summaryrefslogtreecommitdiffstats
path: root/src/xdiff/xdiffi.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-27 13:18:03 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-27 13:18:03 +0000
commitafce081b90c1e2c50c3507758c7558a0dfa1f33e (patch)
tree3fb840f0bd9de41b463443ddf17131a0ad77f226 /src/xdiff/xdiffi.c
parentInitial commit. (diff)
downloadvim-afce081b90c1e2c50c3507758c7558a0dfa1f33e.tar.xz
vim-afce081b90c1e2c50c3507758c7558a0dfa1f33e.zip
Adding upstream version 2:8.2.2434.upstream/2%8.2.2434upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to '')
-rw-r--r--src/xdiff/xdiffi.c1043
1 files changed, 1043 insertions, 0 deletions
diff --git a/src/xdiff/xdiffi.c b/src/xdiff/xdiffi.c
new file mode 100644
index 0000000..3806903
--- /dev/null
+++ b/src/xdiff/xdiffi.c
@@ -0,0 +1,1043 @@
+/*
+ * LibXDiff by Davide Libenzi ( File Differential Library )
+ * Copyright (C) 2003 Davide Libenzi
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, see
+ * <http://www.gnu.org/licenses/>.
+ *
+ * Davide Libenzi <davidel@xmailserver.org>
+ *
+ */
+
+#include "xinclude.h"
+
+#define XDL_MAX_COST_MIN 256
+#define XDL_HEUR_MIN_COST 256
+#define XDL_LINE_MAX (long)((1UL << (CHAR_BIT * sizeof(long) - 1)) - 1)
+#define XDL_SNAKE_CNT 20
+#define XDL_K_HEUR 4
+
+typedef struct s_xdpsplit {
+ long i1, i2;
+ int min_lo, min_hi;
+} xdpsplit_t;
+
+/*
+ * See "An O(ND) Difference Algorithm and its Variations", by Eugene Myers.
+ * Basically considers a "box" (off1, off2, lim1, lim2) and scan from both
+ * the forward diagonal starting from (off1, off2) and the backward diagonal
+ * starting from (lim1, lim2). If the K values on the same diagonal crosses
+ * returns the furthest point of reach. We might end up having to expensive
+ * cases using this algorithm is full, so a little bit of heuristic is needed
+ * to cut the search and to return a suboptimal point.
+ */
+static long xdl_split(unsigned long const *ha1, long off1, long lim1,
+ unsigned long const *ha2, long off2, long lim2,
+ long *kvdf, long *kvdb, int need_min, xdpsplit_t *spl,
+ xdalgoenv_t *xenv) {
+ long dmin = off1 - lim2, dmax = lim1 - off2;
+ long fmid = off1 - off2, bmid = lim1 - lim2;
+ long odd = (fmid - bmid) & 1;
+ long fmin = fmid, fmax = fmid;
+ long bmin = bmid, bmax = bmid;
+ long ec, d, i1, i2, prev1, best, dd, v, k;
+
+ /*
+ * Set initial diagonal values for both forward and backward path.
+ */
+ kvdf[fmid] = off1;
+ kvdb[bmid] = lim1;
+
+ for (ec = 1;; ec++) {
+ int got_snake = 0;
+
+ /*
+ * We need to extent the diagonal "domain" by one. If the next
+ * values exits the box boundaries we need to change it in the
+ * opposite direction because (max - min) must be a power of two.
+ * Also we initialize the external K value to -1 so that we can
+ * avoid extra conditions check inside the core loop.
+ */
+ if (fmin > dmin)
+ kvdf[--fmin - 1] = -1;
+ else
+ ++fmin;
+ if (fmax < dmax)
+ kvdf[++fmax + 1] = -1;
+ else
+ --fmax;
+
+ for (d = fmax; d >= fmin; d -= 2) {
+ if (kvdf[d - 1] >= kvdf[d + 1])
+ i1 = kvdf[d - 1] + 1;
+ else
+ i1 = kvdf[d + 1];
+ prev1 = i1;
+ i2 = i1 - d;
+ for (; i1 < lim1 && i2 < lim2 && ha1[i1] == ha2[i2]; i1++, i2++);
+ if (i1 - prev1 > xenv->snake_cnt)
+ got_snake = 1;
+ kvdf[d] = i1;
+ if (odd && bmin <= d && d <= bmax && kvdb[d] <= i1) {
+ spl->i1 = i1;
+ spl->i2 = i2;
+ spl->min_lo = spl->min_hi = 1;
+ return ec;
+ }
+ }
+
+ /*
+ * We need to extent the diagonal "domain" by one. If the next
+ * values exits the box boundaries we need to change it in the
+ * opposite direction because (max - min) must be a power of two.
