/* A Bison parser, made by GNU Bison 3.4.1. */
/* Bison implementation for Yacc-like parsers in C
Copyright (C) 1984, 1989-1990, 2000-2015, 2018-2019 Free Software Foundation,
Inc.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see . */
/* As a special exception, you may create a larger work that contains
part or all of the Bison parser skeleton and distribute that work
under terms of your choice, so long as that work isn't itself a
parser generator using the skeleton or a modified version thereof
as a parser skeleton. Alternatively, if you modify or redistribute
the parser skeleton itself, you may (at your option) remove this
special exception, which will cause the skeleton and the resulting
Bison output files to be licensed under the GNU General Public
License without this special exception.
This special exception was added by the Free Software Foundation in
version 2.2 of Bison. */
/* C LALR(1) parser skeleton written by Richard Stallman, by
simplifying the original so-called "semantic" parser. */
/* All symbols defined below should begin with yy or YY, to avoid
infringing on user name space. This should be done even for local
variables, as they might otherwise be expanded by user macros.
There are some unavoidable exceptions within include files to
define necessary library symbols; they are noted "INFRINGES ON
USER NAME SPACE" below. */
/* Undocumented macros, especially those whose name start with YY_,
are private implementation details. Do not rely on them. */
/* Identify Bison output. */
#define YYBISON 1
/* Bison version. */
#define YYBISON_VERSION "3.4.1"
/* Skeleton name. */
#define YYSKELETON_NAME "yacc.c"
/* Pure parsers. */
#define YYPURE 1
/* Push parsers. */
#define YYPUSH 0
/* Pull parsers. */
#define YYPULL 1
/* First part of user prologue. */
#line 1 "sys-utils/hwclock-parse-date.y"
/**
* SPDX-License-Identifier: GPL-3.0-or-later
*
* Parse a string into an internal timestamp.
*
* This file is based on gnulib parse-datetime.y-dd7a871 with
* the other gnulib dependencies removed for use in util-linux.
*
* Copyright (C) 1999-2000, 2002-2017 Free Software Foundation, Inc.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*
* Originally written by Steven M. Bellovin while
* at the University of North Carolina at Chapel Hill. Later tweaked by
* a couple of people on Usenet. Completely overhauled by Rich $alz
* and Jim Berets in August, 1990.
*
* Modified by Paul Eggert in August 1999 to do
* the right thing about local DST. Also modified by Paul Eggert
* in February 2004 to support
* nanosecond-resolution timestamps, and in October 2004 to support
* TZ strings in dates.
*/
/**
* FIXME: Check for arithmetic overflow in all cases, not just
* some of them.
*/
#include
#include
#include "c.h"
#include "timeutils.h"
#include "hwclock.h"
/**
* There's no need to extend the stack, so there's no need to involve
* alloca.
*/
#define YYSTACK_USE_ALLOCA 0
/**
* Tell Bison how much stack space is needed. 20 should be plenty for
* this grammar, which is not right recursive. Beware setting it too
* high, since that might cause problems on machines whose
* implementations have lame stack-overflow checking.
*/
#define YYMAXDEPTH 20
#define YYINITDEPTH YYMAXDEPTH
/**
* Since the code of parse-datetime.y is not included in the Emacs executable
* itself, there is no need to #define static in this file. Even if
* the code were included in the Emacs executable, it probably
* wouldn't do any harm to #undef it here; this will only cause
* problems if we try to write to a static variable, which I don't
* think this code needs to do.
*/
#ifdef emacs
# undef static
#endif
#include
#include
#include
#include
#include
#include
#include "cctype.h"
#include "nls.h"
/**
* Bison's skeleton tests _STDLIB_H, while some stdlib.h headers
* use _STDLIB_H_ as witness. Map the latter to the one bison uses.
* FIXME: this is temporary. Remove when we have a mechanism to ensure
* that the version we're using is fixed, too.
*/
#ifdef _STDLIB_H_
# undef _STDLIB_H
# define _STDLIB_H 1
#endif
/**
* Shift A right by B bits portably, by dividing A by 2**B and
* truncating towards minus infinity. A and B should be free of side
* effects, and B should be in the range 0 <= B <= INT_BITS - 2, where
* INT_BITS is the number of useful bits in an int. GNU code can
* assume that INT_BITS is at least 32.
*
* ISO C99 says that A >> B is implementation-defined if A < 0. Some
* implementations (e.g., UNICOS 9.0 on a Cray Y-MP EL) don't shift
* right in the usual way when A < 0, so SHR falls back on division if
* ordinary A >> B doesn't seem to be the usual signed shift.
*/
#define SHR(a, b) \
(-1 >> 1 == -1 \
? (a) >> (b) \
: (a) / (1 << (b)) - ((a) % (1 << (b)) < 0))
#define TM_YEAR_BASE 1900
#define HOUR(x) ((x) * 60)
#define STREQ(a, b) (strcmp (a, b) == 0)
/**
* Convert a possibly-signed character to an unsigned character. This is
* a bit safer than casting to unsigned char, since it catches some type
* errors that the cast doesn't.
*/
static unsigned char to_uchar (char ch) { return ch; }
/**
* FIXME: It also assumes that signed integer overflow silently wraps around,
* but this is not true any more with recent versions of GCC 4.
*/
/**
* An integer value, and the number of digits in its textual
* representation.
*/
typedef struct {
int negative;
intmax_t value;
size_t digits;
} textint;
/* An entry in the lexical lookup table. */
typedef struct {
char const *name;
int type;
int value;
} table;
/* Meridian: am, pm, or 24-hour style. */
enum { MERam, MERpm, MER24 };
enum { BILLION = 1000000000, LOG10_BILLION = 9 };
/* Relative year, month, day, hour, minutes, seconds, and nanoseconds. */
typedef struct {
intmax_t year;
intmax_t month;
intmax_t day;
intmax_t hour;
intmax_t minutes;
time_t seconds;
int ns;
} relative_time;
#if HAVE_COMPOUND_LITERALS
# define RELATIVE_TIME_0 ((relative_time) { 0, 0, 0, 0, 0, 0, 0 })
#else
static relative_time const RELATIVE_TIME_0;
#endif
/* Information passed to and from the parser. */
typedef struct {
/* The input string remaining to be parsed. */
const char *input;
/* N, if this is the Nth Tuesday. */
intmax_t day_ordinal;
/* Day of week; Sunday is 0. */
int day_number;
/* tm_isdst flag for the local zone. */
int local_isdst;
/* Time zone, in minutes east of UTC. */
int time_zone;
/* Style used for time. */
int meridian;
/* Gregorian year, month, day, hour, minutes, seconds, and ns. */
textint year;
intmax_t month;
intmax_t day;
intmax_t hour;
intmax_t minutes;
struct timespec seconds; /* includes nanoseconds */
/* Relative year, month, day, hour, minutes, seconds, and ns. */
relative_time rel;
/* Presence or counts of some nonterminals parsed so far. */
int timespec_seen;
int rels_seen;
size_t dates_seen;
size_t days_seen;
size_t local_zones_seen;
size_t dsts_seen;
size_t times_seen;
size_t zones_seen;
/* Table of local time zone abbreviations, null terminated. */
table local_time_zone_table[3];
} parser_control;
union YYSTYPE;
static int yylex (union YYSTYPE *, parser_control *);
static int yyerror (parser_control const *, char const *);
static int time_zone_hhmm (parser_control *, textint, textint);
/**
* Extract into *PC any date and time info from a string of digits
* of the form e.g., YYYYMMDD, YYMMDD, HHMM, HH (and sometimes YYY,
* YYYY, ...).
*/
static void digits_to_date_time(parser_control *pc, textint text_int)
{
if (pc->dates_seen && ! pc->year.digits
&& ! pc->rels_seen && (pc->times_seen || 2 < text_int.digits)) {
pc->year = text_int;
} else {
if (4 < text_int.digits) {
pc->dates_seen++;
pc->day = text_int.value % 100;
pc->month = (text_int.value / 100) % 100;
pc->year.value = text_int.value / 10000;
pc->year.digits = text_int.digits - 4;
} else {
pc->times_seen++;
if (text_int.digits <= 2) {
pc->hour = text_int.value;
pc->minutes = 0;
}
else {
pc->hour = text_int.value / 100;
pc->minutes = text_int.value % 100;
}
pc->seconds.tv_sec = 0;
pc->seconds.tv_nsec = 0;
pc->meridian = MER24;
}
}
}
/* Increment PC->rel by FACTOR * REL (FACTOR is 1 or -1). */
static void apply_relative_time(parser_control *pc, relative_time rel,
int factor)
{
pc->rel.ns += factor * rel.ns;
pc->rel.seconds += factor * rel.seconds;
pc->rel.minutes += factor * rel.minutes;
pc->rel.hour += factor * rel.hour;
pc->rel.day += factor * rel.day;
pc->rel.month += factor * rel.month;
pc->rel.year += factor * rel.year;
pc->rels_seen = 1;
}
/* Set PC-> hour, minutes, seconds and nanoseconds members from arguments. */
static void
set_hhmmss(parser_control *pc, intmax_t hour, intmax_t minutes,
time_t sec, int nsec)
{
pc->hour = hour;
pc->minutes = minutes;
pc->seconds.tv_sec = sec;
pc->seconds.tv_nsec = nsec;
}
#line 352 "sys-utils/hwclock-parse-date.c"
# ifndef YY_NULLPTR
# if defined __cplusplus
# if 201103L <= __cplusplus
# define YY_NULLPTR nullptr
# else
# define YY_NULLPTR 0
# endif
# else
# define YY_NULLPTR ((void*)0)
# endif
# endif
/* Enabling verbose error messages. */
#ifdef YYERROR_VERBOSE
# undef YYERROR_VERBOSE
# define YYERROR_VERBOSE 1
#else
# define YYERROR_VERBOSE 0
#endif
/* Debug traces. */
#ifndef YYDEBUG
# define YYDEBUG 0
#endif
#if YYDEBUG
extern int yydebug;
#endif
/* Token type. */
#ifndef YYTOKENTYPE
# define YYTOKENTYPE
enum yytokentype
{
tAGO = 258,
tDST = 259,
tYEAR_UNIT = 260,
tMONTH_UNIT = 261,
tHOUR_UNIT = 262,
tMINUTE_UNIT = 263,
tSEC_UNIT = 264,
tDAY_UNIT = 265,
tDAY_SHIFT = 266,
tDAY = 267,
tDAYZONE = 268,
tLOCAL_ZONE = 269,
tMERIDIAN = 270,
tMONTH = 271,
tORDINAL = 272,
tZONE = 273,
tSNUMBER = 274,
tUNUMBER = 275,
tSDECIMAL_NUMBER = 276,
tUDECIMAL_NUMBER = 277
};
#endif
/* Tokens. */
#define tAGO 258
#define tDST 259
#define tYEAR_UNIT 260
#define tMONTH_UNIT 261
#define tHOUR_UNIT 262
#define tMINUTE_UNIT 263
#define tSEC_UNIT 264
#define tDAY_UNIT 265
#define tDAY_SHIFT 266
#define tDAY 267
#define tDAYZONE 268
#define tLOCAL_ZONE 269
#define tMERIDIAN 270
#define tMONTH 271
#define tORDINAL 272
#define tZONE 273
#define tSNUMBER 274
#define tUNUMBER 275
#define tSDECIMAL_NUMBER 276
#define tUDECIMAL_NUMBER 277
/* Value type. */
#if ! defined YYSTYPE && ! defined YYSTYPE_IS_DECLARED
