/***
This file is part of PulseAudio.
Copyright 2004-2006 Lennart Poettering
PulseAudio is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published
by the Free Software Foundation; either version 2.1 of the License,
or (at your option) any later version.
PulseAudio is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with PulseAudio; if not, see .
***/
#ifdef HAVE_CONFIG_H
#include
#endif
#include
#include
#include
#include
#include
#include
#include "resampler.h"
/* Number of samples of extra space we allow the resamplers to return */
#define EXTRA_FRAMES 128
struct ffmpeg_data { /* data specific to ffmpeg */
struct AVResampleContext *state;
};
static int copy_init(pa_resampler *r);
static void setup_remap(const pa_resampler *r, pa_remap_t *m, bool *lfe_remixed);
static void free_remap(pa_remap_t *m);
static int (* const init_table[])(pa_resampler *r) = {
#ifdef HAVE_LIBSAMPLERATE
[PA_RESAMPLER_SRC_SINC_BEST_QUALITY] = pa_resampler_libsamplerate_init,
[PA_RESAMPLER_SRC_SINC_MEDIUM_QUALITY] = pa_resampler_libsamplerate_init,
[PA_RESAMPLER_SRC_SINC_FASTEST] = pa_resampler_libsamplerate_init,
[PA_RESAMPLER_SRC_ZERO_ORDER_HOLD] = pa_resampler_libsamplerate_init,
[PA_RESAMPLER_SRC_LINEAR] = pa_resampler_libsamplerate_init,
#else
[PA_RESAMPLER_SRC_SINC_BEST_QUALITY] = NULL,
[PA_RESAMPLER_SRC_SINC_MEDIUM_QUALITY] = NULL,
[PA_RESAMPLER_SRC_SINC_FASTEST] = NULL,
[PA_RESAMPLER_SRC_ZERO_ORDER_HOLD] = NULL,
[PA_RESAMPLER_SRC_LINEAR] = NULL,
#endif
[PA_RESAMPLER_TRIVIAL] = pa_resampler_trivial_init,
#ifdef HAVE_SPEEX
[PA_RESAMPLER_SPEEX_FLOAT_BASE+0] = pa_resampler_speex_init,
[PA_RESAMPLER_SPEEX_FLOAT_BASE+1] = pa_resampler_speex_init,
[PA_RESAMPLER_SPEEX_FLOAT_BASE+2] = pa_resampler_speex_init,
[PA_RESAMPLER_SPEEX_FLOAT_BASE+3] = pa_resampler_speex_init,
[PA_RESAMPLER_SPEEX_FLOAT_BASE+4] = pa_resampler_speex_init,
[PA_RESAMPLER_SPEEX_FLOAT_BASE+5] = pa_resampler_speex_init,
[PA_RESAMPLER_SPEEX_FLOAT_BASE+6] = pa_resampler_speex_init,
[PA_RESAMPLER_SPEEX_FLOAT_BASE+7] = pa_resampler_speex_init,
[PA_RESAMPLER_SPEEX_FLOAT_BASE+8] = pa_resampler_speex_init,
[PA_RESAMPLER_SPEEX_FLOAT_BASE+9] = pa_resampler_speex_init,
[PA_RESAMPLER_SPEEX_FLOAT_BASE+10] = pa_resampler_speex_init,
[PA_RESAMPLER_SPEEX_FIXED_BASE+0] = pa_resampler_speex_init,
[PA_RESAMPLER_SPEEX_FIXED_BASE+1] = pa_resampler_speex_init,
[PA_RESAMPLER_SPEEX_FIXED_BASE+2] = pa_resampler_speex_init,
[PA_RESAMPLER_SPEEX_FIXED_BASE+3] = pa_resampler_speex_init,
[PA_RESAMPLER_SPEEX_FIXED_BASE+4] = pa_resampler_speex_init,
[PA_RESAMPLER_SPEEX_FIXED_BASE+5] = pa_resampler_speex_init,
[PA_RESAMPLER_SPEEX_FIXED_BASE+6] = pa_resampler_speex_init,
[PA_RESAMPLER_SPEEX_FIXED_BASE+7] = pa_resampler_speex_init,
[PA_RESAMPLER_SPEEX_FIXED_BASE+8] = pa_resampler_speex_init,
[PA_RESAMPLER_SPEEX_FIXED_BASE+9] = pa_resampler_speex_init,
[PA_RESAMPLER_SPEEX_FIXED_BASE+10] = pa_resampler_speex_init,
#else
[PA_RESAMPLER_SPEEX_FLOAT_BASE+0] = NULL,
[PA_RESAMPLER_SPEEX_FLOAT_BASE+1] = NULL,
[PA_RESAMPLER_SPEEX_FLOAT_BASE+2] = NULL,
[PA_RESAMPLER_SPEEX_FLOAT_BASE+3] = NULL,
[PA_RESAMPLER_SPEEX_FLOAT_BASE+4] = NULL,
[PA_RESAMPLER_SPEEX_FLOAT_BASE+5] = NULL,
[PA_RESAMPLER_SPEEX_FLOAT_BASE+6] = NULL,
[PA_RESAMPLER_SPEEX_FLOAT_BASE+7] = NULL,
[PA_RESAMPLER_SPEEX_FLOAT_BASE+8] = NULL,
[PA_RESAMPLER_SPEEX_FLOAT_BASE+9] = NULL,
[PA_RESAMPLER_SPEEX_FLOAT_BASE+10] = NULL,
[PA_RESAMPLER_SPEEX_FIXED_BASE+0] = NULL,
[PA_RESAMPLER_SPEEX_FIXED_BASE+1] = NULL,
[PA_RESAMPLER_SPEEX_FIXED_BASE+2] = NULL,
[PA_RESAMPLER_SPEEX_FIXED_BASE+3] = NULL,
[PA_RESAMPLER_SPEEX_FIXED_BASE+4] = NULL,
[PA_RESAMPLER_SPEEX_FIXED_BASE+5] = NULL,
[PA_RESAMPLER_SPEEX_FIXED_BASE+6] = NULL,
[PA_RESAMPLER_SPEEX_FIXED_BASE+7] = NULL,
[PA_RESAMPLER_SPEEX_FIXED_BASE+8] = NULL,
[PA_RESAMPLER_SPEEX_FIXED_BASE+9] = NULL,
[PA_RESAMPLER_SPEEX_FIXED_BASE+10] = NULL,
#endif
[PA_RESAMPLER_FFMPEG] = pa_resampler_ffmpeg_init,
[PA_RESAMPLER_AUTO] = NULL,
[PA_RESAMPLER_COPY] = copy_init,
[PA_RESAMPLER_PEAKS] = pa_resampler_peaks_init,
#ifdef HAVE_SOXR
[PA_RESAMPLER_SOXR_MQ] = pa_resampler_soxr_init,
[PA_RESAMPLER_SOXR_HQ] = pa_resampler_soxr_init,
[PA_RESAMPLER_SOXR_VHQ] = pa_resampler_soxr_init,
#else
[PA_RESAMPLER_SOXR_MQ] = NULL,
[PA_RESAMPLER_SOXR_HQ] = NULL,
[PA_RESAMPLER_SOXR_VHQ] = NULL,
#endif
};
static pa_resample_method_t choose_auto_resampler(pa_resample_flags_t flags) {
pa_resample_method_t method;
if (pa_resample_method_supported(PA_RESAMPLER_SPEEX_FLOAT_BASE + 1))
method = PA_RESAMPLER_SPEEX_FLOAT_BASE + 1;
else if (flags & PA_RESAMPLER_VARIABLE_RATE)
method = PA_RESAMPLER_TRIVIAL;
else
method = PA_RESAMPLER_FFMPEG;
return method;
}
static pa_resample_method_t fix_method(
pa_resample_flags_t flags,
pa_resample_method_t method,
const uint32_t rate_a,
const uint32_t rate_b) {
pa_assert(pa_sample_rate_valid(rate_a));
pa_assert(pa_sample_rate_valid(rate_b));
pa_assert(method >= 0);
pa_assert(method < PA_RESAMPLER_MAX);
