_t) PA_CLAMP_VOLUME(result); } /* Amplitude, not power */ static double linear_to_dB(double v) { return 20.0 * log10(v); } static double dB_to_linear(double v) { return pow(10.0, v / 20.0); } pa_volume_t pa_sw_volume_from_dB(double dB) { if (isinf(dB) < 0 || dB <= PA_DECIBEL_MININFTY) return PA_VOLUME_MUTED; return pa_sw_volume_from_linear(dB_to_linear(dB)); } double pa_sw_volume_to_dB(pa_volume_t v) { pa_return_val_if_fail(PA_VOLUME_IS_VALID(v), PA_DECIBEL_MININFTY); if (v <= PA_VOLUME_MUTED) return PA_DECIBEL_MININFTY; return linear_to_dB(pa_sw_volume_to_linear(v)); } pa_volume_t pa_sw_volume_from_linear(double v) { if (v <= 0.0) return PA_VOLUME_MUTED; /* * We use a cubic mapping here, as suggested and discussed here: * * http://www.robotplanet.dk/audio/audio_gui_design/ * http://lists.linuxaudio.org/pipermail/linux-audio-dev/2009-May/thread.html#23151 * * We make sure that the conversion to linear and back yields the * same volume value! That's why we need the lround() below! */ return (pa_volume_t) PA_CLAMP_VOLUME((uint64_t) lround(cbrt(v) * PA_VOLUME_NORM)); } double pa_sw_volume_to_linear(pa_volume_t v) { double f; pa_return_val_if_fail(PA_VOLUME_IS_VALID(v), 0.0); if (v <= PA_VOLUME_MUTED) return 0.0; if (v == PA_VOLUME_NORM) return 1.0; f = ((double) v / PA_VOLUME_NORM); return f*f*f; } char *pa_cvolume_snprint(char *s, size_t l, const pa_cvolume *c) { unsigned channel; bool first = true; char *e; pa_assert(s); pa_assert(l > 0); pa_assert(c); pa_init_i18n(); if (!pa_cvolume_valid(c)) { pa_snprintf(s, l, _("(invalid)")); return s; } *(e = s) = 0; for (channel = 0; channel < c->channels && l > 1; channel++) { l -= pa_snprintf(e, l, "%s%u: %3u%%", first ? "" : " ", channel, (unsigned)(((uint64_t)c->values[channel] * 100 + (uint64_t)PA_VOLUME_NORM / 2) / (uint64_t)PA_VOLUME_NORM)); e = strchr(e, 0); first = false; } return s; } char *pa_volume_snprint(char *s, size_t l, pa_volume_t v) { pa_assert(s); pa_assert(l > 0); pa_init_i18n(); if (!PA_VOLUME_IS_VALID(v)) { pa_snprintf(s, l, _("(invalid)")); return s; } pa_snprintf(s, l, "%3u%%", (unsigned)(((uint64_t)v * 100 + (uint64_t)PA_VOLUME_NORM / 2) / (uint64_t)PA_VOLUME_NORM)); return s; } char *pa_sw_cvolume_snprint_dB(char *s, size_t l, const pa_cvolume *c) { unsigned channel; bool first = true; char *e; pa_assert(s); pa_assert(l > 0); pa_assert(c); pa_init_i18n(); if (!pa_cvolume_valid(c)) { pa_snprintf(s, l, _("(invalid)")); return s; } *(e = s) = 0; for (channel = 0; channel < c->channels && l > 1; channel++) { double f = pa_sw_volume_to_dB(c->values[channel]); l -= pa_snprintf(e, l, "%s%u: %0.2f dB", first ? "" : " ", channel, isinf(f) < 0 || f <= PA_DECIBEL_MININFTY ? -INFINITY : f); e = strchr(e, 0); first = false; } return s; } char *pa_cvolume_snprint_verbose(char *s, size_t l, const pa_cvolume *c, const pa_channel_map *map, int print_dB) { char *current = s; bool first = true; pa_assert(s); pa_assert(l > 0); pa_assert(c); pa_init_i18n(); if (!pa_cvolume_valid(c)) { pa_snprintf(s, l, _("(invalid)")); return s; } pa_assert(!map || (map->channels == c->channels)); pa_assert(!map || pa_channel_map_valid(map)); current[0] = 0; for (unsigned channel = 0; channel < c->channels && l > 1; channel++) { char channel_position[32]; size_t bytes_printed; char buf[PA_VOLUME_SNPRINT_VERBOSE_MAX]; if (map) pa_snprintf(channel_position, sizeof(channel_position), "%s", pa_channel_position_to_string(map->map[channel])); else pa_snprintf(channel_position, sizeof(channel_position), "%u", channel); bytes_printed = pa_snprintf(current, l, "%s%s: %s", first ? "" : ", ", channel_position, pa_volume_snprint_verbose(buf, sizeof(buf), c->values[channel], print_dB)); l -= bytes_printed; current += bytes_printed; first = false; } return s; } char *pa_sw_volume_snprint_dB(char *s, size_t l, pa_volume_t v) { double f; pa_assert(s); pa_assert(l > 0); pa_init_i18n(); if (!PA_VOLUME_IS_VALID(v)) { pa_snprintf(s, l, _("(invalid)")); return s; } f = pa_sw_volume_to_dB(v); pa_snprintf(s, l, "%0.2f dB", isinf(f) < 0 || f <= PA_DECIBEL_MININFTY ? -INFINITY : f); return s; } char *pa_volume_snprint_verbose(char *s, size_t l, pa_volume_t v, int print_dB) { char dB[PA_SW_VOLUME_SNPRINT_DB_MAX]; pa_assert(s); pa_assert(l > 0); pa_init_i18n(); if (!PA_VOLUME_IS_VALID(v)) { pa_snprintf(s, l, _("(invalid)")); return s; } pa_snprintf(s, l, "%" PRIu32 " / %3u%%%s%s", v, (unsigned)(((uint64_t)v * 100 + (uint64_t)PA_VOLUME_NORM / 2) / (uint64_t)PA_VOLUME_NORM), print_dB ? " / " : "", print_dB ? pa_sw_volume_snprint_dB(dB, sizeof(dB), v) : ""); return s; } int pa_cvolume_channels_equal_to(const pa_cvolume *a, pa_volume_t v) { unsigned c; pa_assert(a); pa_return_val_if_fail(pa_cvolume_valid(a), 0); pa_return_val_if_fail(PA_VOLUME_IS_VALID(v), 0); for (c = 0; c < a->channels; c++) if (a->values[c] != v) return 0; return 1; } pa_cvolume *pa_sw_cvolume_multiply(pa_cvolume *dest, const pa_cvolume *a, const pa_cvolume *b) { unsigned i; pa_assert(dest); pa_assert(a); pa_assert(b); pa_return_val_if_fail(pa_cvolume_valid(a), NULL); pa_return_val_if_fail(pa_cvolume_valid(b), NULL); dest->channels = PA_MIN(a->channels, b->channels); for (i = 0; i < dest->channels; i++) dest->values[i] = pa_sw_volume_multiply(a->values[i], b->values[i]); return dest; } pa_cvolume *pa_sw_cvolume_multiply_scalar(pa_cvolume *dest, const pa_cvolume *a, pa_volume_t b) { unsigned i; pa_assert(dest); pa_assert(a); pa_return_val_if_fail(pa_cvolume_valid(a), NULL); pa_return_val_if_fail(PA_VOLUME_IS_VALID(b), NULL); for (i = 0; i < a->channels; i++) dest->values[i] = pa_sw_volume_multiply(a->values[i], b); dest->channels = (uint8_t) i; return dest; } pa_cvolume *pa_sw_cvolume_divide(pa_cvolume *dest, const pa_cvolume *a, const pa_cvolume *b) { unsigned i; pa_assert(dest); pa_assert(a); pa_assert(b); pa_return_val_if_fail(pa_cvolume_valid(a), NULL); pa_return_val_if_fail(pa_cvolume_valid(b), NULL); dest->channels = PA_MIN(a->channels, b->channels); for (i = 0; i < dest->channels; i++) dest->values[i] = pa_sw_volume_divide(a->values[i], b->values[i]); return dest; } pa_cvolume *pa_sw_cvolume_divide_scalar(pa_cvolume *dest, const pa_cvolume *a, pa_volume_t b) { unsigned i; pa_assert(dest); pa_assert(a); pa_return_val_if_fail(pa_cvolume_valid(a), NULL); pa_return_val_if_fail(PA_VOLUME_IS_VALID(b), NULL); for (i = 0; i < a->channels; i++) dest->values[i] = pa_sw_volume_divide(a->values[i], b); dest->channels = (uint8_t) i; return dest; } int pa_cvolume_valid(const pa_cvolume *v) { unsigned c; pa_assert(v); if (!pa_channels_valid(v->channels)) return 0; for (c = 0; c < v->channels; c++) if (!PA_VOLUME_IS_VALID(v->values[c])) return 0; return 1; } static bool on_left(pa_channel_position_t p) { return !!