union YYSTYPE
{
#line 294 "sys-utils/hwclock-parse-date.y"
intmax_t intval;
textint textintval;
struct timespec timespec;
relative_time rel;
#line 443 "sys-utils/hwclock-parse-date.c"
};
typedef union YYSTYPE YYSTYPE;
# define YYSTYPE_IS_TRIVIAL 1
# define YYSTYPE_IS_DECLARED 1
#endif
int yyparse (parser_control *pc);
#ifdef short
# undef short
#endif
#ifdef YYTYPE_UINT8
typedef YYTYPE_UINT8 yytype_uint8;
#else
typedef unsigned char yytype_uint8;
#endif
#ifdef YYTYPE_INT8
typedef YYTYPE_INT8 yytype_int8;
#else
typedef signed char yytype_int8;
#endif
#ifdef YYTYPE_UINT16
typedef YYTYPE_UINT16 yytype_uint16;
#else
typedef unsigned short yytype_uint16;
#endif
#ifdef YYTYPE_INT16
typedef YYTYPE_INT16 yytype_int16;
#else
typedef short yytype_int16;
#endif
#ifndef YYSIZE_T
# ifdef __SIZE_TYPE__
# define YYSIZE_T __SIZE_TYPE__
# elif defined size_t
# define YYSIZE_T size_t
# elif ! defined YYSIZE_T
# include /* INFRINGES ON USER NAME SPACE */
# define YYSIZE_T size_t
# else
# define YYSIZE_T unsigned
# endif
#endif
#define YYSIZE_MAXIMUM ((YYSIZE_T) -1)
#ifndef YY_
# if defined YYENABLE_NLS && YYENABLE_NLS
# if ENABLE_NLS
# include /* INFRINGES ON USER NAME SPACE */
# define YY_(Msgid) dgettext ("bison-runtime", Msgid)
# endif
# endif
# ifndef YY_
# define YY_(Msgid) Msgid
# endif
#endif
#ifndef YY_ATTRIBUTE
# if (defined __GNUC__ \
&& (2 < __GNUC__ || (__GNUC__ == 2 && 96 <= __GNUC_MINOR__))) \
|| defined __SUNPRO_C && 0x5110 <= __SUNPRO_C
# define YY_ATTRIBUTE(Spec) __attribute__(Spec)
# else
# define YY_ATTRIBUTE(Spec) /* empty */
# endif
#endif
#ifndef YY_ATTRIBUTE_PURE
# define YY_ATTRIBUTE_PURE YY_ATTRIBUTE ((__pure__))
#endif
#ifndef YY_ATTRIBUTE_UNUSED
# define YY_ATTRIBUTE_UNUSED YY_ATTRIBUTE ((__unused__))
#endif
/* Suppress unused-variable warnings by "using" E. */
#if ! defined lint || defined __GNUC__
# define YYUSE(E) ((void) (E))
#else
# define YYUSE(E) /* empty */
#endif
#if defined __GNUC__ && ! defined __ICC && 407 <= __GNUC__ * 100 + __GNUC_MINOR__
/* Suppress an incorrect diagnostic about yylval being uninitialized. */
# define YY_IGNORE_MAYBE_UNINITIALIZED_BEGIN \
_Pragma ("GCC diagnostic push") \
_Pragma ("GCC diagnostic ignored \"-Wuninitialized\"")\
_Pragma ("GCC diagnostic ignored \"-Wmaybe-uninitialized\"")
# define YY_IGNORE_MAYBE_UNINITIALIZED_END \
_Pragma ("GCC diagnostic pop")
#else
# define YY_INITIAL_VALUE(Value) Value
#endif
#ifndef YY_IGNORE_MAYBE_UNINITIALIZED_BEGIN
# define YY_IGNORE_MAYBE_UNINITIALIZED_BEGIN
# define YY_IGNORE_MAYBE_UNINITIALIZED_END
#endif
#ifndef YY_INITIAL_VALUE
# define YY_INITIAL_VALUE(Value) /* Nothing. */
#endif
#define YY_ASSERT(E) ((void) (0 && (E)))
#if ! defined yyoverflow || YYERROR_VERBOSE
/* The parser invokes alloca or malloc; define the necessary symbols. */
# ifdef YYSTACK_USE_ALLOCA
# if YYSTACK_USE_ALLOCA
# ifdef __GNUC__
# define YYSTACK_ALLOC __builtin_alloca
# elif defined __BUILTIN_VA_ARG_INCR
# include /* INFRINGES ON USER NAME SPACE */
# elif defined _AIX
# define YYSTACK_ALLOC __alloca
# elif defined _MSC_VER
# include /* INFRINGES ON USER NAME SPACE */
# define alloca _alloca
# else
# define YYSTACK_ALLOC alloca
# if ! defined _ALLOCA_H && ! defined EXIT_SUCCESS
# include /* INFRINGES ON USER NAME SPACE */
/* Use EXIT_SUCCESS as a witness for stdlib.h. */
# ifndef EXIT_SUCCESS
# define EXIT_SUCCESS 0
# endif
# endif
# endif
# endif
# endif
# ifdef YYSTACK_ALLOC
/* Pacify GCC's 'empty if-body' warning. */
# define YYSTACK_FREE(Ptr) do { /* empty */; } while (0)
# ifndef YYSTACK_ALLOC_MAXIMUM
/* The OS might guarantee only one guard page at the bottom of the stack,
and a page size can be as small as 4096 bytes. So we cannot safely
invoke alloca (N) if N exceeds 4096. Use a slightly smaller number
to allow for a few compiler-allocated temporary stack slots. */
# define YYSTACK_ALLOC_MAXIMUM 4032 /* reasonable circa 2006 */
# endif
# else
# define YYSTACK_ALLOC YYMALLOC
# define YYSTACK_FREE YYFREE
# ifndef YYSTACK_ALLOC_MAXIMUM
# define YYSTACK_ALLOC_MAXIMUM YYSIZE_MAXIMUM
# endif
# if (defined __cplusplus && ! defined EXIT_SUCCESS \
&& ! ((defined YYMALLOC || defined malloc) \
&& (defined YYFREE || defined free)))
# include /* INFRINGES ON USER NAME SPACE */
# ifndef EXIT_SUCCESS
# define EXIT_SUCCESS 0
# endif
# endif
# ifndef YYMALLOC
# define YYMALLOC malloc
# if ! defined malloc && ! defined EXIT_SUCCESS
void *malloc (YYSIZE_T); /* INFRINGES ON USER NAME SPACE */
# endif
# endif
# ifndef YYFREE
# define YYFREE free
# if ! defined free && ! defined EXIT_SUCCESS
void free (void *); /* INFRINGES ON USER NAME SPACE */
# endif
# endif
# endif
#endif /* ! defined yyoverflow || YYERROR_VERBOSE */
#if (! defined yyoverflow \
&& (! defined __cplusplus \
|| (defined YYSTYPE_IS_TRIVIAL && YYSTYPE_IS_TRIVIAL)))
/* A type that is properly aligned for any stack member. */
union yyalloc
{
yytype_int16 yyss_alloc;
YYSTYPE yyvs_alloc;
};
/* The size of the maximum gap between one aligned stack and the next. */
# define YYSTACK_GAP_MAXIMUM (sizeof (union yyalloc) - 1)
/* The size of an array large to enough to hold all stacks, each with
N elements. */
# define YYSTACK_BYTES(N) \
((N) * (sizeof (yytype_int16) + sizeof (YYSTYPE)) \
+ YYSTACK_GAP_MAXIMUM)
# define YYCOPY_NEEDED 1
/* Relocate STACK from its old location to the new one. The
local variables YYSIZE and YYSTACKSIZE give the old and new number of
elements in the stack, and YYPTR gives the new location of the
stack. Advance YYPTR to a properly aligned location for the next
stack. */
# define YYSTACK_RELOCATE(Stack_alloc, Stack) \
do \
{ \
YYSIZE_T yynewbytes; \
YYCOPY (&yyptr->Stack_alloc, Stack, yysize); \
Stack = &yyptr->Stack_alloc; \
yynewbytes = yystacksize * sizeof (*Stack) + YYSTACK_GAP_MAXIMUM; \
yyptr += yynewbytes / sizeof (*yyptr); \
} \
while (0)
#endif
#if defined YYCOPY_NEEDED && YYCOPY_NEEDED
/* Copy COUNT objects from SRC to DST. The source and destination do
not overlap. */
# ifndef YYCOPY
# if defined __GNUC__ && 1 < __GNUC__
# define YYCOPY(Dst, Src, Count) \
__builtin_memcpy (Dst, Src, (Count) * sizeof (*(Src)))
# else
# define YYCOPY(Dst, Src, Count) \
do \
{ \
YYSIZE_T yyi; \
for (yyi = 0; yyi < (Count); yyi++) \
(Dst)[yyi] = (Src)[yyi]; \
} \
while (0)
# endif
# endif
#endif /* !YYCOPY_NEEDED */
/* YYFINAL -- State number of the termination state. */
#define YYFINAL 12
/* YYLAST -- Last index in YYTABLE. */
#define YYLAST 112
/* YYNTOKENS -- Number of terminals. */
#define YYNTOKENS 28
/* YYNNTS -- Number of nonterminals. */
#define YYNNTS 26
/* YYNRULES -- Number of rules. */
#define YYNRULES 91
/* YYNSTATES -- Number of states. */
#define YYNSTATES 114
#define YYUNDEFTOK 2
#define YYMAXUTOK 277
/* YYTRANSLATE(TOKEN-NUM) -- Symbol number corresponding to TOKEN-NUM
as returned by yylex, with out-of-bounds checking. */
#define YYTRANSLATE(YYX) \
((unsigned) (YYX) <= YYMAXUTOK ? yytranslate[YYX] : YYUNDEFTOK)
/* YYTRANSLATE[TOKEN-NUM] -- Symbol number corresponding to TOKEN-NUM
as returned by yylex. */
static const yytype_uint8 yytranslate[] =
{
0, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 26, 2, 2, 27, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 25, 2,
2, 2, 2, 2, 23, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 24, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 1, 2, 3, 4,
5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20, 21, 22
};
#if YYDEBUG
/* YYRLINE[YYN] -- Source line where rule number YYN was defined. */
static const yytype_uint16 yyrline[] =
{
0, 321, 321, 322, 326, 332, 334, 338, 341, 344,
347, 350, 353, 356, 357, 358, 362, 366, 370, 374,
378, 382, 386, 390, 394, 400, 402, 406, 431, 435,
446, 449, 452, 456, 460, 464, 467, 473, 477, 481,
485, 492, 496, 514, 521, 528, 532, 537, 541, 546,
550, 559, 561, 563, 568, 570, 572, 574, 576, 578,
580, 582, 584, 586, 588, 590, 592, 594, 596, 598,
600, 602, 607, 612, 614, 618, 620, 622, 624, 626,
628, 633, 637, 637, 640, 641, 646, 647, 652, 657,
669, 670
};
#endif
#if YYDEBUG || YYERROR_VERBOSE || 0
/* YYTNAME[SYMBOL-NUM] -- String name of the symbol SYMBOL-NUM.
First, the terminals, then, starting at YYNTOKENS, nonterminals. */
static const char *const yytname[] =
{
"$end", "error", "$undefined", "tAGO", "tDST", "tYEAR_UNIT",
"tMONTH_UNIT", "tHOUR_UNIT", "tMINUTE_UNIT", "tSEC_UNIT", "tDAY_UNIT",
"tDAY_SHIFT", "tDAY", "tDAYZONE", "tLOCAL_ZONE", "tMERIDIAN", "tMONTH",
"tORDINAL", "tZONE", "tSNUMBER", "tUNUMBER", "tSDECIMAL_NUMBER",
"tUDECIMAL_NUMBER", "'@'", "'T'", "':'", "','", "'/'", "$accept", "spec",
"timespec", "items", "item", "datetime", "iso_8601_datetime", "time",
"iso_8601_time", "o_zone_offset", "zone_offset", "local_zone", "zone",
"day", "date", "iso_8601_date", "rel", "relunit", "relunit_snumber",
"dayshift", "seconds", "signed_seconds", "unsigned_seconds", "number",
"hybrid", "o_colon_minutes", YY_NULLPTR
};
#endif
# ifdef YYPRINT
/* YYTOKNUM[NUM] -- (External) token number corresponding to the
(internal) symbol number NUM (which must be that of a token). */
static const yytype_uint16 yytoknum[] =
{
0, 256, 257, 258, 259, 260, 261, 262, 263, 264,
265, 266, 267, 268, 269, 270, 271, 272, 273, 274,
275, 276, 277, 64, 84, 58, 44, 47
};
# endif
#define YYPACT_NINF -93
#define yypact_value_is_default(Yystate) \
(!!((Yystate) == (-93)))
#define YYTABLE_NINF -1
#define yytable_value_is_error(Yytable_value) \
0
/* YYPACT[STATE-NUM] -- Index in YYTABLE of the portion describing
STATE-NUM. */
static const yytype_int8 yypact[] =
{
38, 27, 77, -93, 46, -93, -93, -93, -93, -93,
-93, -93, -93, -93, -93, -93, -93, -93, -93, -93,
62, -93, 82, -3, 66, 3, 74, -4, 83, 84,
75, -93, -93, -93, -93, -93, -93, -93, -93, -93,
71, -93, 93, -93, -93, -93, -93, -93, -93, 78,
72, -93, -93, -93, -93, -93, -93, -93, -93, 25,
-93, -93, -93, -93, -93, -93, -93, -93, -93, -93,
-93, -93, -93, -93, -93, 21, 19, 79, 80, -93,
-93, -93, -93, -93, 81, -93, -93, 85, 86, -93,
-93, -93, -93, -93, -6, 76, 17, -93, -93, -93,
-93, 87, 69, -93, -93, 88, 89, -1, -93, 18,
-93, -93, 69, 91
};
/* YYDEFACT[STATE-NUM] -- Default reduction number in state STATE-NUM.