if (!(flags & PA_RESAMPLER_VARIABLE_RATE) && rate_a == rate_b) {
pa_log_info("Forcing resampler 'copy', because of fixed, identical sample rates.");
method = PA_RESAMPLER_COPY;
}
if (!pa_resample_method_supported(method)) {
pa_log_warn("Support for resampler '%s' not compiled in, reverting to 'auto'.", pa_resample_method_to_string(method));
method = PA_RESAMPLER_AUTO;
}
switch (method) {
case PA_RESAMPLER_COPY:
if (rate_a != rate_b) {
pa_log_info("Resampler 'copy' cannot change sampling rate, reverting to resampler 'auto'.");
method = PA_RESAMPLER_AUTO;
break;
}
/* Else fall through */
case PA_RESAMPLER_FFMPEG:
case PA_RESAMPLER_SOXR_MQ:
case PA_RESAMPLER_SOXR_HQ:
case PA_RESAMPLER_SOXR_VHQ:
if (flags & PA_RESAMPLER_VARIABLE_RATE) {
pa_log_info("Resampler '%s' cannot do variable rate, reverting to resampler 'auto'.", pa_resample_method_to_string(method));
method = PA_RESAMPLER_AUTO;
}
break;
/* The Peaks resampler only supports downsampling.
* Revert to auto if we are upsampling */
case PA_RESAMPLER_PEAKS:
if (rate_a < rate_b) {
pa_log_warn("The 'peaks' resampler only supports downsampling, reverting to resampler 'auto'.");
method = PA_RESAMPLER_AUTO;
}
break;
default:
break;
}
if (method == PA_RESAMPLER_AUTO)
method = choose_auto_resampler(flags);
#ifdef HAVE_SPEEX
/* At this point, method is supported in the sense that it
* has an init function and supports the required flags. However,
* speex-float implementation in PulseAudio relies on the
* assumption that is invalid if speex has been compiled with
* --enable-fixed-point. Besides, speex-fixed is more efficient
* in this configuration. So use it instead.
*/
if (method >= PA_RESAMPLER_SPEEX_FLOAT_BASE && method <= PA_RESAMPLER_SPEEX_FLOAT_MAX) {
if (pa_speex_is_fixed_point()) {
pa_log_info("Speex appears to be compiled with --enable-fixed-point. "
"Switching to a fixed-point resampler because it should be faster.");
method = method - PA_RESAMPLER_SPEEX_FLOAT_BASE + PA_RESAMPLER_SPEEX_FIXED_BASE;
}
}
#endif
return method;
}
/* Return true if a is a more precise sample format than b, else return false */
static bool sample_format_more_precise(pa_sample_format_t a, pa_sample_format_t b) {
pa_assert(pa_sample_format_valid(a));
pa_assert(pa_sample_format_valid(b));
switch (a) {
case PA_SAMPLE_U8:
case PA_SAMPLE_ALAW:
case PA_SAMPLE_ULAW:
return false;
break;
case PA_SAMPLE_S16LE:
case PA_SAMPLE_S16BE:
if (b == PA_SAMPLE_ULAW || b == PA_SAMPLE_ALAW || b == PA_SAMPLE_U8)
return true;
else
return false;
break;
case PA_SAMPLE_S24LE:
case PA_SAMPLE_S24BE:
case PA_SAMPLE_S24_32LE:
case PA_SAMPLE_S24_32BE:
if (b == PA_SAMPLE_ULAW || b == PA_SAMPLE_ALAW || b == PA_SAMPLE_U8 ||
b == PA_SAMPLE_S16LE || b == PA_SAMPLE_S16BE)
return true;
else
return false;
break;
case PA_SAMPLE_FLOAT32LE:
case PA_SAMPLE_FLOAT32BE:
case PA_SAMPLE_S32LE:
case PA_SAMPLE_S32BE:
if (b == PA_SAMPLE_FLOAT32LE || b == PA_SAMPLE_FLOAT32BE ||
b == PA_SAMPLE_S32LE || b == PA_SAMPLE_S32BE)
return false;
else
return true;
break;
default:
return false;
}
}
static pa_sample_format_t choose_work_format(
pa_resample_method_t method,
pa_sample_format_t a,
pa_sample_format_t b,
bool map_required) {
pa_sample_format_t work_format;
pa_assert(pa_sample_format_valid(a));
pa_assert(pa_sample_format_valid(b));
pa_assert(method >= 0);
pa_assert(method < PA_RESAMPLER_MAX);
if (method >= PA_RESAMPLER_SPEEX_FIXED_BASE && method <= PA_RESAMPLER_SPEEX_FIXED_MAX)
method = PA_RESAMPLER_SPEEX_FIXED_BASE;
switch (method) {
/* This block is for resampling functions that only
* support the S16 sample format. */
case PA_RESAMPLER_SPEEX_FIXED_BASE:
case PA_RESAMPLER_FFMPEG:
work_format = PA_SAMPLE_S16NE;
break;
/* This block is for resampling functions that support
* any sample format. */
case PA_RESAMPLER_COPY:
case PA_RESAMPLER_TRIVIAL:
if (!map_required && a == b) {
work_format = a;
break;
}
/* If both input and output are using S32NE and we don't
* need any resampling we can use S32NE directly, avoiding
* converting back and forth between S32NE and
* FLOAT32NE. */
if ((a == PA_SAMPLE_S32NE) && (b == PA_SAMPLE_S32NE)) {
work_format = PA_SAMPLE_S32NE;
break;
}
/* Else fall through */
case PA_RESAMPLER_PEAKS:
/* PEAKS, COPY and TRIVIAL do not benefit from increased
* working precision, so for better performance use s16ne
* if either input or output fits in it. */
if (a == PA_SAMPLE_S16NE || b == PA_SAMPLE_S16NE) {
work_format = PA_SAMPLE_S16NE;
break;
}
/* Else fall through */
case PA_RESAMPLER_SOXR_MQ:
case PA_RESAMPLER_SOXR_HQ:
case PA_RESAMPLER_SOXR_VHQ:
/* Do processing with max precision of input and output. */
if (sample_format_more_precise(a, PA_SAMPLE_S16NE) ||
sample_format_more_precise(b, PA_SAMPLE_S16NE))
work_format = PA_SAMPLE_FLOAT32NE;
else
work_format = PA_SAMPLE_S16NE;
break;
default:
work_format = PA_SAMPLE_FLOAT32NE;
}
return work_format;
}
pa_resampler* pa_resampler_new(