(PA_CHANNEL_POSITION_MASK(p) & PA_CHANNEL_POSITION_MASK_LEFT); } static bool on_right(pa_channel_position_t p) { return !!(PA_CHANNEL_POSITION_MASK(p) & PA_CHANNEL_POSITION_MASK_RIGHT); } static bool on_center(pa_channel_position_t p) { return !!(PA_CHANNEL_POSITION_MASK(p) & PA_CHANNEL_POSITION_MASK_CENTER); } static bool on_hfe(pa_channel_position_t p) { return !!(PA_CHANNEL_POSITION_MASK(p) & PA_CHANNEL_POSITION_MASK_HFE); } static bool on_lfe(pa_channel_position_t p) { return !!(PA_CHANNEL_POSITION_MASK(p) & PA_CHANNEL_POSITION_MASK_LFE); } static bool on_front(pa_channel_position_t p) { return !!(PA_CHANNEL_POSITION_MASK(p) & PA_CHANNEL_POSITION_MASK_FRONT); } static bool on_rear(pa_channel_position_t p) { return !!(PA_CHANNEL_POSITION_MASK(p) & PA_CHANNEL_POSITION_MASK_REAR); } pa_cvolume *pa_cvolume_remap(pa_cvolume *v, const pa_channel_map *from, const pa_channel_map *to) { int a, b; pa_cvolume result; pa_assert(v); pa_assert(from); pa_assert(to); pa_return_val_if_fail(pa_channel_map_valid(to), NULL); pa_return_val_if_fail(pa_cvolume_compatible_with_channel_map(v, from), NULL); if (pa_channel_map_equal(from, to)) return v; result.channels = to->channels; for (b = 0; b < to->channels; b++) { pa_volume_t k = 0; int n = 0; for (a = 0; a < from->channels; a++) if (from->map[a] == to->map[b]) { k += v->values[a]; n ++; } if (n <= 0) { for (a = 0; a < from->channels; a++) if ((on_left(from->map[a]) && on_left(to->map[b])) || (on_right(from->map[a]) && on_right(to->map[b])) || (on_center(from->map[a]) && on_center(to->map[b])) || (on_lfe(from->map[a]) && on_lfe(to->map[b]))) { k += v->values[a]; n ++; } } if (n <= 0) k = pa_cvolume_avg(v); else k /= n; result.values[b] = k; } *v = result; return v; } int pa_cvolume_compatible(const pa_cvolume *v, const pa_sample_spec *ss) { pa_assert(v); pa_assert(ss); pa_return_val_if_fail(pa_cvolume_valid(v), 0); pa_return_val_if_fail(pa_sample_spec_valid(ss), 0); return v->channels == ss->channels; } int pa_cvolume_compatible_with_channel_map(const pa_cvolume *v, const pa_channel_map *cm) { pa_assert(v); pa_assert(cm); pa_return_val_if_fail(pa_cvolume_valid(v), 0); pa_return_val_if_fail(pa_channel_map_valid(cm), 0); return v->channels == cm->channels; } /* * Returns the average volume of l and r, where l and r are two disjoint sets of channels * (e g left and right, or front and rear). */ static void get_avg(const pa_channel_map *map, const pa_cvolume *v, pa_volume_t *l, pa_volume_t *r, bool (*on_l)(pa_channel_position_t), bool (*on_r)(pa_channel_position_t)) { int c; pa_volume_t left = 0, right = 0; unsigned n_left = 0, n_right = 0; pa_assert(v); pa_assert(map); pa_assert(map->channels == v->channels); pa_assert(l); pa_assert(r); for (c = 0; c < map->channels; c++) { if (on_l(map->map[c])) { left += v->values[c]; n_left++; } else if (on_r(map->map[c])) { right += v->values[c]; n_right++; } } if (n_left <= 0) *l = PA_VOLUME_NORM; else *l = left / n_left; if (n_right <= 0) *r = PA_VOLUME_NORM; else *r = right / n_right; } float pa_cvolume_get_balance(const pa_cvolume *v, const pa_channel_map *map) { pa_volume_t left, right; pa_assert(v); pa_assert(map); pa_return_val_if_fail(pa_cvolume_compatible_with_channel_map(v, map), 