Performed when YYTABLE does not specify something else to do. Zero
means the default is an error. */
static const yytype_uint8 yydefact[] =
{
5, 0, 0, 2, 3, 85, 87, 84, 86, 4,
82, 83, 1, 56, 59, 65, 68, 73, 62, 81,
37, 35, 28, 0, 0, 30, 0, 88, 0, 0,
31, 6, 7, 16, 8, 21, 9, 10, 12, 11,
49, 13, 52, 74, 53, 14, 15, 38, 29, 0,
45, 54, 57, 63, 66, 69, 60, 39, 36, 90,
32, 75, 76, 78, 79, 80, 77, 55, 58, 64,
67, 70, 61, 40, 18, 47, 90, 0, 0, 22,
89, 71, 72, 33, 0, 51, 44, 0, 0, 34,
43, 48, 50, 27, 25, 41, 0, 17, 46, 91,
19, 90, 0, 23, 26, 0, 0, 25, 42, 25,
20, 24, 0, 25
};
/* YYPGOTO[NTERM-NUM]. */
static const yytype_int8 yypgoto[] =
{
-93, -93, -93, -93, -93, -93, -93, -93, 20, -68,
-27, -93, -93, -93, -93, -93, -93, -93, 60, -93,
-93, -93, -92, -93, -93, 43
};
/* YYDEFGOTO[NTERM-NUM]. */
static const yytype_int8 yydefgoto[] =
{
-1, 2, 3, 4, 31, 32, 33, 34, 35, 103,
104, 36, 37, 38, 39, 40, 41, 42, 43, 44,
9, 10, 11, 45, 46, 93
};
/* YYTABLE[YYPACT[STATE-NUM]] -- What to do in state STATE-NUM. If
positive, shift that token. If negative, reduce the rule whose
number is the opposite. If YYTABLE_NINF, syntax error. */
static const yytype_uint8 yytable[] =
{
79, 67, 68, 69, 70, 71, 72, 58, 73, 100,
107, 74, 75, 101, 110, 76, 49, 50, 101, 102,
113, 77, 59, 78, 61, 62, 63, 64, 65, 66,
61, 62, 63, 64, 65, 66, 101, 101, 92, 111,
90, 91, 106, 112, 88, 111, 5, 6, 7, 8,
88, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 1, 23, 24, 25, 26, 27, 28, 29, 79,
30, 51, 52, 53, 54, 55, 56, 12, 57, 61,
62, 63, 64, 65, 66, 60, 48, 80, 47, 6,
83, 8, 81, 82, 26, 84, 85, 86, 87, 94,
95, 96, 89, 105, 97, 98, 99, 0, 108, 109,
101, 0, 88
};
static const yytype_int8 yycheck[] =
{
27, 5, 6, 7, 8, 9, 10, 4, 12, 15,
102, 15, 16, 19, 15, 19, 19, 20, 19, 25,
112, 25, 19, 27, 5, 6, 7, 8, 9, 10,
5, 6, 7, 8, 9, 10, 19, 19, 19, 107,
19, 20, 25, 25, 25, 113, 19, 20, 21, 22,
25, 5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 23, 16, 17, 18, 19, 20, 21, 22, 96,
24, 5, 6, 7, 8, 9, 10, 0, 12, 5,
6, 7, 8, 9, 10, 25, 4, 27, 26, 20,
30, 22, 9, 9, 19, 24, 3, 19, 26, 20,
20, 20, 59, 27, 84, 20, 20, -1, 20, 20,
19, -1, 25
};
/* YYSTOS[STATE-NUM] -- The (internal number of the) accessing
symbol of state STATE-NUM. */
static const yytype_uint8 yystos[] =
{
0, 23, 29, 30, 31, 19, 20, 21, 22, 48,
49, 50, 0, 5, 6, 7, 8, 9, 10, 11,
12, 13, 14, 16, 17, 18, 19, 20, 21, 22,
24, 32, 33, 34, 35, 36, 39, 40, 41, 42,
43, 44, 45, 46, 47, 51, 52, 26, 4, 19,
20, 5, 6, 7, 8, 9, 10, 12, 4, 19,
46, 5, 6, 7, 8, 9, 10, 5, 6, 7,
8, 9, 10, 12, 15, 16, 19, 25, 27, 38,
46, 9, 9, 46, 24, 3, 19, 26, 25, 53,
19, 20, 19, 53, 20, 20, 20, 36, 20, 20,
15, 19, 25, 37, 38, 27, 25, 50, 20, 20,
15, 37, 25, 50
};
/* YYR1[YYN] -- Symbol number of symbol that rule YYN derives. */
static const yytype_uint8 yyr1[] =
{
0, 28, 29, 29, 30, 31, 31, 32, 32, 32,
32, 32, 32, 32, 32, 32, 33, 34, 35, 35,
35, 35, 36, 36, 36, 37, 37, 38, 39, 39,
40, 40, 40, 40, 40, 40, 40, 41, 41, 41,
41, 42, 42, 42, 42, 42, 42, 42, 42, 42,
43, 44, 44, 44, 45, 45, 45, 45, 45, 45,
45, 45, 45, 45, 45, 45, 45, 45, 45, 45,
45, 45, 45, 45, 45, 46, 46, 46, 46, 46,
46, 47, 48, 48, 49, 49, 50, 50, 51, 52,
53, 53
};
/* YYR2[YYN] -- Number of symbols on the right hand side of rule YYN. */
static const yytype_uint8 yyr2[] =
{
0, 2, 1, 1, 2, 0, 2, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 3, 2, 4,
6, 1, 2, 4, 6, 0, 1, 2, 1, 2,
1, 1, 2, 2, 3, 1, 2, 1, 2, 2,
2, 3, 5, 3, 3, 2, 4, 2, 3, 1,
3, 2, 1, 1, 2, 2, 1, 2, 2, 1,
2, 2, 1, 2, 2, 1, 2, 2, 1, 2,
2, 2, 2, 1, 1, 2, 2, 2, 2, 2,
2, 1, 1, 1, 1, 1, 1, 1, 1, 2,
0, 2
};
#define yyerrok (yyerrstatus = 0)
#define yyclearin (yychar = YYEMPTY)
#define YYEMPTY (-2)
#define YYEOF 0
#define YYACCEPT goto yyacceptlab
#define YYABORT goto yyabortlab
#define YYERROR goto yyerrorlab
#define YYRECOVERING() (!!yyerrstatus)
#define YYBACKUP(Token, Value) \
do \
if (yychar == YYEMPTY) \
{ \
yychar = (Token); \
yylval = (Value); \
YYPOPSTACK (yylen); \
yystate = *yyssp; \
goto yybackup; \
} \
else \
{ \
yyerror (pc, YY_("syntax error: cannot back up")); \
YYERROR; \
} \
while (0)
/* Error token number */
#define YYTERROR 1
#define YYERRCODE 256
/* Enable debugging if requested. */
#if YYDEBUG
# ifndef YYFPRINTF
# include /* INFRINGES ON USER NAME SPACE */
# define YYFPRINTF fprintf
# endif
# define YYDPRINTF(Args) \
do { \
if (yydebug) \
YYFPRINTF Args; \
} while (0)
/* This macro is provided for backward compatibility. */
#ifndef YY_LOCATION_PRINT
# define YY_LOCATION_PRINT(File, Loc) ((void) 0)
#endif
# define YY_SYMBOL_PRINT(Title, Type, Value, Location) \
do { \
if (yydebug) \
{ \
YYFPRINTF (stderr, "%s ", Title); \
yy_symbol_print (stderr, \
Type, Value, pc); \
YYFPRINTF (stderr, "\n"); \
} \
} while (0)
/*-----------------------------------.
| Print this symbol's value on YYO. |
`-----------------------------------*/
static void
yy_symbol_value_print (FILE *yyo, int yytype, YYSTYPE const * const yyvaluep, parser_control *pc)
{
FILE *yyoutput = yyo;
YYUSE (yyoutput);
YYUSE (pc);
if (!yyvaluep)
return;
# ifdef YYPRINT
if (yytype < YYNTOKENS)
YYPRINT (yyo, yytoknum[yytype], *yyvaluep);
# endif
YYUSE (yytype);
}
/*---------------------------.
| Print this symbol on YYO. |
`---------------------------*/
static void
yy_symbol_print (FILE *yyo, int yytype, YYSTYPE const * const yyvaluep, parser_control *pc)
{
YYFPRINTF (yyo, "%s %s (",
yytype < YYNTOKENS ? "token" : "nterm", yytname[yytype]);
yy_symbol_value_print (yyo, yytype, yyvaluep, pc);
YYFPRINTF (yyo, ")");
}
/*------------------------------------------------------------------.
| yy_stack_print -- Print the state stack from its BOTTOM up to its |
| TOP (included). |
`------------------------------------------------------------------*/
static void
yy_stack_print (yytype_int16 *yybottom, yytype_int16 *yytop)
{
YYFPRINTF (stderr, "Stack now");
for (; yybottom <= yytop; yybottom++)
{
int yybot = *yybottom;
YYFPRINTF (stderr, " %d", yybot);
}
YYFPRINTF (stderr, "\n");
}
# define YY_STACK_PRINT(Bottom, Top) \
do { \
if (yydebug) \
yy_stack_print ((Bottom), (Top)); \
} while (0)
/*------------------------------------------------.
| Report that the YYRULE is going to be reduced. |
`------------------------------------------------*/
static void
yy_reduce_print (yytype_int16 *yyssp, YYSTYPE *yyvsp, int yyrule, parser_control *pc)
{
unsigned long yylno = yyrline[yyrule];
int yynrhs = yyr2[yyrule];
int yyi;
YYFPRINTF (stderr, "Reducing stack by rule %d (line %lu):\n",
yyrule - 1, yylno);
/* The symbols being reduced. */
for (yyi = 0; yyi < yynrhs; yyi++)
{
YYFPRINTF (stderr, " $%d = ", yyi + 1);
yy_symbol_print (stderr,
yystos[yyssp[yyi + 1 - yynrhs]],
&yyvsp[(yyi + 1) - (yynrhs)]
, pc);
YYFPRINTF (stderr, "\n");
}
}
# define YY_REDUCE_PRINT(Rule) \
do { \
if (yydebug) \
yy_reduce_print (yyssp, yyvsp, Rule, pc); \
} while (0)
/* Nonzero means print parse trace. It is left uninitialized so that
multiple parsers can coexist. */
int yydebug;
#else /* !YYDEBUG */
# define YYDPRINTF(Args)
# define YY_SYMBOL_PRINT(Title, Type, Value, Location)
# define YY_STACK_PRINT(Bottom, Top)
# define YY_REDUCE_PRINT(Rule)
#endif /* !YYDEBUG */
/* YYINITDEPTH -- initial size of the parser's stacks. */
#ifndef YYINITDEPTH
# define YYINITDEPTH 200
#endif
/* YYMAXDEPTH -- maximum size the stacks can grow to (effective only
if the built-in stack extension method is used).
Do not make this value too large; the results are undefined if
YYSTACK_ALLOC_MAXIMUM < YYSTACK_BYTES (YYMAXDEPTH)
evaluated with infinite-precision integer arithmetic. */
#ifndef YYMAXDEPTH
# define YYMAXDEPTH 10000
#endif
#if YYERROR_VERBOSE
# ifndef yystrlen
# if defined __GLIBC__ && defined _STRING_H
# define yystrlen strlen
# else
/* Return the length of YYSTR. */
static YYSIZE_T
yystrlen (const char *yystr)
{
YYSIZE_T yylen;
for (yylen = 0; yystr[yylen]; yylen++)
continue;
return yylen;
}
# endif
# endif
# ifndef yystpcpy
# if defined __GLIBC__ && defined _STRING_H && defined _GNU_SOURCE
# define yystpcpy stpcpy
# else
/* Copy YYSRC to YYDEST, returning the address of the terminating '\0' in
YYDEST. */
static char *
yystpcpy (char *yydest, const char *yysrc)
{
char *yyd = yydest;
const char *yys = yysrc;
while ((*yyd++ = *yys++) != '\0')
continue;
return yyd - 1;
}
# endif
# endif
# ifndef yytnamerr
/* Copy to YYRES the contents of YYSTR after stripping away unnecessary
quotes and backslashes, so that it's suitable for yyerror. The
heuristic is that double-quoting is unnecessary unless the string
contains an apostrophe, a comma, or backslash (other than
backslash-backslash). YYSTR is taken from yytname. If YYRES is
null, do not copy; instead, return the length of what the result
would have been. */
static YYSIZE_T
yytnamerr (char *yyres, const char *yystr)
{
if (*yystr == '"')
{
YYSIZE_T yyn = 0;
char const *yyp = yystr;
for (;;)
switch (*++yyp)
{
case '\'':
case ',':
goto do_not_strip_quotes;
case '\\':
if (*++yyp != '\\')
goto do_not_strip_quotes;
else
goto append;
append:
default:
if (yyres)
yyres[yyn] = *yyp;
yyn++;
break;
case '"':
if (yyres)
yyres[yyn] = '\0';
return yyn;
}
do_not_strip_quotes: ;
}
if (! yyres)
return yystrlen (yystr);
return (YYSIZE_T) (yystpcpy (yyres, yystr) - yyres);
}
# endif
/* Copy into *YYMSG, which is of size *YYMSG_ALLOC, an error message
about the unexpected token YYTOKEN for the state stack whose top is
YYSSP.
Return 0 if *YYMSG was successfully written. Return 1 if *YYMSG is
not large enough to hold the message. In that case, also set
*YYMSG_ALLOC to the required number of bytes. Return 2 if the
required number of bytes is too large to store. */
static int
yysyntax_error (YYSIZE_T *yymsg_alloc, char **yymsg,
yytype_int16 *yyssp, int yytoken)
{
YYSIZE_T yysize0 = yytnamerr (YY_NULLPTR, yytname[yytoken]);
YYSIZE_T yysize = yysize0;
enum { YYERROR_VERBOSE_ARGS_MAXIMUM = 5 };
/* Internationalized format string. */
const char *yyformat = YY_NULLPTR;
/* Arguments of yyformat. */
char const *yyarg[YYERROR_VERBOSE_ARGS_MAXIMUM];
/* Number of reported tokens (one for the "unexpected", one per
"expected"). */
int yycount = 0;
/* There are many possibilities here to consider:
- If this state is a consistent state with a default action, then
the only way this function was invoked is if the default action
is an error action. In that case, don't check for expected
tokens because there are none.
- The only way there can be no lookahead present (in yychar) is if
this state is a consistent state with a default action. Thus,
detecting the absence of a lookahead is sufficient to determine
that there is no unexpected or expected token to report. In that
case, just report a simple "syntax error".
- Don't assume there isn't a lookahead just because this state is a
consistent state with a default action. There might have been a
previous inconsistent state, consistent state with a non-default
action, or user semantic action that manipulated yychar.
- Of course, the expected token list depends on states to have
correct lookahead information, and it depends on the parser not
to perform extra reductions after fetching a lookahead from the
scanner and before detecting a syntax error. Thus, state merging
(from LALR or IELR) and default reductions corrupt the expected
token list. However, the list is correct for canonical LR with
one exception: it will still contain any token that will not be
accepted due to an error action in a later state.