pa_mempool *pool,
const pa_sample_spec *a,
const pa_channel_map *am,
const pa_sample_spec *b,
const pa_channel_map *bm,
unsigned crossover_freq,
pa_resample_method_t method,
pa_resample_flags_t flags) {
pa_resampler *r = NULL;
bool lfe_remixed = false;
pa_assert(pool);
pa_assert(a);
pa_assert(b);
pa_assert(pa_sample_spec_valid(a));
pa_assert(pa_sample_spec_valid(b));
pa_assert(method >= 0);
pa_assert(method < PA_RESAMPLER_MAX);
method = fix_method(flags, method, a->rate, b->rate);
r = pa_xnew0(pa_resampler, 1);
r->mempool = pool;
r->method = method;
r->flags = flags;
/* Fill sample specs */
r->i_ss = *a;
r->o_ss = *b;
if (am)
r->i_cm = *am;
else if (!pa_channel_map_init_auto(&r->i_cm, r->i_ss.channels, PA_CHANNEL_MAP_DEFAULT))
goto fail;
if (bm)
r->o_cm = *bm;
else if (!pa_channel_map_init_auto(&r->o_cm, r->o_ss.channels, PA_CHANNEL_MAP_DEFAULT))
goto fail;
r->i_fz = pa_frame_size(a);
r->o_fz = pa_frame_size(b);
r->map_required = (r->i_ss.channels != r->o_ss.channels || (!(r->flags & PA_RESAMPLER_NO_REMAP) &&
!pa_channel_map_equal(&r->i_cm, &r->o_cm)));
r->work_format = choose_work_format(method, a->format, b->format, r->map_required);
r->w_sz = pa_sample_size_of_format(r->work_format);
if (r->i_ss.format != r->work_format) {
if (r->work_format == PA_SAMPLE_FLOAT32NE) {
if (!(r->to_work_format_func = pa_get_convert_to_float32ne_function(r->i_ss.format)))
goto fail;
} else {
pa_assert(r->work_format == PA_SAMPLE_S16NE);
if (!(r->to_work_format_func = pa_get_convert_to_s16ne_function(r->i_ss.format)))
goto fail;
}
}
if (r->o_ss.format != r->work_format) {
if (r->work_format == PA_SAMPLE_FLOAT32NE) {
if (!(r->from_work_format_func = pa_get_convert_from_float32ne_function(r->o_ss.format)))
goto fail;
} else {
pa_assert(r->work_format == PA_SAMPLE_S16NE);
if (!(r->from_work_format_func = pa_get_convert_from_s16ne_function(r->o_ss.format)))
goto fail;
}
}
if (r->o_ss.channels <= r->i_ss.channels) {
/* pipeline is: format conv. -> remap -> resample -> format conv. */
r->work_channels = r->o_ss.channels;
/* leftover buffer is remap output buffer (before resampling) */
r->leftover_buf = &r->remap_buf;
r->leftover_buf_size = &r->remap_buf_size;
r->have_leftover = &r->leftover_in_remap;
} else {
/* pipeline is: format conv. -> resample -> remap -> format conv. */
r->work_channels = r->i_ss.channels;
/* leftover buffer is to_work output buffer (before resampling) */
r->leftover_buf = &r->to_work_format_buf;
r->leftover_buf_size = &r->to_work_format_buf_size;
r->have_leftover = &r->leftover_in_to_work;
}
r->w_fz = pa_sample_size_of_format(r->work_format) * r->work_channels;
pa_log_debug("Resampler:");
pa_log_debug(" rate %d -> %d (method %s)", a->rate, b->rate, pa_resample_method_to_string(r->method));
pa_log_debug(" format %s -> %s (intermediate %s)", pa_sample_format_to_string(a->format),
pa_sample_format_to_string(b->format), pa_sample_format_to_string(r->work_format));
pa_log_debug(" channels %d -> %d (resampling %d)", a->channels, b->channels, r->work_channels);
/* set up the remap structure */
if (r->map_required)
setup_remap(r, &r->remap, &lfe_remixed);
if (lfe_remixed && crossover_freq > 0) {
pa_sample_spec wss = r->o_ss;
wss.format = r->work_format;
/* FIXME: For now just hardcode maxrewind to 3 seconds */
r->lfe_filter = pa_lfe_filter_new(&wss, &r->o_cm, (float)crossover_freq, b->rate * 3);
pa_log_debug(" lfe filter activated (LR4 type), the crossover_freq = %uHz", crossover_freq);
}
/* initialize implementation */
if (init_table[method](r) < 0)
goto fail;
return r;
fail:
if (r->lfe_filter)
pa_lfe_filter_free(r->lfe_filter);
pa_xfree(r);
return NULL;
}
void pa_resampler_free(pa_resampler *r) {
pa_assert(r);
if (r->impl.free)
r->impl.free(r);
else
pa_xfree(r->impl.data);
if (r->lfe_filter)
pa_lfe_filter_free(r->lfe_filter);
if (r->to_work_format_buf.memblock)
pa_memblock_unref(r->to_work_format_buf.memblock);
if (r->remap_buf.memblock)
pa_memblock_unref(r->remap_buf.memblock);
if (r->resample_buf.memblock)
pa_memblock_unref(r->resample_buf.memblock);
if (r->from_work_format_buf.memblock)
pa_memblock_unref(r->from_work_format_buf.memblock);
free_remap(&r->remap);
pa_xfree(r);
}
void pa_resampler_set_input_rate(pa_resampler *r, uint32_t rate) {
pa_assert(r);
pa_assert(rate > 0);
pa_assert(r->impl.update_rates);
if (r->i_ss.rate == rate)
return;
r->i_ss.rate = rate;
r->impl.update_rates(r);
}
void pa_resampler_set_output_rate(pa_resampler *r, uint32_t rate) {
pa_assert(r);
pa_assert(rate > 0);
pa_assert(r->impl.update_rates);
if (r->o_ss.rate == rate)
return;
r->o_ss.rate = rate;
r->impl.update_rates(r);
if (r->lfe_filter)
pa_lfe_filter_update_rate(r->lfe_filter, rate);
}
size_t pa_resampler_request(pa_resampler *r, size_t out_length) {
pa_assert(r);
/* Let's round up here to make it more likely that the caller will get at
* least out_length amount of data from pa_resampler_run().