+ * Also we initialize the external K value to -1 so that we can
+ * avoid extra conditions check inside the core loop.
+ */
+ if (bmin > dmin)
+ kvdb[--bmin - 1] = XDL_LINE_MAX;
+ else
+ ++bmin;
+ if (bmax < dmax)
+ kvdb[++bmax + 1] = XDL_LINE_MAX;
+ else
+ --bmax;
+
+ for (d = bmax; d >= bmin; d -= 2) {
+ if (kvdb[d - 1] < kvdb[d + 1])
+ i1 = kvdb[d - 1];
+ else
+ i1 = kvdb[d + 1] - 1;
+ prev1 = i1;
+ i2 = i1 - d;
+ for (; i1 > off1 && i2 > off2 && ha1[i1 - 1] == ha2[i2 - 1]; i1--, i2--);
+ if (prev1 - i1 > xenv->snake_cnt)
+ got_snake = 1;
+ kvdb[d] = i1;
+ if (!odd && fmin <= d && d <= fmax && i1 <= kvdf[d]) {
+ spl->i1 = i1;
+ spl->i2 = i2;
+ spl->min_lo = spl->min_hi = 1;
+ return ec;
+ }
+ }
+
+ if (need_min)
+ continue;
+
+ /*
+ * If the edit cost is above the heuristic trigger and if
+ * we got a good snake, we sample current diagonals to see
+ * if some of the, have reached an "interesting" path. Our
+ * measure is a function of the distance from the diagonal
+ * corner (i1 + i2) penalized with the distance from the
+ * mid diagonal itself. If this value is above the current
+ * edit cost times a magic factor (XDL_K_HEUR) we consider
+ * it interesting.
+ */
+ if (got_snake && ec > xenv->heur_min) {
+ for (best = 0, d = fmax; d >= fmin; d -= 2) {
+ dd = d > fmid ? d - fmid: fmid - d;
+ i1 = kvdf[d];
+ i2 = i1 - d;
+ v = (i1 - off1) + (i2 - off2) - dd;
+
+ if (v > XDL_K_HEUR * ec && v > best &&
+ off1 + xenv->snake_cnt <= i1 && i1 < lim1 &&
+ off2 + xenv->snake_cnt <= i2 && i2 < lim2) {
+ for (k = 1; ha1[i1 - k] == ha2[i2 - k]; k++)
+ if (k == xenv->snake_cnt) {
+ best = v;
+ spl->i1 = i1;
+ spl->i2 = i2;
+ break;
+ }
+ }
+ }
+ if (best > 0) {
+ spl->min_lo = 1;
+ spl->min_hi = 0;
+ return ec;
+ }
+
+ for (best = 0, d = bmax; d >= bmin; d -= 2) {
+ dd = d > bmid ? d - bmid: bmid - d;
+ i1 = kvdb[d];
+ i2 = i1 - d;
+ v = (lim1 - i1) + (lim2 - i2) - dd;
+
+ if (v > XDL_K_HEUR * ec && v > best &&
+ off1 < i1 && i1 <= lim1 - xenv->snake_cnt &&
+ off2 < i2 && i2 <= lim2 - xenv->snake_cnt) {
+ for (k = 0; ha1[i1 + k] == ha2[i2 + k]; k++)
+ if (k == xenv->snake_cnt - 1) {
+ best = v;
+ spl->i1 = i1;
+ spl->i2 = i2;
+ break;
+ }
+ }
+ }
+ if (best > 0) {
+ spl->min_lo = 0;
+ spl->min_hi = 1;
+ return ec;
+ }
+ }
+
+ /*
+ * Enough is enough. We spent too much time here and now we collect
+ * the furthest reaching path using the (i1 + i2) measure.