*/
if (yytoken != YYEMPTY)
{
int yyn = yypact[*yyssp];
yyarg[yycount++] = yytname[yytoken];
if (!yypact_value_is_default (yyn))
{
/* Start YYX at -YYN if negative to avoid negative indexes in
YYCHECK. In other words, skip the first -YYN actions for
this state because they are default actions. */
int yyxbegin = yyn < 0 ? -yyn : 0;
/* Stay within bounds of both yycheck and yytname. */
int yychecklim = YYLAST - yyn + 1;
int yyxend = yychecklim < YYNTOKENS ? yychecklim : YYNTOKENS;
int yyx;
for (yyx = yyxbegin; yyx < yyxend; ++yyx)
if (yycheck[yyx + yyn] == yyx && yyx != YYTERROR
&& !yytable_value_is_error (yytable[yyx + yyn]))
{
if (yycount == YYERROR_VERBOSE_ARGS_MAXIMUM)
{
yycount = 1;
yysize = yysize0;
break;
}
yyarg[yycount++] = yytname[yyx];
{
YYSIZE_T yysize1 = yysize + yytnamerr (YY_NULLPTR, yytname[yyx]);
if (yysize <= yysize1 && yysize1 <= YYSTACK_ALLOC_MAXIMUM)
yysize = yysize1;
else
return 2;
}
}
}
}
switch (yycount)
{
# define YYCASE_(N, S) \
case N: \
yyformat = S; \
break
default: /* Avoid compiler warnings. */
YYCASE_(0, YY_("syntax error"));
YYCASE_(1, YY_("syntax error, unexpected %s"));
YYCASE_(2, YY_("syntax error, unexpected %s, expecting %s"));
YYCASE_(3, YY_("syntax error, unexpected %s, expecting %s or %s"));
YYCASE_(4, YY_("syntax error, unexpected %s, expecting %s or %s or %s"));
YYCASE_(5, YY_("syntax error, unexpected %s, expecting %s or %s or %s or %s"));
# undef YYCASE_
}
{
YYSIZE_T yysize1 = yysize + yystrlen (yyformat);
if (yysize <= yysize1 && yysize1 <= YYSTACK_ALLOC_MAXIMUM)
yysize = yysize1;
else
return 2;
}
if (*yymsg_alloc < yysize)
{
*yymsg_alloc = 2 * yysize;
if (! (yysize <= *yymsg_alloc
&& *yymsg_alloc <= YYSTACK_ALLOC_MAXIMUM))
*yymsg_alloc = YYSTACK_ALLOC_MAXIMUM;
return 1;
}
/* Avoid sprintf, as that infringes on the user's name space.
Don't have undefined behavior even if the translation
produced a string with the wrong number of "%s"s. */
{
char *yyp = *yymsg;
int yyi = 0;
while ((*yyp = *yyformat) != '\0')
if (*yyp == '%' && yyformat[1] == 's' && yyi < yycount)
{
yyp += yytnamerr (yyp, yyarg[yyi++]);
yyformat += 2;
}
else
{
yyp++;
yyformat++;
}
}
return 0;
}
#endif /* YYERROR_VERBOSE */
/*-----------------------------------------------.
| Release the memory associated to this symbol. |
`-----------------------------------------------*/
static void
yydestruct (const char *yymsg, int yytype, YYSTYPE *yyvaluep, parser_control *pc)
{
YYUSE (yyvaluep);
YYUSE (pc);
if (!yymsg)
yymsg = "Deleting";
YY_SYMBOL_PRINT (yymsg, yytype, yyvaluep, yylocationp);
YY_IGNORE_MAYBE_UNINITIALIZED_BEGIN
YYUSE (yytype);
YY_IGNORE_MAYBE_UNINITIALIZED_END
}
/*----------.
| yyparse. |
`----------*/
int
yyparse (parser_control *pc)
{
/* The lookahead symbol. */
int yychar;
/* The semantic value of the lookahead symbol. */
/* Default value used for initialization, for pacifying older GCCs
or non-GCC compilers. */
YY_INITIAL_VALUE (static YYSTYPE yyval_default;)
YYSTYPE yylval YY_INITIAL_VALUE (= yyval_default);
/* Number of syntax errors so far. */
int yynerrs;
int yystate;
/* Number of tokens to shift before error messages enabled. */
int yyerrstatus;
/* The stacks and their tools:
'yyss': related to states.
'yyvs': related to semantic values.
Refer to the stacks through separate pointers, to allow yyoverflow
to reallocate them elsewhere. */
/* The state stack. */
yytype_int16 yyssa[YYINITDEPTH];
yytype_int16 *yyss;
yytype_int16 *yyssp;
/* The semantic value stack. */
YYSTYPE yyvsa[YYINITDEPTH];
YYSTYPE *yyvs;
YYSTYPE *yyvsp;
YYSIZE_T yystacksize;
int yyn;
int yyresult;
/* Lookahead token as an internal (translated) token number. */
int yytoken = 0;
/* The variables used to return semantic value and location from the
action routines. */
YYSTYPE yyval;
#if YYERROR_VERBOSE
/* Buffer for error messages, and its allocated size. */
char yymsgbuf[128];
char *yymsg = yymsgbuf;
YYSIZE_T yymsg_alloc = sizeof yymsgbuf;
#endif
#define YYPOPSTACK(N) (yyvsp -= (N), yyssp -= (N))
/* The number of symbols on the RHS of the reduced rule.
Keep to zero when no symbol should be popped. */
int yylen = 0;
yyssp = yyss = yyssa;
yyvsp = yyvs = yyvsa;
yystacksize = YYINITDEPTH;
YYDPRINTF ((stderr, "Starting parse\n"));
yystate = 0;
yyerrstatus = 0;
yynerrs = 0;
yychar = YYEMPTY; /* Cause a token to be read. */
goto yysetstate;
/*------------------------------------------------------------.
| yynewstate -- push a new state, which is found in yystate. |
`------------------------------------------------------------*/
yynewstate:
/* In all cases, when you get here, the value and location stacks
have just been pushed. So pushing a state here evens the stacks. */
yyssp++;
/*--------------------------------------------------------------------.
| yynewstate -- set current state (the top of the stack) to yystate. |
`--------------------------------------------------------------------*/
yysetstate:
YYDPRINTF ((stderr, "Entering state %d\n", yystate));
YY_ASSERT (0 <= yystate && yystate < YYNSTATES);
*yyssp = (yytype_int16) yystate;
if (yyss + yystacksize - 1 <= yyssp)
#if !defined yyoverflow && !defined YYSTACK_RELOCATE
goto yyexhaustedlab;
#else
{
/* Get the current used size of the three stacks, in elements. */
YYSIZE_T yysize = (YYSIZE_T) (yyssp - yyss + 1);
# if defined yyoverflow
{
/* Give user a chance to reallocate the stack. Use copies of
these so that the &'s don't force the real ones into
memory. */
YYSTYPE *yyvs1 = yyvs;
yytype_int16 *yyss1 = yyss;
/* Each stack pointer address is followed by the size of the
data in use in that stack, in bytes. This used to be a
conditional around just the two extra args, but that might
be undefined if yyoverflow is a macro. */
yyoverflow (YY_("memory exhausted"),
&yyss1, yysize * sizeof (*yyssp),
&yyvs1, yysize * sizeof (*yyvsp),
&yystacksize);
yyss = yyss1;
yyvs = yyvs1;
}
# else /* defined YYSTACK_RELOCATE */
/* Extend the stack our own way. */
if (YYMAXDEPTH <= yystacksize)
goto yyexhaustedlab;
yystacksize *= 2;
if (YYMAXDEPTH < yystacksize)
yystacksize = YYMAXDEPTH;
{
yytype_int16 *yyss1 = yyss;
union yyalloc *yyptr =
(union yyalloc *) YYSTACK_ALLOC (YYSTACK_BYTES (yystacksize));
if (! yyptr)
goto yyexhaustedlab;
YYSTACK_RELOCATE (yyss_alloc, yyss);
YYSTACK_RELOCATE (yyvs_alloc, yyvs);
# undef YYSTACK_RELOCATE
if (yyss1 != yyssa)
YYSTACK_FREE (yyss1);
}
# endif
yyssp = yyss + yysize - 1;
yyvsp = yyvs + yysize - 1;
YYDPRINTF ((stderr, "Stack size increased to %lu\n",
(unsigned long) yystacksize));
if (yyss + yystacksize - 1 <= yyssp)
YYABORT;
}
#endif /* !defined yyoverflow && !defined YYSTACK_RELOCATE */
if (yystate == YYFINAL)
YYACCEPT;
goto yybackup;
/*-----------.
| yybackup. |
`-----------*/
yybackup:
/* Do appropriate processing given the current state. Read a
lookahead token if we need one and don't already have one. */
/* First try to decide what to do without reference to lookahead token. */
yyn = yypact[yystate];
if (yypact_value_is_default (yyn))
goto yydefault;
/* Not known => get a lookahead token if don't already have one. */
/* YYCHAR is either YYEMPTY or YYEOF or a valid lookahead symbol. */
if (yychar == YYEMPTY)
{
YYDPRINTF ((stderr, "Reading a token: "));
yychar = yylex (&yylval, pc);
}
if (yychar <= YYEOF)
{
yychar = yytoken = YYEOF;
YYDPRINTF ((stderr, "Now at end of input.\n"));
}
else
{
yytoken = YYTRANSLATE (yychar);
YY_SYMBOL_PRINT ("Next token is", yytoken, &yylval, &yylloc);
}
/* If the proper action on seeing token YYTOKEN is to reduce or to
detect an error, take that action. */
yyn += yytoken;
if (yyn < 0 || YYLAST < yyn || yycheck[yyn] != yytoken)
goto yydefault;
yyn = yytable[yyn];
if (yyn <= 0)
{
if (yytable_value_is_error (yyn))
goto yyerrlab;
yyn = -yyn;
goto yyreduce;
}
/* Count tokens shifted since error; after three, turn off error
status. */
if (yyerrstatus)
yyerrstatus--;
/* Shift the lookahead token. */
YY_SYMBOL_PRINT ("Shifting", yytoken, &yylval, &yylloc);
/* Discard the shifted token. */
yychar = YYEMPTY;
yystate = yyn;
YY_IGNORE_MAYBE_UNINITIALIZED_BEGIN
*++yyvsp = yylval;
YY_IGNORE_MAYBE_UNINITIALIZED_END
goto yynewstate;
/*-----------------------------------------------------------.
| yydefault -- do the default action for the current state. |
`-----------------------------------------------------------*/
yydefault:
yyn = yydefact[yystate];
if (yyn == 0)
goto yyerrlab;
goto yyreduce;
/*-----------------------------.
| yyreduce -- do a reduction. |
`-----------------------------*/
yyreduce:
/* yyn is the number of a rule to reduce with. */
yylen = yyr2[yyn];
/* If YYLEN is nonzero, implement the default value of the action:
'$$ = $1'.
Otherwise, the following line sets YYVAL to garbage.
