diff options
Diffstat (limited to 'docs/TEMPORARY_DIRECTORIES.md')
-rw-r--r-- | docs/TEMPORARY_DIRECTORIES.md | 222 |
1 files changed, 222 insertions, 0 deletions
diff --git a/docs/TEMPORARY_DIRECTORIES.md b/docs/TEMPORARY_DIRECTORIES.md new file mode 100644 index 0000000..c0f945c --- /dev/null +++ b/docs/TEMPORARY_DIRECTORIES.md @@ -0,0 +1,222 @@ +--- +title: Using /tmp/ and /var/tmp/ Safely +category: Interfaces +layout: default +--- + +# Using `/tmp/` and `/var/tmp/` Safely + +`/tmp/` and `/var/tmp/` are two world-writable directories Linux systems +provide for temporary files. The former is typically on `tmpfs` and thus +backed by RAM/swap, and flushed out on each reboot. The latter is typically a +proper, persistent file system, and thus backed by physical storage. This +means: + +1. `/tmp/` should be used for smaller, size-bounded files only; `/var/tmp/` + should be used for everything else. + +2. Data that shall survive a boot cycle shouldn't be placed in `/tmp/`. + +If the `$TMPDIR` environment variable is set, use that path, and neither use +`/tmp/` nor `/var/tmp/` directly. + +See +[file-hierarchy(7)](https://www.freedesktop.org/software/systemd/man/file-hierarchy.html) +for details about these two (and most other) directories of a Linux system. + +## Common Namespace + +Note that `/tmp/` and `/var/tmp/` each define a common namespace shared by all +local software. This means guessable file or directory names below either +directory directly translate into a 🚨 Denial-of-Service (DoS) 🚨 vulnerability +or worse: if some software creates a file or directory `/tmp/foo` then any +other software that wants to create the same file or directory `/tmp/foo` +either will fail (as the file already exists) or might be tricked into using +untrusted files. Hence: do not use guessable names in `/tmp/` or `/var/tmp/` — +if you do you open yourself up to a local DoS exploit or worse. (You can get +away with using guessable names, if you pre-create subdirectories below `/tmp/` +for them, like X11 does with `/tmp/.X11-unix/` through `tmpfiles.d/` +drop-ins. However this is not recommended, as it is fully safe only if these +directories are pre-created during early boot, and thus problematic if package +installation during runtime is permitted.) + +To protect yourself against these kinds of attacks Linux provides a couple of +APIs that help you avoiding guessable names. Specifically: + +1. Use [`mkstemp()`](http://man7.org/linux/man-pages/man3/mkstemp.3.html) + (POSIX), `mkostemp()` (glibc), + [`mkdtemp()`](http://man7.org/linux/man-pages/man3/mkdtemp.3.html) (POSIX), + [`tmpfile()`](http://man7.org/linux/man-pages/man3/tmpfile.3.html) (C89) + +2. Use [`open()`](http://man7.org/linux/man-pages/man2/open.2.html) with + `O_TMPFILE` (Linux) + +3. [`memfd_create()`](http://man7.org/linux/man-pages/man2/memfd_create.2.html) + (Linux; this doesn't bother with `/tmp/` or `/var/tmp/` at all, but uses the + same RAM/swap backing as `tmpfs` uses, hence is very similar to `/tmp/` + semantics.) + +For system services systemd provides the `PrivateTmp=` boolean setting. If +turned on for a service (👍 which is highly recommended), `/tmp/` and +`/var/tmp/` are replaced by private sub-directories, implemented through Linux +file system namespacing and bind mounts. This means from the service's point of +view `/tmp/` and `/var/tmp/` look and behave like they normally do, but in +reality they are private sub-directories of the host's real `/tmp/` and +`/var/tmp/`, and thus not system-wide locations anymore, but service-specific +ones. This reduces the surface for local DoS attacks substantially. While it is +recommended to turn this option on, it's highly recommended for applications +not to rely on this solely to avoid DoS vulnerabilities, because this option is +not available in environments where file system namespaces are prohibited, for +example in certain container environments. This option is hence an extra line +of defense, but should not be used as an excuse to rely on guessable names in +`/tmp/` and `/var/tmp/`. When this option is used, the per-service temporary +directories are removed whenever the service shuts down, hence the lifecycle of +temporary files stored in it is substantially different from the case where +this option is not used. Also note that some applications use `/tmp/` and +`/var/tmp/` for sharing files and directories. If this option is turned on this +is not possible anymore as after all each