*
* We don't take the leftover into account here. If we did, then it might
* be in theory possible that this function would return 0 and
* pa_resampler_run() would also return 0. That could lead to infinite
* loops. When the leftover is ignored here, such loops would eventually
* terminate, because the leftover would grow each round, finally
* surpassing the minimum input threshold of the resampler. */
return ((((uint64_t) ((out_length + r->o_fz-1) / r->o_fz) * r->i_ss.rate) + r->o_ss.rate-1) / r->o_ss.rate) * r->i_fz;
}
size_t pa_resampler_result(pa_resampler *r, size_t in_length) {
size_t frames;
pa_assert(r);
/* Let's round up here to ensure that the caller will always allocate big
* enough output buffer. */
frames = (in_length + r->i_fz - 1) / r->i_fz;
if (*r->have_leftover)
frames += r->leftover_buf->length / r->w_fz;
return (((uint64_t) frames * r->o_ss.rate + r->i_ss.rate - 1) / r->i_ss.rate) * r->o_fz;
}
size_t pa_resampler_max_block_size(pa_resampler *r) {
size_t block_size_max;
pa_sample_spec max_ss;
size_t max_fs;
size_t frames;
pa_assert(r);
block_size_max = pa_mempool_block_size_max(r->mempool);
/* We deduce the "largest" sample spec we're using during the
* conversion */
max_ss.channels = (uint8_t) (PA_MAX(r->i_ss.channels, r->o_ss.channels));
/* We silently assume that the format enum is ordered by size */
max_ss.format = PA_MAX(r->i_ss.format, r->o_ss.format);
max_ss.format = PA_MAX(max_ss.format, r->work_format);
max_ss.rate = PA_MAX(r->i_ss.rate, r->o_ss.rate);
max_fs = pa_frame_size(&max_ss);
frames = block_size_max / max_fs - EXTRA_FRAMES;
pa_assert(frames >= (r->leftover_buf->length / r->w_fz));
if (*r->have_leftover)
frames -= r->leftover_buf->length / r->w_fz;
block_size_max = ((uint64_t) frames * r->i_ss.rate / max_ss.rate) * r->i_fz;
if (block_size_max > 0)
return block_size_max;
else
/* A single input frame may result in so much output that it doesn't
* fit in one standard memblock (e.g. converting 1 Hz to 44100 Hz). In
* this case the max block size will be set to one frame, and some
* memory will be probably be allocated with malloc() instead of using
* the memory pool.
*
* XXX: Should we support this case at all? We could also refuse to
* create resamplers whose max block size would exceed the memory pool
* block size. In this case also updating the resampler rate should
* fail if the new rate would cause an excessive max block size (in
* which case the stream would probably have to be killed). */
return r->i_fz;
}
void pa_resampler_reset(pa_resampler *r) {
pa_assert(r);
if (r->impl.reset)
r->impl.reset(r);
if (r->lfe_filter)
pa_lfe_filter_reset(r->lfe_filter);
*r->have_leftover = false;
}
void pa_resampler_rewind(pa_resampler *r, size_t out_frames) {
pa_assert(r);
/* For now, we don't have any rewindable resamplers, so we just
reset the resampler instead (and hope that nobody hears the difference). */
if (r->impl.reset)
r->impl.reset(r);
if (r->lfe_filter)
pa_lfe_filter_rewind(r->lfe_filter, out_frames);
*r->have_leftover = false;
}
pa_resample_method_t pa_resampler_get_method(pa_resampler *r) {
pa_assert(r);
return r->method;
}
const pa_channel_map* pa_resampler_input_channel_map(pa_resampler *r) {
pa_assert(r);
return &r->i_cm;
}
const pa_sample_spec* pa_resampler_input_sample_spec(pa_resampler *r) {
pa_assert(r);
return &r->i_ss;
}
const pa_channel_map* pa_resampler_output_channel_map(pa_resampler *r) {
pa_assert(r);
return &r->o_cm;
}
const pa_sample_spec* pa_resampler_output_sample_spec(pa_resampler *r) {
pa_assert(r);
return &r->o_ss;
}
static const char * const resample_methods[] = {
"src-sinc-best-quality",
"src-sinc-medium-quality",
"src-sinc-fastest",
"src-zero-order-hold",
"src-linear",
"trivial",
"speex-float-0",
"speex-float-1",
"speex-float-2",
"speex-float-3",
"speex-float-4",
"speex-float-5",
"speex-float-6",
"speex-float-7",
"speex-float-8",
"speex-float-9",
"speex-float-10",
"speex-fixed-0",
"speex-fixed-1",
"speex-fixed-2",
"speex-fixed-3",
"speex-fixed-4",
"speex-fixed-5",
"speex-fixed-6",
"speex-fixed-7",
"speex-fixed-8",
"speex-fixed-9",
"speex-fixed-10",
"ffmpeg",
"auto",
"copy",
"peaks",
"soxr-mq",
"soxr-hq",
"soxr-vhq"
};
const char *pa_resample_method_to_string(pa_resample_method_t m) {
if (m < 0 || m >= PA_RESAMPLER_MAX)
return NULL;
return resample_methods[m];
}
int pa_resample_method_supported(pa_resample_method_t m) {
if (m < 0 || m >= PA_RESAMPLER_MAX)
return 0;
#ifndef HAVE_LIBSAMPLERATE
if (m <= PA_RESAMPLER_SRC_LINEAR)
return 0;
#endif
#ifndef HAVE_SPEEX
if (m >= PA_RESAMPLER_SPEEX_FLOAT_BASE && m <= PA_RESAMPLER_SPEEX_FLOAT_MAX)
return 0;
if (m >= PA_RESAMPLER_SPEEX_FIXED_BASE && m <= PA_RESAMPLER_SPEEX_FIXED_MAX)
return 0;
#endif
#ifndef HAVE_SOXR
if (m >= PA_RESAMPLER_SOXR_MQ && m <= PA_RESAMPLER_SOXR_VHQ)
return 0;
#endif
return 1;
}
pa_resample_method_t pa_parse_resample_method(const char *string) {
pa_resample_method_t m;
pa_assert(string);
for (m = 0; m < PA_RESAMPLER_MAX; m++)
if (pa_streq(string, resample_methods[m]))