This behavior is undocumented and Bison
users should not rely upon it. Assigning to YYVAL
unconditionally makes the parser a bit smaller, and it avoids a
GCC warning that YYVAL may be used uninitialized. */
yyval = yyvsp[1-yylen];
YY_REDUCE_PRINT (yyn);
switch (yyn)
{
case 4:
#line 326 "sys-utils/hwclock-parse-date.y"
{
pc->seconds = (yyvsp[0].timespec);
pc->timespec_seen = 1;
}
#line 1630 "sys-utils/hwclock-parse-date.c"
break;
case 7:
#line 338 "sys-utils/hwclock-parse-date.y"
{
pc->times_seen++; pc->dates_seen++;
}
#line 1638 "sys-utils/hwclock-parse-date.c"
break;
case 8:
#line 341 "sys-utils/hwclock-parse-date.y"
{
pc->times_seen++;
}
#line 1646 "sys-utils/hwclock-parse-date.c"
break;
case 9:
#line 344 "sys-utils/hwclock-parse-date.y"
{
pc->local_zones_seen++;
}
#line 1654 "sys-utils/hwclock-parse-date.c"
break;
case 10:
#line 347 "sys-utils/hwclock-parse-date.y"
{
pc->zones_seen++;
}
#line 1662 "sys-utils/hwclock-parse-date.c"
break;
case 11:
#line 350 "sys-utils/hwclock-parse-date.y"
{
pc->dates_seen++;
}
#line 1670 "sys-utils/hwclock-parse-date.c"
break;
case 12:
#line 353 "sys-utils/hwclock-parse-date.y"
{
pc->days_seen++;
}
#line 1678 "sys-utils/hwclock-parse-date.c"
break;
case 18:
#line 370 "sys-utils/hwclock-parse-date.y"
{
set_hhmmss (pc, (yyvsp[-1].textintval).value, 0, 0, 0);
pc->meridian = (yyvsp[0].intval);
}
#line 1687 "sys-utils/hwclock-parse-date.c"
break;
case 19:
#line 374 "sys-utils/hwclock-parse-date.y"
{
set_hhmmss (pc, (yyvsp[-3].textintval).value, (yyvsp[-1].textintval).value, 0, 0);
pc->meridian = (yyvsp[0].intval);
}
#line 1696 "sys-utils/hwclock-parse-date.c"
break;
case 20:
#line 378 "sys-utils/hwclock-parse-date.y"
{
set_hhmmss (pc, (yyvsp[-5].textintval).value, (yyvsp[-3].textintval).value, (yyvsp[-1].timespec).tv_sec, (yyvsp[-1].timespec).tv_nsec);
pc->meridian = (yyvsp[0].intval);
}
#line 1705 "sys-utils/hwclock-parse-date.c"
break;
case 22:
#line 386 "sys-utils/hwclock-parse-date.y"
{
set_hhmmss (pc, (yyvsp[-1].textintval).value, 0, 0, 0);
pc->meridian = MER24;
}
#line 1714 "sys-utils/hwclock-parse-date.c"
break;
case 23:
#line 390 "sys-utils/hwclock-parse-date.y"
{
set_hhmmss (pc, (yyvsp[-3].textintval).value, (yyvsp[-1].textintval).value, 0, 0);
pc->meridian = MER24;
}
#line 1723 "sys-utils/hwclock-parse-date.c"
break;
case 24:
#line 394 "sys-utils/hwclock-parse-date.y"
{
set_hhmmss (pc, (yyvsp[-5].textintval).value, (yyvsp[-3].textintval).value, (yyvsp[-1].timespec).tv_sec, (yyvsp[-1].timespec).tv_nsec);
pc->meridian = MER24;
}
#line 1732 "sys-utils/hwclock-parse-date.c"
break;
case 27:
#line 406 "sys-utils/hwclock-parse-date.y"
{
pc->zones_seen++;
if (! time_zone_hhmm (pc, (yyvsp[-1].textintval), (yyvsp[0].textintval))) YYABORT;
}
#line 1741 "sys-utils/hwclock-parse-date.c"
break;
case 28:
#line 431 "sys-utils/hwclock-parse-date.y"
{
pc->local_isdst = (yyvsp[0].intval);
pc->dsts_seen += (0 < (yyvsp[0].intval));
}
#line 1750 "sys-utils/hwclock-parse-date.c"
break;
case 29:
#line 435 "sys-utils/hwclock-parse-date.y"
{
pc->local_isdst = 1;
pc->dsts_seen += (0 < (yyvsp[-1].intval)) + 1;
}
#line 1759 "sys-utils/hwclock-parse-date.c"
break;
case 30:
#line 446 "sys-utils/hwclock-parse-date.y"
{
pc->time_zone = (yyvsp[0].intval);
}
#line 1767 "sys-utils/hwclock-parse-date.c"
break;
case 31:
#line 449 "sys-utils/hwclock-parse-date.y"
{
pc->time_zone = HOUR(7);
}
#line 1775 "sys-utils/hwclock-parse-date.c"
break;
case 32:
#line 452 "sys-utils/hwclock-parse-date.y"
{
pc->time_zone = (yyvsp[-1].intval);
apply_relative_time (pc, (yyvsp[0].rel), 1);
}
#line 1784 "sys-utils/hwclock-parse-date.c"
break;
case 33:
#line 456 "sys-utils/hwclock-parse-date.y"
{
pc->time_zone = HOUR(7);
apply_relative_time (pc, (yyvsp[0].rel), 1);
}
#line 1793 "sys-utils/hwclock-parse-date.c"
break;
case 34:
#line 460 "sys-utils/hwclock-parse-date.y"
{
if (! time_zone_hhmm (pc, (yyvsp[-1].textintval), (yyvsp[0].textintval))) YYABORT;
pc->time_zone += (yyvsp[-2].intval);
}
#line 1802 "sys-utils/hwclock-parse-date.c"
break;
case 35:
#line 464 "sys-utils/hwclock-parse-date.y"
{
pc->time_zone = (yyvsp[0].intval) + 60;
}
#line 1810 "sys-utils/hwclock-parse-date.c"
break;
case 36:
#line 467 "sys-utils/hwclock-parse-date.y"
{
pc->time_zone = (yyvsp[-1].intval) + 60;
}
#line 1818 "sys-utils/hwclock-parse-date.c"
break;
case 37:
#line 473 "sys-utils/hwclock-parse-date.y"
{
pc->day_ordinal = 0;
pc->day_number = (yyvsp[0].intval);
}
#line 1827 "sys-utils/hwclock-parse-date.c"
break;
case 38:
#line 477 "sys-utils/hwclock-parse-date.y"
{
pc->day_ordinal = 0;
pc->day_number = (yyvsp[-1].intval);
}
#line 1836 "sys-utils/hwclock-parse-date.c"
break;
case 39:
#line 481 "sys-utils/hwclock-parse-date.y"
{
pc->day_ordinal = (yyvsp[-1].intval);
pc->day_number = (yyvsp[0].intval);
}
#line 1845 "sys-utils/hwclock-parse-date.c"
break;
case 40:
#line 485 "sys-utils/hwclock-parse-date.y"
{
pc->day_ordinal = (yyvsp[-1].textintval).value;
pc->day_number = (yyvsp[0].intval);
}
#line 1854 "sys-utils/hwclock-parse-date.c"
break;
case 41:
#line 492 "sys-utils/hwclock-parse-date.y"
{
pc->month = (yyvsp[-2].textintval).value;
pc->day = (yyvsp[0].textintval).value;
}
#line 1863 "sys-utils/hwclock-parse-date.c"
break;
case 42:
#line 496 "sys-utils/hwclock-parse-date.y"
{
/**
* Interpret as YYYY/MM/DD if the first value has 4 or more digits,
* otherwise as MM/DD/YY.
* The goal in recognizing YYYY/MM/DD is solely to support legacy
* machine-generated dates like those in an RCS log listing. If
* you want portability, use the ISO 8601 format.
*/
if (4 <= (yyvsp[-4].textintval).digits) {
pc->year = (yyvsp[-4].textintval);
pc->month = (yyvsp[-2].textintval).value;
pc->day = (yyvsp[0].textintval).value;
} else {
pc->month = (yyvsp[-4].textintval).value;
pc->day = (yyvsp[-2].textintval).value;
pc->year = (yyvsp[0].textintval);
}
}
#line 1886 "sys-utils/hwclock-parse-date.c"
break;
case 43:
#line 514 "sys-utils/hwclock-parse-date.y"
{
/* e.g. 17-JUN-1992. */
pc->day = (yyvsp[-2].textintval).value;
pc->month = (yyvsp[-1].intval);
pc->year.value = -(yyvsp[0].textintval).value;
pc->year.digits = (yyvsp[0].textintval).digits;
}
#line 1898 "sys-utils/hwclock-parse-date.c"
break;
case 44:
#line 521 "sys-utils/hwclock-parse-date.y"
{
/* e.g. JUN-17-1992. */
pc->month = (yyvsp[-2].intval);
pc->day = -(yyvsp[-1].textintval).value;
pc->year.value = -(yyvsp[0].textintval).value;
pc->year.digits = (yyvsp[0].textintval).digits;
}
#line 1910 "sys-utils/hwclock-parse-date.c"
break;
case 45:
#line 528 "sys-utils/hwclock-parse-date.y"
{
pc->month = (yyvsp[-1].intval);
pc->day = (yyvsp[0].textintval).value;
}
#line 1919 "sys-utils/hwclock-parse-date.c"
break;
case 46:
#line 532 "sys-utils/hwclock-parse-date.y"
{
pc->month = (yyvsp[-3].intval);
pc->day = (yyvsp[-2].textintval).value;
pc->year = (yyvsp[0].textintval);
}
#line 1929 "sys-utils/hwclock-parse-date.c"
break;
case 47:
#line 537 "sys-utils/hwclock-parse-date.y"
{
pc->day = (yyvsp[-1].textintval).value;
pc->month = (yyvsp[0].intval);
}
#line 1938 "sys-utils/hwclock-parse-date.c"
break;
case 48:
#line 541 "sys-utils/hwclock-parse-date.y"
{
pc->day = (yyvsp[-2].textintval).value;
pc->month = (yyvsp[-1].intval);
pc->year = (yyvsp[0].textintval);
}
#line 1948 "sys-utils/hwclock-parse-date.c"
break;
case 50:
#line 550 "sys-utils/hwclock-parse-date.y"
{
/* ISO 8601 format.YYYY-MM-DD. */
pc->year = (yyvsp[-2].textintval);
pc->month = -(yyvsp[-1].textintval).value;
pc->day = -(yyvsp[0].textintval).value;
}
#line 1959 "sys-utils/hwclock-parse-date.c"
break;
case 51:
#line 560 "sys-utils/hwclock-parse-date.y"
{ apply_relative_time (pc, (yyvsp[-1].rel), (yyvsp[0].intval)); }
#line 1965 "sys-utils/hwclock-parse-date.c"
break;
case 52:
#line 562 "sys-utils/hwclock-parse-date.y"
{ apply_relative_time (pc, (yyvsp[0].rel), 1); }
#line 1971 "sys-utils/hwclock-parse-date.c"
break;
case 53:
#line 564 "sys-utils/hwclock-parse-date.y"
{ apply_relative_time (pc, (yyvsp[0].rel), 1); }
#line 1977 "sys-utils/hwclock-parse-date.c"
break;
case 54:
#line 569 "sys-utils/hwclock-parse-date.y"
{ (yyval.rel) = RELATIVE_TIME_0; (yyval.rel).year = (yyvsp[-1].intval); }
#line 1983 "sys-utils/hwclock-parse-date.c"
break;
case 55:
#line 571 "sys-utils/hwclock-parse-date.y"
{ (yyval.rel) = RELATIVE_TIME_0; (yyval.rel).year = (yyvsp[-1].textintval).value; }
#line 1989 "sys-utils/hwclock-parse-date.c"
break;
case 56:
#line 573 "sys-utils/hwclock-parse-date.y"
{ (yyval.rel) = RELATIVE_TIME_0; (yyval.rel).year = 1; }
#line 1995 "sys-utils/hwclock-parse-date.c"
break;
case 57:
#line 575 "sys-utils/hwclock-parse-date.y"
{ (yyval.rel) = RELATIVE_TIME_0; (yyval.rel).month = (yyvsp[-1].intval); }
#line 2001 "sys-utils/hwclock-parse-date.c"
break;
case 58:
#line 577 "sys-utils/hwclock-parse-date.y"
{ (yyval.rel) = RELATIVE_TIME_0; (yyval.rel).month = (yyvsp[-1].textintval).value; }
#line 2007 "sys-utils/hwclock-parse-date.c"
break;
case 59:
#line 579 "sys-utils/hwclock-parse-date.y"
{ (yyval.rel) = RELATIVE_TIME_0; (yyval.rel).month = 1; }
#line 2013 "sys-utils/hwclock-parse-date.c"
break;
case 60:
#line 581 "sys-utils/hwclock-parse-date.y"
{ (yyval.rel) = RELATIVE_TIME_0; (yyval.rel).day = (yyvsp[-1].intval) * (yyvsp[0].intval); }
#line 2019 "sys-utils/hwclock-parse-date.c"
break;
case 61:
#line 583 "sys-utils/hwclock-parse-date.y"
{ (yyval.rel) = RELATIVE_TIME_0; (yyval.rel).day = (yyvsp[-1].textintval).value * (yyvsp[0].intval); }
#line 2025 "sys-utils/hwclock-parse-date.c"
break;
case 62:
#line 585 "sys-utils/hwclock-parse-date.y"
{ (yyval.rel) = RELATIVE_TIME_0; (yyval.rel).day = (yyvsp[0].intval); }
#line 2031 "sys-utils/hwclock-parse-date.c"
break;
case 63:
#line 587 "sys-utils/hwclock-parse-date.y"
{ (yyval.rel) = RELATIVE_TIME_0; (yyval.rel).hour = (yyvsp[-1].intval); }
#line 2037 "sys-utils/hwclock-parse-date.c"
break;
case 64:
#line 589 "sys-utils/hwclock-parse-date.y"
{ (yyval.rel) = RELATIVE_TIME_0; (yyval.rel).hour = (yyvsp[-1].textintval).value; }
#line 2043 "sys-utils/hwclock-parse-date.c"
break;
case 65:
#line 591 "sys-utils/hwclock-parse-date.y"
{ (yyval.rel) = RELATIVE_TIME_0; (yyval.rel).hour = 1; }
#line 2049 "sys-utils/hwclock-parse-date.c"
break;
case 66:
#line 593 "sys-utils/hwclock-parse-date.y"
{ (yyval.rel) = RELATIVE_TIME_0; (yyval.rel).minutes = (yyvsp[-1].intval); }
#line 2055 "sys-utils/hwclock-parse-date.c"
break;
case 67:
#line 595 "sys-utils/hwclock-parse-date.y"
{ (yyval.rel) = RELATIVE_TIME_0; (yyval.rel).minutes = (yyvsp[-1].textintval).value; }
#line 2061 "sys-utils/hwclock-parse-date.c"
break;
case 68:
#line 597 "sys-utils/hwclock-parse-date.y"
{ (yyval.rel) = RELATIVE_TIME_0; (yyval.rel).minutes = 1; }
#line 2067 "sys-utils/hwclock-parse-date.c"
break;
case 69:
#line 599 "sys-utils/hwclock-parse-date.y"
{ (yyval.rel) = RELATIVE_TIME_0; (yyval.rel).seconds = (yyvsp[-1].intval); }
#line 2073 "sys-utils/hwclock-parse-date.c"
break;
case 70:
#line 601 "sys-utils/hwclock-parse-date.y"
{ (yyval.rel) = RELATIVE_TIME_0; (yyval.rel).seconds = (yyvsp[-1].textintval).value; }
#line 2079 "sys-utils/hwclock-parse-date.c"
break;
case 71:
#line 602 "sys-utils/hwclock-parse-date.y"
{
(yyval.rel) = RELATIVE_TIME_0;
(yyval.rel).seconds = (yyvsp[-1].timespec).tv_sec;
(yyval.rel).ns = (yyvsp[-1].timespec).tv_nsec;
}
#line 2089 "sys-utils/hwclock-parse-date.c"
break;
case 72:
#line 607 "sys-utils/hwclock-parse-date.y"
{
(yyval.rel) = RELATIVE_TIME_0;
(yyval.rel).seconds = (yyvsp[-1].timespec).tv_sec;
(yyval.rel).ns = (yyvsp[-1].timespec).tv_nsec;
}
#line 2099 "sys-utils/hwclock-parse-date.c"
break;
case 73:
#line 613 "sys-utils/hwclock-parse-date.y"
{ (yyval.rel) = RELATIVE_TIME_0; (yyval.rel).seconds = 1; }
#line 2105 "sys-utils/hwclock-parse-date.c"
break;
case 75:
#line 619 "sys-utils/hwclock-parse-date.y"
{ (yyval.rel) = RELATIVE_TIME_0; (yyval.rel).year = (yyvsp[-1].textintval).value; }
#line 2111 "sys-utils/hwclock-parse-date.c"
break;
case 76:
#line 621 "sys-utils/hwclock-parse-date.y"
{ (yyval.rel) = RELATIVE_TIME_0; (yyval.rel).month = (yyvsp[-1].textintval).value; }
#line 2117 "sys-utils/hwclock-parse-date.c"
break;
case 77:
#line 623 "sys-utils/hwclock-parse-date.y"
{ (yyval.rel) = RELATIVE_TIME_0; (yyval.rel).day = (yyvsp[-1].textintval).value * (yyvsp[0].intval); }
#line 2123 "sys-utils/hwclock-parse-date.c"
break;
case 78:
#line 625 "sys-utils/hwclock-parse-date.y"
{ (yyval.rel) = RELATIVE_TIME_0; (yyval.rel).hour = (yyvsp[-1].textintval).value; }
#line 2129 "sys-utils/hwclock-parse-date.c"
break;
case 79:
#line 627 "sys-utils/hwclock-parse-date.y"
{ (yyval.rel) = RELATIVE_TIME_0; (yyval.rel).minutes = (yyvsp[-1].textintval).value; }
#line 2135 "sys-utils/hwclock-parse-date.c"
break;
case 80:
#line 629 "sys-utils/hwclock-parse-date.y"
{ (yyval.rel) = RELATIVE_TIME_0; (yyval.rel).seconds = (yyvsp[-1].textintval).value; }
#line 2141 "sys-utils/hwclock-parse-date.c"
break;
case 81:
#line 634 "sys-utils/hwclock-parse-date.y"
{ (yyval.rel) = RELATIVE_TIME_0; (yyval.rel).day = (yyvsp[0].intval); }
#line 2147 "sys-utils/hwclock-parse-date.c"
break;
case 85:
#line 642 "sys-utils/hwclock-parse-date.y"
{ (yyval.timespec).tv_sec = (yyvsp[0].textintval).value; (yyval.timespec).tv_nsec = 0; }
#line 2153 "sys-utils/hwclock-parse-date.c"
break;
case 87:
#line 648 "sys-utils/hwclock-parse-date.y"
{ (yyval.timespec).tv_sec = (yyvsp[0].textintval).value; (yyval.timespec).tv_nsec = 0; }
#line 2159 "sys-utils/hwclock-parse-date.c"
break;
case 88:
#line 653 "sys-utils/hwclock-parse-date.y"
{ digits_to_date_time (pc, (yyvsp[0].textintval)); }
#line 2165 "sys-utils/hwclock-parse-date.c"
break;
case 89:
#line 657 "sys-utils/hwclock-parse-date.y"
{
/**
* Hybrid all-digit and relative offset, so that we accept e.g.,
* "YYYYMMDD +N days" as well as "YYYYMMDD N days".