0.0f); if (!pa_channel_map_can_balance(map)) return 0.0f; get_avg(map, v, &left, &right, on_left, on_right); if (left == right) return 0.0f; /* 1.0, 0.0 => -1.0 0.0, 1.0 => 1.0 0.0, 0.0 => 0.0 0.5, 0.5 => 0.0 1.0, 0.5 => -0.5 1.0, 0.25 => -0.75 0.75, 0.25 => -0.66 0.5, 0.25 => -0.5 */ if (left > right) return -1.0f + ((float) right / (float) left); else return 1.0f - ((float) left / (float) right); } static pa_cvolume* set_balance(pa_cvolume *v, const pa_channel_map *map, float new_balance, bool (*on_l)(pa_channel_position_t), bool (*on_r)(pa_channel_position_t)) { pa_volume_t left, nleft, right, nright, m; unsigned c; get_avg(map, v, &left, &right, on_l, on_r); m = PA_MAX(left, right); if (new_balance <= 0) { nright = (new_balance + 1.0f) * m; nleft = m; } else { nleft = (1.0f - new_balance) * m; nright = m; } for (c = 0; c < map->channels; c++) { if (on_l(map->map[c])) { if (left == 0) v->values[c] = nleft; else v->values[c] = (pa_volume_t) PA_CLAMP_VOLUME(((uint64_t) v->values[c] * (uint64_t) nleft) / (uint64_t) left); } else if (on_r(map->map[c])) { if (right == 0) v->values[c] = nright; else v->values[c] = (pa_volume_t) PA_CLAMP_VOLUME(((uint64_t) v->values[c] * (uint64_t) nright) / (uint64_t) right); } } return v; } pa_cvolume* pa_cvolume_set_balance(pa_cvolume *v, const pa_channel_map *map, float new_balance) { pa_assert(map); pa_assert(v); pa_return_val_if_fail(pa_cvolume_compatible_with_channel_map(v, map), NULL); pa_return_val_if_fail(new_balance >= -1.0f, NULL); pa_return_val_if_fail(new_balance <= 1.0f, NULL); if (!pa_channel_map_can_balance(map)) return v; return set_balance(v, map, new_balance, on_left, on_right); } pa_cvolume* pa_cvolume_scale(pa_cvolume *v, pa_volume_t max) { unsigned c; pa_volume_t t = 0; pa_assert(v); pa_return_val_if_fail(pa_cvolume_valid(v), NULL); pa_return_val_if_fail(PA_VOLUME_IS_VALID(max), NULL); t = pa_cvolume_max(v); if (t <= PA_VOLUME_MUTED) return pa_cvolume_set(v, v->channels, max); for (c = 0; c < v->channels; c++) v->values[c] = (pa_volume_t) PA_CLAMP_VOLUME(((uint64_t) v->values[c] * (uint64_t) max) / (uint64_t) t); return v; } pa_cvolume* pa_cvolume_scale_mask(pa_cvolume *v, pa_volume_t max, const pa_channel_map *cm, pa_channel_position_mask_t mask) { unsigned c; pa_volume_t t = 0; pa_assert(v); pa_return_val_if_fail(PA_VOLUME_IS_VALID(max), NULL); if (!cm) return pa_cvolume_scale(v, max); pa_return_val_if_fail(pa_cvolume_compatible_with_channel_map(v, cm), NULL); t = pa_cvolume_max_mask(v, cm, mask); if (t <= PA_VOLUME_MUTED) return pa_cvolume_set(v, v->channels, max); for (c = 0; c < v->channels; c++) v->values[c] = (pa_volume_t) PA_CLAMP_VOLUME(((uint64_t) v->values[c] * (uint64_t) max) / (uint64_t) t); return v; } float pa_cvolume_get_fade(const pa_cvolume *v, const pa_channel_map *map) { pa_volume_t rear, front; pa_assert(v); pa_assert(map); pa_return_val_if_fail(pa_cvolume_compatible_with_channel_map(v, map), 0.0f); if (!pa_channel_map_can_fade(map)) return 0.0f; get_avg(map, v, &rear, &front, on_rear, on_front); if (front == rear) return 0.0f; if (rear > front) return -1.0f + ((float) front / (float) rear); else return 1.0f - ((float) rear / (float) front); } pa_cvolume* pa_cvolume_set_fade(pa_cvolume *v, const pa_channel_map *map, float