return m;
if (pa_streq(string, "speex-fixed"))
return PA_RESAMPLER_SPEEX_FIXED_BASE + 1;
if (pa_streq(string, "speex-float"))
return PA_RESAMPLER_SPEEX_FLOAT_BASE + 1;
return PA_RESAMPLER_INVALID;
}
static bool on_left(pa_channel_position_t p) {
return
p == PA_CHANNEL_POSITION_FRONT_LEFT ||
p == PA_CHANNEL_POSITION_REAR_LEFT ||
p == PA_CHANNEL_POSITION_FRONT_LEFT_OF_CENTER ||
p == PA_CHANNEL_POSITION_SIDE_LEFT ||
p == PA_CHANNEL_POSITION_TOP_FRONT_LEFT ||
p == PA_CHANNEL_POSITION_TOP_REAR_LEFT;
}
static bool on_right(pa_channel_position_t p) {
return
p == PA_CHANNEL_POSITION_FRONT_RIGHT ||
p == PA_CHANNEL_POSITION_REAR_RIGHT ||
p == PA_CHANNEL_POSITION_FRONT_RIGHT_OF_CENTER ||
p == PA_CHANNEL_POSITION_SIDE_RIGHT ||
p == PA_CHANNEL_POSITION_TOP_FRONT_RIGHT ||
p == PA_CHANNEL_POSITION_TOP_REAR_RIGHT;
}
static bool on_center(pa_channel_position_t p) {
return
p == PA_CHANNEL_POSITION_FRONT_CENTER ||
p == PA_CHANNEL_POSITION_REAR_CENTER ||
p == PA_CHANNEL_POSITION_TOP_CENTER ||
p == PA_CHANNEL_POSITION_TOP_FRONT_CENTER ||
p == PA_CHANNEL_POSITION_TOP_REAR_CENTER;
}
static bool on_lfe(pa_channel_position_t p) {
return
p == PA_CHANNEL_POSITION_LFE;
}
static bool on_front(pa_channel_position_t p) {
return
p == PA_CHANNEL_POSITION_FRONT_LEFT ||
p == PA_CHANNEL_POSITION_FRONT_RIGHT ||
p == PA_CHANNEL_POSITION_FRONT_CENTER ||
p == PA_CHANNEL_POSITION_TOP_FRONT_LEFT ||
p == PA_CHANNEL_POSITION_TOP_FRONT_RIGHT ||
p == PA_CHANNEL_POSITION_TOP_FRONT_CENTER ||
p == PA_CHANNEL_POSITION_FRONT_LEFT_OF_CENTER ||
p == PA_CHANNEL_POSITION_FRONT_RIGHT_OF_CENTER;
}
static bool on_rear(pa_channel_position_t p) {
return
p == PA_CHANNEL_POSITION_REAR_LEFT ||
p == PA_CHANNEL_POSITION_REAR_RIGHT ||
p == PA_CHANNEL_POSITION_REAR_CENTER ||
p == PA_CHANNEL_POSITION_TOP_REAR_LEFT ||
p == PA_CHANNEL_POSITION_TOP_REAR_RIGHT ||
p == PA_CHANNEL_POSITION_TOP_REAR_CENTER;
}
static bool on_side(pa_channel_position_t p) {
return
p == PA_CHANNEL_POSITION_SIDE_LEFT ||
p == PA_CHANNEL_POSITION_SIDE_RIGHT ||
p == PA_CHANNEL_POSITION_TOP_CENTER;
}
enum {
ON_FRONT,
ON_REAR,
ON_SIDE,
ON_OTHER
};
static int front_rear_side(pa_channel_position_t p) {
if (on_front(p))
return ON_FRONT;
if (on_rear(p))
return ON_REAR;
if (on_side(p))
return ON_SIDE;
return ON_OTHER;
}
/* Fill a map of which output channels should get mono from input, not including
* LFE output channels. (The LFE output channels are mapped separately.)
*/
static void setup_oc_mono_map(const pa_resampler *r, float *oc_mono_map) {
unsigned oc;
unsigned n_oc;
bool found_oc_for_mono = false;
pa_assert(r);
pa_assert(oc_mono_map);
n_oc = r->o_ss.channels;
if (!(r->flags & PA_RESAMPLER_NO_FILL_SINK)) {
/* Mono goes to all non-LFE output channels and we're done. */
for (oc = 0; oc < n_oc; oc++)
oc_mono_map[oc] = on_lfe(r->o_cm.map[oc]) ? 0.0f : 1.0f;
return;
} else {
/* Initialize to all zero so we can select individual channels below. */
for (oc = 0; oc < n_oc; oc++)
oc_mono_map[oc] = 0.0f;
}
for (oc = 0; oc < n_oc; oc++) {
if (r->o_cm.map[oc] == PA_CHANNEL_POSITION_MONO) {
oc_mono_map[oc] = 1.0f;
found_oc_for_mono = true;
}
}
if (found_oc_for_mono)
return;
for (oc = 0; oc < n_oc; oc++) {
if (r->o_cm.map[oc] == PA_CHANNEL_POSITION_FRONT_CENTER) {
oc_mono_map[oc] = 1.0f;
found_oc_for_mono = true;
}
}
if (found_oc_for_mono)
return;
for (oc = 0; oc < n_oc; oc++) {
if (r->o_cm.map[oc] == PA_CHANNEL_POSITION_FRONT_LEFT || r->o_cm.map[oc] == PA_CHANNEL_POSITION_FRONT_RIGHT) {
oc_mono_map[oc] = 1.0f;
found_oc_for_mono = true;
}
}
if (found_oc_for_mono)
return;
/* Give up on finding a suitable map for mono, and just send it to all
* non-LFE output channels.
*/
for (oc = 0; oc < n_oc; oc++)
oc_mono_map[oc] = on_lfe(r->o_cm.map[oc]) ? 0.0f : 1.0f;
}
static void setup_remap(const pa_resampler *r, pa_remap_t *m, bool *lfe_remixed) {
unsigned oc, ic;
unsigned n_oc, n_ic;
bool ic_connected[PA_CHANNELS_MAX];
pa_strbuf *s;
char *t;
pa_assert(r);
pa_assert(m);
pa_assert(lfe_remixed);
n_oc = r->o_ss.channels;
n_ic = r->i_ss.channels;
m->format = r->work_format;
m->i_ss = r->i_ss;
m->o_ss = r->o_ss;
memset(m->map_table_f, 0, sizeof(m->map_table_f));
memset(m->map_table_i, 0, sizeof(m->map_table_i));
memset(ic_connected, 0, sizeof(ic_connected));
*lfe_remixed = false;
if (r->flags & PA_RESAMPLER_NO_REMAP) {
for (oc = 0; oc < PA_MIN(n_ic, n_oc); oc++)
m->map_table_f[oc][oc] = 1.0f;
} else if (r->flags & PA_RESAMPLER_NO_REMIX) {
for (oc = 0; oc < n_oc; oc++) {
pa_channel_position_t b = r->o_cm.map[oc];
for (ic = 0; ic < n_ic; ic++) {
pa_channel_position_t a = r->i_cm.map[ic];
/* We shall not do any remixing. Hence, just check by name */
if (a == b)
m->map_table_f[oc][ic] = 1.0f;
}
}
} else {
/* OK, we shall do the full monty: upmixing and downmixing. Our
* algorithm is relatively simple, does not do spacialization, or delay
* elements. LFE filters are done after the remap step. Patches are always
* welcome, though. Oh, and it doesn't do any matrix decoding. (Which
* probably wouldn't make any sense anyway.)