*/
digits_to_date_time (pc, (yyvsp[-1].textintval));
apply_relative_time (pc, (yyvsp[0].rel), 1);
}
#line 2178 "sys-utils/hwclock-parse-date.c"
break;
case 90:
#line 669 "sys-utils/hwclock-parse-date.y"
{ (yyval.textintval).value = (yyval.textintval).digits = 0; }
#line 2184 "sys-utils/hwclock-parse-date.c"
break;
case 91:
#line 670 "sys-utils/hwclock-parse-date.y"
{
(yyval.textintval) = (yyvsp[0].textintval);
}
#line 2192 "sys-utils/hwclock-parse-date.c"
break;
#line 2196 "sys-utils/hwclock-parse-date.c"
default: break;
}
/* User semantic actions sometimes alter yychar, and that requires
that yytoken be updated with the new translation. We take the
approach of translating immediately before every use of yytoken.
One alternative is translating here after every semantic action,
but that translation would be missed if the semantic action invokes
YYABORT, YYACCEPT, or YYERROR immediately after altering yychar or
if it invokes YYBACKUP. In the case of YYABORT or YYACCEPT, an
incorrect destructor might then be invoked immediately. In the
case of YYERROR or YYBACKUP, subsequent parser actions might lead
to an incorrect destructor call or verbose syntax error message
before the lookahead is translated. */
YY_SYMBOL_PRINT ("-> $$ =", yyr1[yyn], &yyval, &yyloc);
YYPOPSTACK (yylen);
yylen = 0;
YY_STACK_PRINT (yyss, yyssp);
*++yyvsp = yyval;
/* Now 'shift' the result of the reduction. Determine what state
that goes to, based on the state we popped back to and the rule
number reduced by. */
{
const int yylhs = yyr1[yyn] - YYNTOKENS;
const int yyi = yypgoto[yylhs] + *yyssp;
yystate = (0 <= yyi && yyi <= YYLAST && yycheck[yyi] == *yyssp
? yytable[yyi]
: yydefgoto[yylhs]);
}
goto yynewstate;
/*--------------------------------------.
| yyerrlab -- here on detecting error. |
`--------------------------------------*/
yyerrlab:
/* Make sure we have latest lookahead translation. See comments at
user semantic actions for why this is necessary. */
yytoken = yychar == YYEMPTY ? YYEMPTY : YYTRANSLATE (yychar);
/* If not already recovering from an error, report this error. */
if (!yyerrstatus)
{
++yynerrs;
#if ! YYERROR_VERBOSE
yyerror (pc, YY_("syntax error"));
#else
# define YYSYNTAX_ERROR yysyntax_error (&yymsg_alloc, &yymsg, \
yyssp, yytoken)
{
char const *yymsgp = YY_("syntax error");
int yysyntax_error_status;
yysyntax_error_status = YYSYNTAX_ERROR;
if (yysyntax_error_status == 0)
yymsgp = yymsg;
else if (yysyntax_error_status == 1)
{
if (yymsg != yymsgbuf)
YYSTACK_FREE (yymsg);
yymsg = (char *) YYSTACK_ALLOC (yymsg_alloc);
if (!yymsg)
{
yymsg = yymsgbuf;
yymsg_alloc = sizeof yymsgbuf;
yysyntax_error_status = 2;
}
else
{
yysyntax_error_status = YYSYNTAX_ERROR;
yymsgp = yymsg;
}
}
yyerror (pc, yymsgp);
if (yysyntax_error_status == 2)
goto yyexhaustedlab;
}
# undef YYSYNTAX_ERROR
#endif
}
if (yyerrstatus == 3)
{
/* If just tried and failed to reuse lookahead token after an
error, discard it. */
if (yychar <= YYEOF)
{
/* Return failure if at end of input. */
if (yychar == YYEOF)
YYABORT;
}
else
{
yydestruct ("Error: discarding",
yytoken, &yylval, pc);
yychar = YYEMPTY;
}
}
/* Else will try to reuse lookahead token after shifting the error
token. */
goto yyerrlab1;
/*---------------------------------------------------.
| yyerrorlab -- error raised explicitly by YYERROR. |
`---------------------------------------------------*/
yyerrorlab:
/* Pacify compilers when the user code never invokes YYERROR and the
label yyerrorlab therefore never appears in user code. */
if (0)
YYERROR;
/* Do not reclaim the symbols of the rule whose action triggered
this YYERROR. */
YYPOPSTACK (yylen);
yylen = 0;
YY_STACK_PRINT (yyss, yyssp);
yystate = *yyssp;
goto yyerrlab1;
/*-------------------------------------------------------------.
| yyerrlab1 -- common code for both syntax error and YYERROR. |
`-------------------------------------------------------------*/
yyerrlab1:
yyerrstatus = 3; /* Each real token shifted decrements this. */
for (;;)
{
yyn = yypact[yystate];
if (!yypact_value_is_default (yyn))
{
yyn += YYTERROR;
if (0 <= yyn && yyn <= YYLAST && yycheck[yyn] == YYTERROR)
{
yyn = yytable[yyn];
if (0 < yyn)
break;
}
}
/* Pop the current state because it cannot handle the error token. */
if (yyssp == yyss)
YYABORT;
yydestruct ("Error: popping",
yystos[yystate], yyvsp, pc);
YYPOPSTACK (1);
yystate = *yyssp;
YY_STACK_PRINT (yyss, yyssp);
}
YY_IGNORE_MAYBE_UNINITIALIZED_BEGIN
*++yyvsp = yylval;
YY_IGNORE_MAYBE_UNINITIALIZED_END
/* Shift the error token. */
YY_SYMBOL_PRINT ("Shifting", yystos[yyn], yyvsp, yylsp);
yystate = yyn;
goto yynewstate;
/*-------------------------------------.
| yyacceptlab -- YYACCEPT comes here. |
`-------------------------------------*/
yyacceptlab:
yyresult = 0;
goto yyreturn;
/*-----------------------------------.
| yyabortlab -- YYABORT comes here. |
`-----------------------------------*/
yyabortlab:
yyresult = 1;
goto yyreturn;
#if !defined yyoverflow || YYERROR_VERBOSE
/*-------------------------------------------------.
| yyexhaustedlab -- memory exhaustion comes here. |
`-------------------------------------------------*/
yyexhaustedlab:
yyerror (pc, YY_("memory exhausted"));
yyresult = 2;
/* Fall through. */
#endif
/*-----------------------------------------------------.
| yyreturn -- parsing is finished, return the result. |
`-----------------------------------------------------*/
yyreturn:
if (yychar != YYEMPTY)
{
/* Make sure we have latest lookahead translation. See comments at
user semantic actions for why this is necessary. */
yytoken = YYTRANSLATE (yychar);
yydestruct ("Cleanup: discarding lookahead",
yytoken, &yylval, pc);
}
/* Do not reclaim the symbols of the rule whose action triggered
this YYABORT or YYACCEPT. */
YYPOPSTACK (yylen);
YY_STACK_PRINT (yyss, yyssp);
while (yyssp != yyss)
{
yydestruct ("Cleanup: popping",
yystos[*yyssp], yyvsp, pc);
YYPOPSTACK (1);
}
#ifndef yyoverflow
if (yyss != yyssa)
YYSTACK_FREE (yyss);
#endif
#if YYERROR_VERBOSE
if (yymsg != yymsgbuf)
YYSTACK_FREE (yymsg);
#endif
return yyresult;
}
#line 675 "sys-utils/hwclock-parse-date.y"
static table const meridian_table[] = {
{ "AM", tMERIDIAN, MERam },
{ "A.M.", tMERIDIAN, MERam },
{ "PM", tMERIDIAN, MERpm },
{ "P.M.", tMERIDIAN, MERpm },
{ NULL, 0, 0 }
};
static table const dst_table[] = {
{ "DST", tDST, 0 }
};
static table const month_and_day_table[] = {
{ "JANUARY", tMONTH, 1 },
{ "FEBRUARY", tMONTH, 2 },
{ "MARCH", tMONTH, 3 },
{ "APRIL", tMONTH, 4 },
{ "MAY", tMONTH, 5 },
{ "JUNE", tMONTH, 6 },
{ "JULY", tMONTH, 7 },
{ "AUGUST", tMONTH, 8 },
{ "SEPTEMBER",tMONTH, 9 },
{ "SEPT", tMONTH, 9 },
{ "OCTOBER", tMONTH, 10 },
{ "NOVEMBER", tMONTH, 11 },
{ "DECEMBER", tMONTH, 12 },
{ "SUNDAY", tDAY, 0 },
{ "MONDAY", tDAY, 1 },
{ "TUESDAY", tDAY, 2 },
{ "TUES", tDAY, 2 },
{ "WEDNESDAY",tDAY, 3 },
{ "WEDNES", tDAY, 3 },
{ "THURSDAY", tDAY, 4 },
{ "THUR", tDAY, 4 },
{ "THURS", tDAY, 4 },
{ "FRIDAY", tDAY, 5 },
{ "SATURDAY", tDAY, 6 },
{ NULL, 0, 0 }
};
static table const time_units_table[] = {
{ "YEAR", tYEAR_UNIT, 1 },
{ "MONTH", tMONTH_UNIT, 1 },
{ "FORTNIGHT",tDAY_UNIT, 14 },
{ "WEEK", tDAY_UNIT, 7 },
{ "DAY", tDAY_UNIT, 1 },
{ "HOUR", tHOUR_UNIT, 1 },
{ "MINUTE", tMINUTE_UNIT, 1 },
{ "MIN", tMINUTE_UNIT, 1 },
{ "SECOND", tSEC_UNIT, 1 },
{ "SEC", tSEC_UNIT, 1 },
{ NULL, 0, 0 }
};
/* Assorted relative-time words. */
static table const relative_time_table[] = {
{ "TOMORROW", tDAY_SHIFT, 1 },
{ "YESTERDAY",tDAY_SHIFT, -1 },
{ "TODAY", tDAY_SHIFT, 0 },
{ "NOW", tDAY_SHIFT, 0 },
{ "LAST", tORDINAL, -1 },
{ "THIS", tORDINAL, 0 },
{ "NEXT", tORDINAL, 1 },
{ "FIRST", tORDINAL, 1 },
/*{ "SECOND", tORDINAL, 2 }, */
{ "THIRD", tORDINAL, 3 },
{ "FOURTH", tORDINAL, 4 },
{ "FIFTH", tORDINAL, 5 },
{ "SIXTH", tORDINAL, 6 },
{ "SEVENTH", tORDINAL, 7 },
{ "EIGHTH", tORDINAL, 8 },
{ "NINTH", tORDINAL, 9 },
{ "TENTH", tORDINAL, 10 },
{ "ELEVENTH", tORDINAL, 11 },
{ "TWELFTH", tORDINAL, 12 },
{ "AGO", tAGO, -1 },
{ "HENCE", tAGO, 1 },
{ NULL, 0, 0 }
};
/**
* The universal time zone table. These labels can be used even for
* timestamps that would not otherwise be valid, e.g., GMT timestamps
* in London during summer.
*/
static table const universal_time_zone_table[] = {
{ "GMT", tZONE, HOUR ( 0) }, /* Greenwich Mean */
{ "UT", tZONE, HOUR ( 0) }, /* Universal (Coordinated) */
{ "UTC", tZONE, HOUR ( 0) },
{ NULL, 0, 0 }
};
/**
* The time zone table. This table is necessarily incomplete, as time
* zone abbreviations are ambiguous; e.g. Australians interpret "EST"
* as Eastern time in Australia, not as US Eastern Standard Time.