service gets its own instances of +both directories. + +## Automatic Clean-Up + +By default, `systemd-tmpfiles` will apply a concept of ⚠️ "ageing" to all files +and directories stored in `/tmp/` and `/var/tmp/`. This means that files that +have neither been changed nor read within a specific time frame are +automatically removed in regular intervals. (This concept is not new to +`systemd-tmpfiles` btw, it's inherited from previous subsystems such as +`tmpwatch`.) By default files in `/tmp/` are cleaned up after 10 days, and +those in `/var/tmp` after 30 days. + +This automatic clean-up is important to ensure disk usage of these temporary +directories doesn't grow without bounds, even when programs abort unexpectedly +or otherwise don't clean up the temporary files/directories they create. On the +other hand it creates problems for long-running software that does not expect +temporary files it operates on to be suddenly removed. There are a couple of +strategies to avoid these issues: + +1. Make sure to always keep a file descriptor to the temporary files you + operate on open, and only access the files through them. This way it doesn't + matter whether the files have been unlinked from the file system: as long as + you have the file descriptor open you can still access the file for both + reading and writing. When operating this way it is recommended to delete the + files right after creating them to ensure that on unexpected program + termination the files or directories are implicitly released by the kernel. + +2. 🥇 Use `memfd_create()` or `O_TMPFILE`. This is an extension of the + suggestion above: files created this way are never linked under a filename + in the file system. This means they are not subject to ageing (as they come + unlinked out of the box), and there's no time window where a directory entry + for the file exists in the file system, and thus behaviour is fully robust + towards unexpected program termination as there are never files on disk that + need to be explicitly deleted. + +3. 🥇 Operate below a sub-directory of `/tmp/` and `/var/tmp/` you created, and + take a BSD file lock ([`flock(dir_fd, + LOCK_SH)`](http://man7.org/linux/man-pages/man2/flock.2.html)) on that + sub-directory. This is particularly interesting when operating on more than + a single file, or on file nodes that are not plain regular files, for + example when extracting a tarball to a temporary directory. The ageing + algorithm will skip all directories (and everything below them) that are + locked through a BSD file lock. As BSD file locks are automatically released + when the file descriptor they are taken on is closed, and all file + descriptors opened by a process are implicitly closed when it exits, this is + a robust mechanism that ensures all temporary files are subject to ageing + when the program that owns them dies, but not while it is still running. Use + this when decompressing tarballs that contain files with old + modification/access times, as extracted files are otherwise immediately + candidates for deletion by the ageing algorithm. The + [`flock`](http://man7.org/linux/man-pages/man1/flock.1.html) tool of the + `util-linux` packages makes this concept available to shell scripts. Note + that `systemd-tmpfiles` only checks for BSD file locks on directories, locks + on other types of file nodes (including regular files) are not considered. + +4. Keep the access time of all temporary files created current. In regular + intervals, use `utimensat()` or a related call to update the access time + ("atime") of all files that shall be kept around. Since the ageing algorithm + looks at the access time of files when deciding whether to delete them, it's + sufficient to update their access times in sufficiently frequent intervals to + ensure the files are not deleted. Since most applications (and tools such as + `ls`) primarily care for the modification time (rather than the access time) + using the access time for this purpose should be acceptable. + +5. Set the "sticky" bit on regular files. The ageing logic skips deletion of + all regular files that have the sticky bit (`chmod +t`) set. This is + honoured for regular files only however, and has no effect on directories as + the sticky bit has a different meaning for them. + +6. Don't use `/tmp/` or `/var/tmp/`, but use your own sub-directory under + `/run/` or `$XDG_RUNTIME_DIRECTORY` (the former if privileged, the latter if + unprivileged), or `/var/lib/` and `~/.config/` (similar, but with + persistency and suitable for larger data). The two temporary directories + `/tmp/` and `/var/tmp/` come with the implicit clean-up semantics described + above. When this is not desired, it's possible to create private per-package + runtime or state directories, and place all temporary files there. However, + do note that this means opting out of any kind of automatic clean-up, and it + is hence particularly essential that the program cleans up generated files + in these directories when they are no longer needed, in particular when the + program dies unexpectedly. Note: this strategy is only really suitable for + packages that operate in a "system wide singleton" fashion with "long" + persistence of its data or state, i.e. as opposed to programs that run in + multiple parallel or short-living instances. This is because a private + directory under `/run` (and the other mentioned directories) is itself + system and package specific singleton with greater longevity. + +5. Exclude your temporary files from clean-ups via a `tmpfiles.d/` drop-in + (which includes drop-ins in the runtime-only directory + `/run/tmpfiles.d/`). The `x`/`X` line types may be used to exclude files + matching the specified globbing patterns from the ageing logic. If this is + used, automatic clean-up is not done for matching files and directory, and + much like with the previous option it's hence essential that the program + generating these temporary files carefully removes the temporary files it + creates again, and in particular so if it dies unexpectedly. + +🥇 The semantics of options 2 (in case you only deal with temporary files, not +directories) and 3 (in case you deal with both) in the list above are in most +cases the most preferable. It is thus recommended to stick to these two +options. + +While the ageing logic is very useful as a safety concept to ensure unused +files and directories are eventually removed a well written program avoids even +creating files that need such a clean-up. In particular: + +1. Use `memfd_create()` or `O_TMPFILE` when creating temporary files. + +2. `unlink()` temporary files right after creating them. This is very similar + to `O_TMPFILE` behaviour: consider deleting temporary files right after + creating them, while keeping open a file descriptor to them. Unlike + `O_TMPFILE` this method also works on older Linux systems and other OSes + that do not implement `O_TMPFILE`. + +## Disk Quota + +Generally, files allocated from `/tmp/` and `/var/tmp/` are allocated from a +pool shared by all local users. Moreover the space available in `/tmp/` is +generally more restricted than `/var/tmp/`. This means, that in particular in +`/tmp/` space should be considered scarce, and programs need to be prepared +that no space is available. Essential programs might require a fallback logic +using a different location for storing temporary files hence. Non-essential +programs at least need to be prepared for `ENOSPC` errors and generate useful, +actionable error messages. + +Some setups employ per-user quota on `/var/tmp/` and possibly `/tmp/`, to make +`ENOSPC` situations less likely, and harder to trigger from unprivileged +users. However, in the general case no such per-user quota is implemented +though, in particular not when `tmpfs` is used as backing file system, because +— even today — `tmpfs` still provides no native quota support in the kernel. + +## Early Boot Considerations + +Both `/tmp/` and `/var/tmp/` are not necessarily available during early boot, +or — if they are available early — are not writable. This means software that +is intended to run during early boot (i.e. before `basic.target` — or more +specifically `local-fs.target` — is up) should not attempt to make use of +either. Interfaces such as `memfd_create()` or files below a package-specific +directory in `/run/` are much better options in this case. (Note that some +packages instead use `/dev/shm/` for temporary files during early boot; this is +not advisable however, as it offers no benefits over a private directory in +`/run/` as both are backed by the same concept: `tmpfs`. The directory +`/dev/shm/` exists to back POSIX shared memory (see +[`shm_open()`](http://man7.org/linux/man-pages/man3/shm_open.3.html) and +related calls), and not as a place for temporary files. `/dev/shm` is +problematic as it is world-writable and there's no automatic clean-up logic in +place.) |