*
* This code is not idempotent: downmixing an upmixed stereo stream is
* not identical to the original. The volume will not match, and the
* two channels will be a linear combination of both.
*
* This is loosely based on random suggestions found on the Internet,
* such as this:
* http://www.halfgaar.net/surround-sound-in-linux and the alsa upmix
* plugin.
*
* The algorithm works basically like this:
*
* 1) Connect all channels with matching names.
* This also includes fixing confusion between "5.1" and
* "5.1 (Side)" layouts, done by mpv.
*
* 2) Mono Handling:
* S:Mono: See setup_oc_mono_map().
* D:Mono: Avg all S:channels
*
* 3) Mix D:Left, D:Right (if PA_RESAMPLER_NO_FILL_SINK is clear):
* D:Left: If not connected, avg all S:Left
* D:Right: If not connected, avg all S:Right
*
* 4) Mix D:Center (if PA_RESAMPLER_NO_FILL_SINK is clear):
* If not connected, avg all S:Center
* If still not connected, avg all S:Left, S:Right
*
* 5) Mix D:LFE
* If not connected, avg all S:*
*
* 6) Make sure S:Left/S:Right is used: S:Left/S:Right: If not
* connected, mix into all D:left and all D:right channels. Gain is
* 1/9.
*
* 7) Make sure S:Center, S:LFE is used:
*
* S:Center, S:LFE: If not connected, mix into all D:left, all
* D:right, all D:center channels. Gain is 0.5 for center and 0.375
* for LFE. C-front is only mixed into L-front/R-front if available,
* otherwise into all L/R channels. Similarly for C-rear.
*
* 8) Normalize each row in the matrix such that the sum for each row is
* not larger than 1.0 in order to avoid clipping.
*
* S: and D: shall relate to the source resp. destination channels.
*
* Rationale: 1, 2 are probably obvious. For 3: this copies front to
* rear if needed. For 4: we try to find some suitable C source for C,
* if we don't find any, we avg L and R. For 5: LFE is mixed from all
* channels. For 6: the rear channels should not be dropped entirely,
* however have only minimal impact. For 7: movies usually encode
* speech on the center channel. Thus we have to make sure this channel
* is distributed to L and R if not available in the output. Also, LFE
* is used to achieve a greater dynamic range, and thus we should try
* to do our best to pass it to L+R.
*/
unsigned
ic_left = 0,
ic_right = 0,
ic_center = 0,
ic_unconnected_left = 0,
ic_unconnected_right = 0,
ic_unconnected_center = 0,
ic_unconnected_lfe = 0;
bool ic_unconnected_center_mixed_in = 0;
float oc_mono_map[PA_CHANNELS_MAX];
for (ic = 0; ic < n_ic; ic++) {
if (on_left(r->i_cm.map[ic]))
ic_left++;
if (on_right(r->i_cm.map[ic]))
ic_right++;
if (on_center(r->i_cm.map[ic]))
ic_center++;
}
setup_oc_mono_map(r, oc_mono_map);
for (oc = 0; oc < n_oc; oc++) {
bool oc_connected = false;
pa_channel_position_t b = r->o_cm.map[oc];
for (ic = 0; ic < n_ic; ic++) {
pa_channel_position_t a = r->i_cm.map[ic];
if (a == b) {
m->map_table_f[oc][ic] = 1.0f;
oc_connected = true;
ic_connected[ic] = true;
}
else if (a == PA_CHANNEL_POSITION_MONO && oc_mono_map[oc] > 0.0f) {
m->map_table_f[oc][ic] = oc_mono_map[oc];
oc_connected = true;
ic_connected[ic] = true;
}
else if (b == PA_CHANNEL_POSITION_MONO) {
m->map_table_f[oc][ic] = 1.0f / (float) n_ic;
oc_connected = true;
ic_connected[ic] = true;
}
}
if (!oc_connected) {
/* Maybe it is due to 5.1 rear/side confustion? */
for (ic = 0; ic < n_ic; ic++) {
pa_channel_position_t a = r->i_cm.map[ic];
if (ic_connected[ic])
continue;
if ((a == PA_CHANNEL_POSITION_REAR_LEFT && b == PA_CHANNEL_POSITION_SIDE_LEFT) ||
(a == PA_CHANNEL_POSITION_SIDE_LEFT && b == PA_CHANNEL_POSITION_REAR_LEFT) ||
(a == PA_CHANNEL_POSITION_REAR_RIGHT && b == PA_CHANNEL_POSITION_SIDE_RIGHT) ||
(a == PA_CHANNEL_POSITION_SIDE_RIGHT && b == PA_CHANNEL_POSITION_REAR_RIGHT)) {
m->map_table_f[oc][ic] = 1.0f;
oc_connected = true;
ic_connected[ic] = true;
}
}
}
if (!oc_connected) {
/* Try to find matching input ports for this output port */
if (on_left(b) && !(r->flags & PA_RESAMPLER_NO_FILL_SINK)) {
/* We are not connected and on the left side, let's
* average all left side input channels. */
if (ic_left > 0)
for (ic = 0; ic < n_ic; ic++)
if (on_left(r->i_cm.map[ic])) {
m->map_table_f[oc][ic] = 1.0f / (float) ic_left;
ic_connected[ic] = true;
}
/* We ignore the case where there is no left input channel.
* Something is really wrong in this case anyway. */
} else if (on_right(b) && !(r->flags & PA_RESAMPLER_NO_FILL_SINK)) {
/* We are not connected and on the right side, let's
* average all right side input channels. */
if (ic_right > 0)
for (ic = 0; ic < n_ic; ic++)
if (on_right(r->i_cm.map[ic])) {
m->map_table_f[oc][ic] = 1.0f / (float) ic_right;
ic_connected[ic] = true;
}
/* We ignore the case where there is no right input
* channel. Something is really wrong in this case anyway.