* You cannot rely on parse_date to handle arbitrary time zone
* abbreviations; use numeric abbreviations like "-0500" instead.
*/
static table const time_zone_table[] = {
{ "WET", tZONE, HOUR ( 0) }, /* Western European */
{ "WEST", tDAYZONE, HOUR ( 0) }, /* Western European Summer */
{ "BST", tDAYZONE, HOUR ( 0) }, /* British Summer */
{ "ART", tZONE, -HOUR ( 3) }, /* Argentina */
{ "BRT", tZONE, -HOUR ( 3) }, /* Brazil */
{ "BRST", tDAYZONE, -HOUR ( 3) }, /* Brazil Summer */
{ "NST", tZONE, -(HOUR ( 3) + 30) }, /* Newfoundland Standard */
{ "NDT", tDAYZONE,-(HOUR ( 3) + 30) }, /* Newfoundland Daylight */
{ "AST", tZONE, -HOUR ( 4) }, /* Atlantic Standard */
{ "ADT", tDAYZONE, -HOUR ( 4) }, /* Atlantic Daylight */
{ "CLT", tZONE, -HOUR ( 4) }, /* Chile */
{ "CLST", tDAYZONE, -HOUR ( 4) }, /* Chile Summer */
{ "EST", tZONE, -HOUR ( 5) }, /* Eastern Standard */
{ "EDT", tDAYZONE, -HOUR ( 5) }, /* Eastern Daylight */
{ "CST", tZONE, -HOUR ( 6) }, /* Central Standard */
{ "CDT", tDAYZONE, -HOUR ( 6) }, /* Central Daylight */
{ "MST", tZONE, -HOUR ( 7) }, /* Mountain Standard */
{ "MDT", tDAYZONE, -HOUR ( 7) }, /* Mountain Daylight */
{ "PST", tZONE, -HOUR ( 8) }, /* Pacific Standard */
{ "PDT", tDAYZONE, -HOUR ( 8) }, /* Pacific Daylight */
{ "AKST", tZONE, -HOUR ( 9) }, /* Alaska Standard */
{ "AKDT", tDAYZONE, -HOUR ( 9) }, /* Alaska Daylight */
{ "HST", tZONE, -HOUR (10) }, /* Hawaii Standard */
{ "HAST", tZONE, -HOUR (10) }, /* Hawaii-Aleutian Standard */
{ "HADT", tDAYZONE, -HOUR (10) }, /* Hawaii-Aleutian Daylight */
{ "SST", tZONE, -HOUR (12) }, /* Samoa Standard */
{ "WAT", tZONE, HOUR ( 1) }, /* West Africa */
{ "CET", tZONE, HOUR ( 1) }, /* Central European */
{ "CEST", tDAYZONE, HOUR ( 1) }, /* Central European Summer */
{ "MET", tZONE, HOUR ( 1) }, /* Middle European */
{ "MEZ", tZONE, HOUR ( 1) }, /* Middle European */
{ "MEST", tDAYZONE, HOUR ( 1) }, /* Middle European Summer */
{ "MESZ", tDAYZONE, HOUR ( 1) }, /* Middle European Summer */
{ "EET", tZONE, HOUR ( 2) }, /* Eastern European */
{ "EEST", tDAYZONE, HOUR ( 2) }, /* Eastern European Summer */
{ "CAT", tZONE, HOUR ( 2) }, /* Central Africa */
{ "SAST", tZONE, HOUR ( 2) }, /* South Africa Standard */
{ "EAT", tZONE, HOUR ( 3) }, /* East Africa */
{ "MSK", tZONE, HOUR ( 3) }, /* Moscow */
{ "MSD", tDAYZONE, HOUR ( 3) }, /* Moscow Daylight */
{ "IST", tZONE, (HOUR ( 5) + 30) }, /* India Standard */
{ "SGT", tZONE, HOUR ( 8) }, /* Singapore */
{ "KST", tZONE, HOUR ( 9) }, /* Korea Standard */
{ "JST", tZONE, HOUR ( 9) }, /* Japan Standard */
{ "GST", tZONE, HOUR (10) }, /* Guam Standard */
{ "NZST", tZONE, HOUR (12) }, /* New Zealand Standard */
{ "NZDT", tDAYZONE, HOUR (12) }, /* New Zealand Daylight */
{ NULL, 0, 0 }
};
/**
* Military time zone table.
*
* Note 'T' is a special case, as it is used as the separator in ISO
* 8601 date and time of day representation.
*/
static table const military_table[] = {
{ "A", tZONE, -HOUR ( 1) },
{ "B", tZONE, -HOUR ( 2) },
{ "C", tZONE, -HOUR ( 3) },
{ "D", tZONE, -HOUR ( 4) },
{ "E", tZONE, -HOUR ( 5) },
{ "F", tZONE, -HOUR ( 6) },
{ "G", tZONE, -HOUR ( 7) },
{ "H", tZONE, -HOUR ( 8) },
{ "I", tZONE, -HOUR ( 9) },
{ "K", tZONE, -HOUR (10) },
{ "L", tZONE, -HOUR (11) },
{ "M", tZONE, -HOUR (12) },
{ "N", tZONE, HOUR ( 1) },
{ "O", tZONE, HOUR ( 2) },
{ "P", tZONE, HOUR ( 3) },
{ "Q", tZONE, HOUR ( 4) },
{ "R", tZONE, HOUR ( 5) },
{ "S", tZONE, HOUR ( 6) },
{ "T", 'T', 0 },
{ "U", tZONE, HOUR ( 8) },
{ "V", tZONE, HOUR ( 9) },
{ "W", tZONE, HOUR (10) },
{ "X", tZONE, HOUR (11) },
{ "Y", tZONE, HOUR (12) },
{ "Z", tZONE, HOUR ( 0) },
{ NULL, 0, 0 }
};
/**
* Convert a time offset expressed as HH:MM or HHMM into an integer count of
* minutes. If hh is more than 2 digits then it is of the form HHMM and must be
* delimited; in that case 'mm' is required to be absent. Otherwise, hh and mm
* are used ('mm' contains digits that were prefixed with a colon).
*
* POSIX TZ and ISO 8601 both define the maximum offset as 24:59. POSIX also
* allows seconds, but currently the parser rejects them. Both require minutes
* to be zero padded (2 digits). ISO requires hours to be zero padded, POSIX
* does not, either is accepted; which means an invalid ISO offset could pass.
*/
static int time_zone_hhmm(parser_control *pc, textint hh, textint mm)
{
int h, m;
if (hh.digits > 2 && hh.digits < 5 && mm.digits == 0) {
h = hh.value / 100;
m = hh.value % 100;
} else if (hh.digits < 3 && (mm.digits == 0 || mm.digits == 2)) {
h = hh.value;
m = hh.negative ? -mm.value : mm.value;
} else
return 0;
if (abs(h) > 24 || abs(m) > 59)
return 0;
pc->time_zone = h * 60 + m;
return 1;
}
static int to_hour(intmax_t hours, int meridian)
{
switch (meridian) {
default: /* Pacify GCC. */
case MER24:
return 0 <= hours && hours < 24 ? hours : -1;
case MERam:
return 0 < hours && hours < 12 ? hours : hours == 12 ? 0 : -1;
case MERpm:
return 0 < hours && hours < 12 ? hours + 12 : hours == 12 ? 12 : -1;
}
}
static long int to_year(textint textyear)
{
intmax_t year = textyear.value;
if (year < 0)
year = -year;
/**
* XPG4 suggests that years 00-68 map to 2000-2068, and
* years 69-99 map to 1969-1999.
*/
else if (textyear.digits == 2)
year += year < 69 ? 2000 : 1900;
return year;
}
static table const * lookup_zone(parser_control const *pc, char const *name)
{
table const *tp;
for (tp = universal_time_zone_table; tp->name; tp++)
if (strcmp (name, tp->name) == 0)
return tp;
/**
* Try local zone abbreviations before those in time_zone_table, as
* the local ones are more likely to be right.
*/
for (tp = pc->local_time_zone_table; tp->name; tp++)
if (strcmp (name, tp->name) == 0)
return tp;
for (tp = time_zone_table; tp->name; tp++)
if (strcmp (name, tp->name) == 0)
return tp;
return NULL;
}
#if ! HAVE_TM_GMTOFF
/**
* Yield the difference between *A and *B,
* measured in seconds, ignoring leap seconds.
* The body of this function is taken directly from the GNU C Library;
* see src/strftime.c.
*/
static int tm_diff(struct tm const *a, struct tm const *b)
{
/**
* Compute intervening leap days correctly even if year is negative.
* Take care to avoid int overflow in leap day calculations.
*/
int a4 = SHR (a->tm_year, 2) + SHR (TM_YEAR_BASE, 2) - ! (a->tm_year & 3);
int b4 = SHR (b->tm_year, 2) + SHR (TM_YEAR_BASE, 2) - ! (b->tm_year & 3);
int a100 = a4 / 25 - (a4 % 25 < 0);
int b100 = b4 / 25 - (b4 % 25 < 0);
int a400 = SHR (a100, 2);
int b400 = SHR (b100, 2);
int intervening_leap_days = (a4 - b4) - (a100 - b100) + (a400 - b400);
int years = a->tm_year - b->tm_year;
int days = (365 * years + intervening_leap_days
+ (a->tm_yday - b->tm_yday));
return (60 * (60 * (24 * days + (a->tm_hour - b->tm_hour))
+ (a->tm_min - b->tm_min))
+ (a->tm_sec - b->tm_sec));
}
#endif /* ! HAVE_TM_GMTOFF */
static table const * lookup_word(parser_control const *pc, char *word)
{
char *p;
char *q;
size_t wordlen;
table const *tp;
int period_found;
int abbrev;
/* Make it uppercase. */
for (p = word; *p; p++)
*p = c_toupper (to_uchar (*p));
for (tp = meridian_table; tp->name; tp++)
if (strcmp (word, tp->name) == 0)
return tp;
/* See if we have an abbreviation for a month. */
wordlen = strlen (word);
abbrev = wordlen == 3 || (wordlen == 4 && word[3] == '.');
for (tp = month_and_day_table; tp->name; tp++)
if ((abbrev ? strncmp (word, tp->name, 3) :
strcmp (word, tp->name)) == 0)
return tp;
if ((tp = lookup_zone (pc, word)))
return tp;
if (strcmp (word, dst_table[0].name) == 0)
return dst_table;
for (tp = time_units_table; tp->name; tp++)
if (strcmp (word, tp->name) == 0)
return tp;
/* Strip off any plural and try the units table again. */
if (word[wordlen - 1] == 'S') {
word[wordlen - 1] = '\0';
for (tp = time_units_table; tp->name; tp++)
if (strcmp (word, tp->name) == 0)
return tp;
word[wordlen - 1] = 'S'; /* For "this" in relative_time_table. */
}
for (tp = relative_time_table; tp->name; tp++)
if (strcmp (word, tp->name) == 0)
return tp;
/* Military time zones. */
if (wordlen == 1)
for (tp = military_table; tp->name; tp++)
if (word[0] == tp->name[0])
return tp;
/* Drop out any periods and try the time zone table again. */
for (period_found = 0, p = q = word; (*p = *q); q++)
if (*q == '.')
period_found = 1;
else
p++;
if (period_found && (tp = lookup_zone (pc, word)))
return tp;
return NULL;
}
static int yylex (union YYSTYPE *lvalp, parser_control *pc)
{
unsigned char c;
size_t count;
for (;;) {
while (c = *pc->input, c_isspace (c))
pc->input++;
if (c_isdigit (c) || c == '-' || c == '+') {
char const *p;
int sign;
uintmax_t value;
if (c == '-' || c == '+') {
sign = c == '-' ? -1 : 1;
while (c = *++pc->input, c_isspace (c))
continue;
if (! c_isdigit (c))
/* skip the '-' sign */
continue;
} else
sign = 0;
p = pc->input;
for (value = 0; ; value *= 10) {
uintmax_t value1 = value + (c - '0');
if (value1 < value)
return '?';
value = value1;
c = *++p;
if (! c_isdigit (c))
break;
if (UINTMAX_MAX / 10 < value)
return '?';
}
if ((c == '.' || c == ',') && c_isdigit (p[1])) {
time_t s;
int ns;
int digits;
uintmax_t value1;
/* Check for overflow when converting value to
* time_t.
*/
if (sign < 0) {
s = - value;
if (0 < s)
return '?';
value1 = -s;
} else {
s = value;
if (s < 0)
return '?';
value1 = s;
}
if (value != value1)
return '?';
/* Accumulate fraction, to ns precision. */
p++;
ns = *p++ - '0';
for (digits = 2;
digits <= LOG10_BILLION; digits++) {
ns *= 10;
if (c_isdigit (*p))
ns += *p++ - '0';
}
/* Skip excess digits, truncating toward
* -Infinity.
*/
if (sign < 0)
for (; c_isdigit (*p); p++)
if (*p != '0') {
ns++;
break;
}
while (c_isdigit (*p))
p++;
/* Adjust to the timespec convention, which is
* that tv_nsec is always a positive offset even
* if tv_sec is negative.