new_fade) { pa_assert(map); pa_assert(v); pa_return_val_if_fail(pa_cvolume_compatible_with_channel_map(v, map), NULL); pa_return_val_if_fail(new_fade >= -1.0f, NULL); pa_return_val_if_fail(new_fade <= 1.0f, NULL); if (!pa_channel_map_can_fade(map)) return v; return set_balance(v, map, new_fade, on_rear, on_front); } float pa_cvolume_get_lfe_balance(const pa_cvolume *v, const pa_channel_map *map) { pa_volume_t hfe, lfe; pa_assert(v); pa_assert(map); pa_return_val_if_fail(pa_cvolume_compatible_with_channel_map(v, map), 0.0f); if (!pa_channel_map_can_lfe_balance(map)) return 0.0f; get_avg(map, v, &hfe, &lfe, on_hfe, on_lfe); if (hfe == lfe) return 0.0f; if (hfe > lfe) return -1.0f + ((float) lfe / (float) hfe); else return 1.0f - ((float) hfe / (float) lfe); } pa_cvolume* pa_cvolume_set_lfe_balance(pa_cvolume *v, const pa_channel_map *map, float new_balance) { pa_assert(map); pa_assert(v); pa_return_val_if_fail(pa_cvolume_compatible_with_channel_map(v, map), NULL); pa_return_val_if_fail(new_balance >= -1.0f, NULL); pa_return_val_if_fail(new_balance <= 1.0f, NULL); if (!pa_channel_map_can_lfe_balance(map)) return v; return set_balance(v, map, new_balance, on_hfe, on_lfe); } pa_cvolume* pa_cvolume_set_position( pa_cvolume *cv, const pa_channel_map *map, pa_channel_position_t t, pa_volume_t v) { unsigned c; bool good = false; pa_assert(cv); pa_assert(map); pa_return_val_if_fail(pa_cvolume_compatible_with_channel_map(cv, map), NULL); pa_return_val_if_fail(t < PA_CHANNEL_POSITION_MAX, NULL); pa_return_val_if_fail(PA_VOLUME_IS_VALID(v), NULL); for (c = 0; c < map->channels; c++) if (map->map[c] == t) { cv->values[c] = v; good = true; } return good ? cv : NULL; } pa_volume_t pa_cvolume_get_position( const pa_cvolume *cv, const pa_channel_map *map, pa_channel_position_t t) { unsigned c; pa_volume_t v = PA_VOLUME_MUTED; pa_assert(cv); pa_assert(map); pa_return_val_if_fail(pa_cvolume_compatible_with_channel_map(cv, map), PA_VOLUME_MUTED); pa_return_val_if_fail(t < PA_CHANNEL_POSITION_MAX, PA_VOLUME_MUTED); for (c = 0; c < map->channels; c++) if (map->map[c] == t) if (cv->values[c] > v) v = cv->values[c]; return v; } pa_cvolume* pa_cvolume_merge(pa_cvolume *dest, const pa_cvolume *a, const pa_cvolume *b) { unsigned i; pa_assert(dest); pa_assert(a); pa_assert(b); pa_return_val_if_fail(pa_cvolume_valid(a), NULL); pa_return_val_if_fail(pa_cvolume_valid(b), NULL); dest->channels = PA_MIN(a->channels, b->channels); for (i = 0; i < dest->channels; i++) dest->values[i] = PA_MAX(a->values[i], b->values[i]); return dest; } pa_cvolume* pa_cvolume_inc_clamp(pa_cvolume *v, pa_volume_t inc, pa_volume_t limit) { pa_volume_t m; pa_assert(v); pa_return_val_if_fail(pa_cvolume_valid(v), NULL); pa_return_val_if_fail(PA_VOLUME_IS_VALID(inc), NULL); m = pa_cvolume_max(v); if (m >= limit - inc) m = limit; else m += inc; return pa_cvolume_scale(v, m); } pa_cvolume* pa_cvolume_inc(pa_cvolume *v, pa_volume_t inc) { return pa_cvolume_inc_clamp(v, inc, PA_VOLUME_MAX); } pa_cvolume* pa_cvolume_dec(pa_cvolume *v, pa_volume_t dec) { pa_volume_t m; pa_assert(v); pa_return_val_if_fail(pa_cvolume_valid(v), NULL); pa_return_val_if_fail(PA_VOLUME_IS_VALID(dec), NULL); m = pa_cvolume_max(v); if (m <= PA_VOLUME_MUTED + dec) m = PA_VOLUME_MUTED; else m -= dec; return pa_cvolume_scale(v, m); }