* */
} else if (on_center(b) && !(r->flags & PA_RESAMPLER_NO_FILL_SINK)) {
if (ic_center > 0) {
/* We are not connected and at the center. Let's average
* all center input channels. */
for (ic = 0; ic < n_ic; ic++)
if (on_center(r->i_cm.map[ic])) {
m->map_table_f[oc][ic] = 1.0f / (float) ic_center;
ic_connected[ic] = true;
}
} else if (ic_left + ic_right > 0) {
/* Hmm, no center channel around, let's synthesize it
* by mixing L and R.*/
for (ic = 0; ic < n_ic; ic++)
if (on_left(r->i_cm.map[ic]) || on_right(r->i_cm.map[ic])) {
m->map_table_f[oc][ic] = 1.0f / (float) (ic_left + ic_right);
ic_connected[ic] = true;
}
}
/* We ignore the case where there is not even a left or
* right input channel. Something is really wrong in this
* case anyway. */
} else if (on_lfe(b) && (r->flags & PA_RESAMPLER_PRODUCE_LFE)) {
/* We are not connected and an LFE. Let's average all
* channels for LFE. */
for (ic = 0; ic < n_ic; ic++)
m->map_table_f[oc][ic] = 1.0f / (float) n_ic;
/* Please note that a channel connected to LFE doesn't
* really count as connected. */
*lfe_remixed = true;
}
}
}
for (ic = 0; ic < n_ic; ic++) {
pa_channel_position_t a = r->i_cm.map[ic];
if (ic_connected[ic])
continue;
if (on_left(a))
ic_unconnected_left++;
else if (on_right(a))
ic_unconnected_right++;
else if (on_center(a))
ic_unconnected_center++;
else if (on_lfe(a))
ic_unconnected_lfe++;
}
for (ic = 0; ic < n_ic; ic++) {
pa_channel_position_t a = r->i_cm.map[ic];
if (ic_connected[ic])
continue;
for (oc = 0; oc < n_oc; oc++) {
pa_channel_position_t b = r->o_cm.map[oc];
if (on_left(a) && on_left(b))
m->map_table_f[oc][ic] = (1.f/9.f) / (float) ic_unconnected_left;
else if (on_right(a) && on_right(b))
m->map_table_f[oc][ic] = (1.f/9.f) / (float) ic_unconnected_right;
else if (on_center(a) && on_center(b)) {
m->map_table_f[oc][ic] = (1.f/9.f) / (float) ic_unconnected_center;
ic_unconnected_center_mixed_in = true;
} else if (on_lfe(a) && (r->flags & PA_RESAMPLER_CONSUME_LFE))
m->map_table_f[oc][ic] = .375f / (float) ic_unconnected_lfe;
}
}
if (ic_unconnected_center > 0 && !ic_unconnected_center_mixed_in) {
unsigned ncenter[PA_CHANNELS_MAX];
bool found_frs[PA_CHANNELS_MAX];
memset(ncenter, 0, sizeof(ncenter));
memset(found_frs, 0, sizeof(found_frs));
/* Hmm, as it appears there was no center channel we
could mix our center channel in. In this case, mix it into
left and right. Using .5 as the factor. */
for (ic = 0; ic < n_ic; ic++) {
if (ic_connected[ic])
continue;
if (!on_center(r->i_cm.map[ic]))
continue;
for (oc = 0; oc < n_oc; oc++) {
if (!on_left(r->o_cm.map[oc]) && !on_right(r->o_cm.map[oc]))
continue;
if (front_rear_side(r->i_cm.map[ic]) == front_rear_side(r->o_cm.map[oc])) {
found_frs[ic] = true;
break;
}
}
for (oc = 0; oc < n_oc; oc++) {
if (!on_left(r->o_cm.map[oc]) && !on_right(r->o_cm.map[oc]))
continue;
if (!found_frs[ic] || front_rear_side(r->i_cm.map[ic]) == front_rear_side(r->o_cm.map[oc]))
ncenter[oc]++;
}
}
for (oc = 0; oc < n_oc; oc++) {
if (!on_left(r->o_cm.map[oc]) && !on_right(r->o_cm.map[oc]))
continue;
if (ncenter[oc] <= 0)
continue;
for (ic = 0; ic < n_ic; ic++) {
if (!on_center(r->i_cm.map[ic]))
continue;
if (!found_frs[ic] || front_rear_side(r->i_cm.map[ic]) == front_rear_side(r->o_cm.map[oc]))
m->map_table_f[oc][ic] = .5f / (float) ncenter[oc];
}
}
}
}
for (oc = 0; oc < n_oc; oc++) {
float sum = 0.0f;
for (ic = 0; ic < n_ic; ic++)
sum += m->map_table_f[oc][ic];
if (sum > 1.0f)
for (ic = 0; ic < n_ic; ic++)
m->map_table_f[oc][ic] /= sum;
}
/* make an 16:16 int version of the matrix */
for (oc = 0; oc < n_oc; oc++)
for (ic = 0; ic < n_ic; ic++)
m->map_table_i[oc][ic] = (int32_t) (m->map_table_f[oc][ic] * 0x10000);
s = pa_strbuf_new();
pa_strbuf_printf(s, " ");
for (ic = 0; ic < n_ic; ic++)
pa_strbuf_printf(s, " I%02u ", ic);
pa_strbuf_puts(s, "\n +");
for (ic = 0; ic < n_ic; ic++)
pa_strbuf_printf(s, "------");
pa_strbuf_puts(s, "\n");
for (oc = 0; oc < n_oc; oc++) {
pa_strbuf_printf(s, "O%02u |", oc);
for (ic = 0; ic < n_ic; ic++)
pa_strbuf_printf(s, " %1.3f", m->map_table_f[oc][ic]);
pa_strbuf_puts(s, "\n");
}
pa_log_debug("Channel matrix:\n%s", t = pa_strbuf_to_string_free(s));
pa_xfree(t);
/* initialize the remapping function */
pa_init_remap_func(m);
}
static void free_remap(pa_remap_t *m) {
pa_assert(m);
pa_xfree(m->state);
}
/* check if buf's memblock is large enough to hold 'len' bytes; create a
* new memblock if necessary and optionally preserve 'copy' data bytes */
static void fit_buf(pa_resampler *r, pa_memchunk *buf, size_t len, size_t *size, size_t copy) {
pa_assert(size);
if (!buf->memblock || len > *size) {
pa_memblock *new_block = pa_memblock_new(r->mempool, len);
if (buf->memblock) {
if (copy > 0) {
void *src = pa_memblock_acquire(buf->memblock);
void *dst = pa_memblock_acquire(new_block);
pa_assert(copy <= len);
memcpy(dst, src, copy);
pa_memblock_release(new_block);
pa_memblock_release(buf->memblock);
}
pa_memblock_unref(buf->memblock);
}
buf->memblock = new_block;
*size = len;
}
buf->length = len;
}
static pa_memchunk* convert_to_work_format(pa_resampler *r, pa_memchunk *input) {
unsigned in_n_samples, out_n_samples;
void *src, *dst;
bool have_leftover;
size_t leftover_length = 0;
pa_assert(r);
pa_assert(input);
pa_assert(input->memblock);
/* Convert the incoming sample into the work sample format and place them
* in to_work_format_buf. The leftover data is already converted, so it's