*/
if (sign < 0 && ns) {
s--;
if (! (s < 0))
return '?';
ns = BILLION - ns;
}
lvalp->timespec.tv_sec = s;
lvalp->timespec.tv_nsec = ns;
pc->input = p;
return
sign ? tSDECIMAL_NUMBER : tUDECIMAL_NUMBER;
} else {
lvalp->textintval.negative = sign < 0;
if (sign < 0) {
lvalp->textintval.value = - value;
if (0 < lvalp->textintval.value)
return '?';
} else {
lvalp->textintval.value = value;
if (lvalp->textintval.value < 0)
return '?';
}
lvalp->textintval.digits = p - pc->input;
pc->input = p;
return sign ? tSNUMBER : tUNUMBER;
}
}
if (c_isalpha (c)) {
char buff[20];
char *p = buff;
table const *tp;
do {
if (p < buff + sizeof buff - 1)
*p++ = c;
c = *++pc->input;
}
while (c_isalpha (c) || c == '.');
*p = '\0';
tp = lookup_word (pc, buff);
if (! tp) {
return '?';
}
lvalp->intval = tp->value;
return tp->type;
}
if (c != '(')
return to_uchar (*pc->input++);
count = 0;
do {
c = *pc->input++;
if (c == '\0')
return c;
if (c == '(')
count++;
else if (c == ')')
count--;
}
while (count != 0);
}
}
/* Do nothing if the parser reports an error. */
static int yyerror(parser_control const *pc __attribute__((__unused__)),
char const *s __attribute__((__unused__)))
{
return 0;
}
/**
* If *TM0 is the old and *TM1 is the new value of a struct tm after
* passing it to mktime, return 1 if it's OK that mktime returned T.
* It's not OK if *TM0 has out-of-range members.
*/
static int mktime_ok(struct tm const *tm0, struct tm const *tm1, time_t t)
{
if (t == (time_t) -1) {
/**
* Guard against falsely reporting an error when parsing a
* timestamp that happens to equal (time_t) -1, on a host that
* supports such a timestamp.
*/
tm1 = localtime (&t);
if (!tm1)
return 0;
}
return ! ((tm0->tm_sec ^ tm1->tm_sec)
| (tm0->tm_min ^ tm1->tm_min)
| (tm0->tm_hour ^ tm1->tm_hour)
| (tm0->tm_mday ^ tm1->tm_mday)
| (tm0->tm_mon ^ tm1->tm_mon)
| (tm0->tm_year ^ tm1->tm_year));
}
/**
* A reasonable upper bound for the size of ordinary TZ strings.
* Use heap allocation if TZ's length exceeds this.
*/
enum { TZBUFSIZE = 100 };
/**
* Return a copy of TZ, stored in TZBUF if it fits, and heap-allocated
* otherwise.
*/
static char * get_tz(char tzbuf[TZBUFSIZE])
{
char *tz = getenv ("TZ");
if (tz) {
size_t tzsize = strlen (tz) + 1;
tz = (tzsize <= TZBUFSIZE
? memcpy (tzbuf, tz, tzsize)
: strdup (tz));
}
return tz;
}
/**
* Parse a date/time string, storing the resulting time value into *result.
* The string itself is pointed to by *p. Return 1 if successful.
* *p can be an incomplete or relative time specification; if so, use
* *now as the basis for the returned time.
*/
int parse_date(struct timespec *result, char const *p,
struct timespec const *now)
{
time_t Start;
intmax_t Start_ns;
struct tm const *tmp;
struct tm tm;
struct tm tm0;
parser_control pc;
struct timespec gettime_buffer;
unsigned char c;
int tz_was_altered = 0;
char *tz0 = NULL;
char tz0buf[TZBUFSIZE];
int ok = 1;
struct timeval tv;
if (! now) {
gettimeofday (&tv, NULL);
gettime_buffer.tv_sec = tv.tv_sec;
gettime_buffer.tv_nsec = tv.tv_usec * 1000;
now = &gettime_buffer;
}
Start = now->tv_sec;
Start_ns = now->tv_nsec;
tmp = localtime (&now->tv_sec);
if (! tmp)
return 0;
while (c = *p, c_isspace (c))
p++;
if (strncmp (p, "TZ=\"", 4) == 0) {
char const *tzbase = p + 4;
size_t tzsize = 1;
char const *s;
for (s = tzbase; *s; s++, tzsize++)
if (*s == '\\') {
s++;
if (! (*s == '\\' || *s == '"'))
break;
} else if (*s == '"') {
char *z;
char *tz1;
char tz1buf[TZBUFSIZE];
int large_tz = TZBUFSIZE < tzsize;
int setenv_ok;
tz0 = get_tz (tz0buf);
if (!tz0)
goto fail;
if (large_tz) {
z = tz1 = malloc (tzsize);
if (!tz1)
goto fail;
} else
z = tz1 = tz1buf;
for (s = tzbase; *s != '"'; s++)
*z++ = *(s += *s == '\\');
*z = '\0';
setenv_ok = setenv ("TZ", tz1, 1) == 0;
if (large_tz)
free (tz1);
if (!setenv_ok)
goto fail;
tz_was_altered = 1;
p = s + 1;
while (c = *p, c_isspace (c))
p++;
break;
}
}
/**
* As documented, be careful to treat the empty string just like
* a date string of "0". Without this, an empty string would be
* declared invalid when parsed during a DST transition.
*/
if (*p == '\0')
p = "0";
pc.input = p;
pc.year.value = tmp->tm_year;
pc.year.value += TM_YEAR_BASE;
pc.year.digits = 0;
pc.month = tmp->tm_mon + 1;
pc.day = tmp->tm_mday;
pc.hour = tmp->tm_hour;
pc.minutes = tmp->tm_min;
pc.seconds.tv_sec = tmp->tm_sec;
pc.seconds.tv_nsec = Start_ns;
tm.tm_isdst = tmp->tm_isdst;
pc.meridian = MER24;
pc.rel = RELATIVE_TIME_0;
pc.timespec_seen = 0;
pc.rels_seen = 0;
pc.dates_seen = 0;
pc.days_seen = 0;
pc.times_seen = 0;
pc.local_zones_seen = 0;
pc.dsts_seen = 0;
pc.zones_seen = 0;
#if HAVE_STRUCT_TM_TM_ZONE
pc.local_time_zone_table[0].name = tmp->tm_zone;
pc.local_time_zone_table[0].type = tLOCAL_ZONE;
pc.local_time_zone_table[0].value = tmp->tm_isdst;
pc.local_time_zone_table[1].name = NULL;
/**
* Probe the names used in the next three calendar quarters, looking
* for a tm_isdst different from the one we already have.
*/
{
int quarter;
for (quarter = 1; quarter <= 3; quarter++) {
time_t probe = Start + quarter * (90 * 24 * 60 * 60);
struct tm const *probe_tm = localtime (&probe);
if (probe_tm && probe_tm->tm_zone
&& probe_tm->tm_isdst
!= pc.local_time_zone_table[0].value) {
{
pc.local_time_zone_table[1].name
= probe_tm->tm_zone;
pc.local_time_zone_table[1].type
= tLOCAL_ZONE;
pc.local_time_zone_table[1].value
= probe_tm->tm_isdst;
pc.local_time_zone_table[2].name
= NULL;
}
break;
}
}
}
#else
#if HAVE_TZNAME
{
# if !HAVE_DECL_TZNAME
extern char *tzname[];
# endif
int i;
for (i = 0; i < 2; i++) {
pc.local_time_zone_table[i].name = tzname[i];
pc.local_time_zone_table[i].type = tLOCAL_ZONE;
pc.local_time_zone_table[i].value = i;
}
pc.local_time_zone_table[i].name = NULL;
}
#else
pc.local_time_zone_table[0].name = NULL;
#endif
#endif
if (pc.local_time_zone_table[0].name && pc.local_time_zone_table[1].name
&& ! strcmp (pc.local_time_zone_table[0].name,
pc.local_time_zone_table[1].name)) {
/**
* This locale uses the same abbreviation for standard and
* daylight times. So if we see that abbreviation, we don't
* know whether it's daylight time.
*/
pc.local_time_zone_table[0].value = -1;
pc.local_time_zone_table[1].name = NULL;
}
if (yyparse (&pc) != 0) {
goto fail;
}
if (pc.timespec_seen)
*result = pc.seconds;
else {
if (1 < (pc.times_seen | pc.dates_seen | pc.days_seen
| pc.dsts_seen
| (pc.local_zones_seen + pc.zones_seen))) {
goto fail;
}
tm.tm_year = to_year (pc.year) - TM_YEAR_BASE;
tm.tm_mon = pc.month - 1;
tm.tm_mday = pc.day;
if (pc.times_seen || (pc.rels_seen &&
! pc.dates_seen && ! pc.days_seen)) {
tm.tm_hour = to_hour (pc.hour, pc.meridian);
if (tm.tm_hour < 0) {
goto fail;
}
tm.tm_min = pc.minutes;
tm.tm_sec = pc.seconds.tv_sec;
} else {
tm.tm_hour = tm.tm_min = tm.tm_sec = 0;
pc.seconds.tv_nsec = 0;
}
/**
* Let mktime deduce tm_isdst if we have an absolute timestamp.
*/
if (pc.dates_seen | pc.days_seen | pc.times_seen)
tm.tm_isdst = -1;
/**
* But if the input explicitly specifies local time with or
* without DST, give mktime that information.
*/
if (pc.local_zones_seen)
tm.tm_isdst = pc.local_isdst;
tm0 = tm;
Start = mktime (&tm);
if (! mktime_ok (&tm0, &tm, Start)) {
if (! pc.zones_seen) {
goto fail;
} else {
/** Guard against falsely reporting errors near
* the time_t boundaries when parsing times in
* other time zones. For example, suppose the
* input string "1969-12-31 23:00:00 -0100", the
* current time zone is 8 hours ahead of UTC,
* and the min time_t value is 1970-01-01
* 00:00:00 UTC. Then the min localtime value
* is 1970-01-01 08:00:00, and mktime will
* therefore fail on 1969-12-31 23:00:00. To
* work around the problem, set the time zone to
* 1 hour behind UTC temporarily by setting
* TZ="XXX1:00" and try mktime again.
*/
intmax_t time_zone = pc.time_zone;
intmax_t abs_time_zone = time_zone < 0
? - time_zone : time_zone;
intmax_t abs_time_zone_hour
= abs_time_zone / 60;
int abs_time_zone_min = abs_time_zone % 60;
char tz1buf[sizeof "XXX+0:00"
+ sizeof pc.time_zone
* CHAR_BIT / 3];
if (!tz_was_altered)
tz0 = get_tz (tz0buf);
sprintf (tz1buf, "XXX%s%jd:%02d",
&"-"[time_zone < 0],
abs_time_zone_hour,
abs_time_zone_min);
if (setenv ("TZ", tz1buf, 1) != 0) {
goto fail;
}
tz_was_altered = 1;
tm = tm0;
Start = mktime (&tm);
if (! mktime_ok (&tm0, &tm, Start)) {
goto fail;
}
}
}
if (pc.days_seen && ! pc.dates_seen) {
tm.tm_mday += ((pc.day_number - tm.tm_wday + 7) % 7 + 7
* (pc.day_ordinal
- (0 < pc.day_ordinal
&& tm.tm_wday != pc.day_number)));
tm.tm_isdst = -1;
Start = mktime (&tm);
if (Start == (time_t) -1) {
goto fail;
}
}
/* Add relative date. */
if (pc.rel.year | pc.rel.month | pc.rel.day) {
int year = tm.tm_year + pc.rel.year;
int month = tm.tm_mon + pc.rel.month;
int day = tm.tm_mday + pc.rel.day;
if (((year < tm.tm_year) ^ (pc.rel.year < 0))
| ((month < tm.tm_mon) ^ (pc.rel.month < 0))
| ((day < tm.tm_mday) ^ (pc.rel.day < 0))) {
goto fail;
}
tm.tm_year = year;
tm.tm_mon = month;
tm.tm_mday = day;
tm.tm_hour = tm0.tm_hour;
tm.tm_min = tm0.tm_min;
tm.tm_sec = tm0.tm_sec;
tm.tm_isdst = tm0.tm_isdst;
Start = mktime (&tm);
if (Start == (time_t) -1) {
goto fail;
}
}
/**
* The only "output" of this if-block is an updated Start value,
* so this block must follow others that clobber Start.
*/
if (pc.zones_seen) {
intmax_t delta = pc.time_zone * 60;
time_t t1;
#ifdef HAVE_TM_GMTOFF
delta -= tm.tm_gmtoff;
#else
time_t t = Start;
struct tm const *gmt = gmtime (&t);
if (! gmt) {
goto fail;
}
delta -= tm_diff (&tm, gmt);
#endif
t1 = Start - delta;
if ((Start < t1) != (delta < 0)) {
goto fail; /* time_t overflow */
}
Start = t1;
}
/**
* Add relative hours, minutes, and seconds. On hosts that
* support leap seconds, ignore the possibility of leap seconds;
* e.g., "+ 10 minutes" adds 600 seconds, even if one of them is
* a leap second. Typically this is not what the user wants,
* but it's too hard to do it the other way, because the time
* zone indicator must be applied before relative times, and if
* mktime is applied again the time zone will be lost.
*/
intmax_t sum_ns = pc.seconds.tv_nsec + pc.rel.ns;
intmax_t normalized_ns = (sum_ns % BILLION + BILLION) % BILLION;
time_t t0 = Start;
intmax_t d1 = 60 * 60 * pc.rel.hour;
time_t t1 = t0 + d1;
intmax_t d2 = 60 * pc.rel.minutes;
time_t t2 = t1 + d2;
time_t d3 = pc.rel.seconds;
time_t t3 = t2 + d3;
intmax_t d4 = (sum_ns - normalized_ns) / BILLION;
time_t t4 = t3 + d4;
time_t t5 = t4;
if ((d1 / (60 * 60) ^ pc.rel.hour)
| (d2 / 60 ^ pc.rel.minutes)
| ((t1 < t0) ^ (d1 < 0))
| ((t2 < t1) ^ (d2 < 0))
| ((t3 < t2) ^ (d3 < 0))
| ((t4 < t3) ^ (d4 < 0))
| (t5 != t4)) {
goto fail;
}
result->tv_sec = t5;
result->tv_nsec = normalized_ns;
}
goto done;
fail:
ok = 0;
done:
if (tz_was_altered)
ok &= (tz0 ? setenv ("TZ", tz0, 1)
: unsetenv ("TZ")) == 0;
if (tz0 != tz0buf)
free (tz0);
return ok;
}