* part of the output buffer. */
have_leftover = r->leftover_in_to_work;
r->leftover_in_to_work = false;
if (!have_leftover && (!r->to_work_format_func || !input->length))
return input;
else if (input->length <= 0)
return &r->to_work_format_buf;
in_n_samples = out_n_samples = (unsigned) ((input->length / r->i_fz) * r->i_ss.channels);
if (have_leftover) {
leftover_length = r->to_work_format_buf.length;
out_n_samples += (unsigned) (leftover_length / r->w_sz);
}
fit_buf(r, &r->to_work_format_buf, r->w_sz * out_n_samples, &r->to_work_format_buf_size, leftover_length);
src = pa_memblock_acquire_chunk(input);
dst = (uint8_t *) pa_memblock_acquire(r->to_work_format_buf.memblock) + leftover_length;
if (r->to_work_format_func)
r->to_work_format_func(in_n_samples, src, dst);
else
memcpy(dst, src, input->length);
pa_memblock_release(input->memblock);
pa_memblock_release(r->to_work_format_buf.memblock);
return &r->to_work_format_buf;
}
static pa_memchunk *remap_channels(pa_resampler *r, pa_memchunk *input) {
unsigned in_n_samples, out_n_samples, in_n_frames, out_n_frames;
void *src, *dst;
size_t leftover_length = 0;
bool have_leftover;
pa_assert(r);
pa_assert(input);
pa_assert(input->memblock);
/* Remap channels and place the result in remap_buf. There may be leftover
* data in the beginning of remap_buf. The leftover data is already
* remapped, so it's not part of the input, it's part of the output. */
have_leftover = r->leftover_in_remap;
r->leftover_in_remap = false;
if (!have_leftover && (!r->map_required || input->length <= 0))
return input;
else if (input->length <= 0)
return &r->remap_buf;
in_n_samples = (unsigned) (input->length / r->w_sz);
in_n_frames = out_n_frames = in_n_samples / r->i_ss.channels;
if (have_leftover) {
leftover_length = r->remap_buf.length;
out_n_frames += leftover_length / r->w_fz;
}
out_n_samples = out_n_frames * r->o_ss.channels;
fit_buf(r, &r->remap_buf, out_n_samples * r->w_sz, &r->remap_buf_size, leftover_length);
src = pa_memblock_acquire_chunk(input);
dst = (uint8_t *) pa_memblock_acquire(r->remap_buf.memblock) + leftover_length;
if (r->map_required) {
pa_remap_t *remap = &r->remap;
pa_assert(remap->do_remap);
remap->do_remap(remap, dst, src, in_n_frames);
} else
memcpy(dst, src, input->length);
pa_memblock_release(input->memblock);
pa_memblock_release(r->remap_buf.memblock);
return &r->remap_buf;
}
static void save_leftover(pa_resampler *r, void *buf, size_t len) {
void *dst;
pa_assert(r);
pa_assert(buf);
pa_assert(len > 0);
/* Store the leftover data. */
fit_buf(r, r->leftover_buf, len, r->leftover_buf_size, 0);
*r->have_leftover = true;
dst = pa_memblock_acquire(r->leftover_buf->memblock);
memmove(dst, buf, len);
pa_memblock_release(r->leftover_buf->memblock);
}
static pa_memchunk *resample(pa_resampler *r, pa_memchunk *input) {
unsigned in_n_frames, out_n_frames, leftover_n_frames;
pa_assert(r);
pa_assert(input);
/* Resample the data and place the result in resample_buf. */
if (!r->impl.resample || !input->length)
return input;
in_n_frames = (unsigned) (input->length / r->w_fz);
out_n_frames = ((in_n_frames*r->o_ss.rate)/r->i_ss.rate)+EXTRA_FRAMES;
fit_buf(r, &r->resample_buf, r->w_fz * out_n_frames, &r->resample_buf_size, 0);
leftover_n_frames = r->impl.resample(r, input, in_n_frames, &r->resample_buf, &out_n_frames);
if (leftover_n_frames > 0) {
void *leftover_data = (uint8_t *) pa_memblock_acquire_chunk(input) + (in_n_frames - leftover_n_frames) * r->w_fz;
save_leftover(r, leftover_data, leftover_n_frames * r->w_fz);
pa_memblock_release(input->memblock);
}
r->resample_buf.length = out_n_frames * r->w_fz;
return &r->resample_buf;
}
static pa_memchunk *convert_from_work_format(pa_resampler *r, pa_memchunk *input) {
unsigned n_samples, n_frames;
void *src, *dst;
pa_assert(r);
pa_assert(input);
/* Convert the data into the correct sample type and place the result in
* from_work_format_buf. */
if (!r->from_work_format_func || !input->length)
return input;
n_samples = (unsigned) (input->length / r->w_sz);
n_frames = n_samples / r->o_ss.channels;
fit_buf(r, &r->from_work_format_buf, r->o_fz * n_frames, &r->from_work_format_buf_size, 0);
src = pa_memblock_acquire_chunk(input);
dst = pa_memblock_acquire(r->from_work_format_buf.memblock);
r->from_work_format_func(n_samples, src, dst);
pa_memblock_release(input->memblock);
pa_memblock_release(r->from_work_format_buf.memblock);
return &r->from_work_format_buf;
}
void pa_resampler_run(pa_resampler *r, const pa_memchunk *in, pa_memchunk *out) {
pa_memchunk *buf;
pa_assert(r);
pa_assert(in);
pa_assert(out);
pa_assert(in->length);
pa_assert(in->memblock);
pa_assert(in->length % r->i_fz == 0);
buf = (pa_memchunk*) in;
buf = convert_to_work_format(r, buf);
/* Try to save resampling effort: if we have more output channels than
* input channels, do resampling first, then remapping. */
if (r->o_ss.channels <= r->i_ss.channels) {
buf = remap_channels(r, buf);
buf = resample(r, buf);
} else {
buf = resample(r, buf);
buf = remap_channels(r, buf);
}
if (r->lfe_filter)
buf = pa_lfe_filter_process(r->lfe_filter, buf);
if (buf->length) {
buf = convert_from_work_format(r, buf);
*out = *buf;
if (buf == in)
pa_memblock_ref(buf->memblock);
else
pa_memchunk_reset(buf);
} else
pa_memchunk_reset(out);
}
/*** copy (noop) implementation ***/
static int copy_init(pa_resampler *r) {
pa_assert(r);
pa_assert(r->o_ss.rate == r->i_ss.rate);
return 0;
}