+ */
+ if (ec >= xenv->mxcost) {
+ long fbest, fbest1, bbest, bbest1;
+
+ fbest = fbest1 = -1;
+ for (d = fmax; d >= fmin; d -= 2) {
+ i1 = XDL_MIN(kvdf[d], lim1);
+ i2 = i1 - d;
+ if (lim2 < i2)
+ i1 = lim2 + d, i2 = lim2;
+ if (fbest < i1 + i2) {
+ fbest = i1 + i2;
+ fbest1 = i1;
+ }
+ }
+
+ bbest = bbest1 = XDL_LINE_MAX;
+ for (d = bmax; d >= bmin; d -= 2) {
+ i1 = XDL_MAX(off1, kvdb[d]);
+ i2 = i1 - d;
+ if (i2 < off2)
+ i1 = off2 + d, i2 = off2;
+ if (i1 + i2 < bbest) {
+ bbest = i1 + i2;
+ bbest1 = i1;
+ }
+ }
+
+ if ((lim1 + lim2) - bbest < fbest - (off1 + off2)) {
+ spl->i1 = fbest1;
+ spl->i2 = fbest - fbest1;
+ spl->min_lo = 1;
+ spl->min_hi = 0;
+ } else {
+ spl->i1 = bbest1;
+ spl->i2 = bbest - bbest1;
+ spl->min_lo = 0;
+ spl->min_hi = 1;
+ }
+ return ec;
+ }
+ }
+}
+
+
+/*
+ * Rule: "Divide et Impera". Recursively split the box in sub-boxes by calling
+ * the box splitting function. Note that the real job (marking changed lines)
+ * is done in the two boundary reaching checks.
+ */
+int xdl_recs_cmp(diffdata_t *dd1, long off1, long lim1,
+ diffdata_t *dd2, long off2, long lim2,
+ long *kvdf, long *kvdb, int need_min, xdalgoenv_t *xenv) {
+ unsigned long const *ha1 = dd1->ha, *ha2 = dd2->ha;
+
+ /*
+ * Shrink the box by walking through each diagonal snake (SW and NE).
+ */
+ for (; off1 < lim1 && off2 < lim2 && ha1[off1] == ha2[off2]; off1++, off2++);
+ for (; off1 < lim1 && off2 < lim2 && ha1[lim1 - 1] == ha2[lim2 - 1]; lim1--, lim2--);
+
+ /*
+ * If one dimension is empty, then all records on the other one must
+ * be obviously changed.
+ */
+ if (off1 == lim1) {
+ char *rchg2 = dd2->rchg;
+ long *rindex2 = dd2->rindex;
+
+ for (; off2 < lim2; off2++)
+ rchg2[rindex2[off2]] = 1;
+ } else if (off2 == lim2) {
+ char *rchg1 = dd1->rchg;
+ long *rindex1 = dd1->rindex;
+
+ for (; off1 < lim1; off1++)
+ rchg1[rindex1[off1]] = 1;
+ } else {
+ xdpsplit_t spl;
+ spl.i1 = spl.i2 = 0;
+
+ /*
+ * Divide ...
+ */
+ if (xdl_split(ha1, off1, lim1, ha2, off2, lim2, kvdf, kvdb,
+ need_min, &spl, xenv) < 0) {
+
+ return -1;
+ }
+
+ /*
+ * ... et Impera.
+ */
+ if (xdl_recs_cmp(dd1, off1, spl.i1, dd2, off2, spl.i2,
+ kvdf, kvdb, spl.min_lo, xenv) < 0 ||
+ xdl_recs_cmp(dd1, spl.i1, lim1, dd2, spl.i2, lim2,
+ kvdf, kvdb, spl.min_hi, xenv) < 0) {
+
+ return -1;
+ }
+ }
+
+ return 0;
+}
+
+
+int xdl_do_diff(mmfile_t *mf1, mmfile_t *mf2, xpparam_t const *xpp,
+ xdfenv_t *xe) {
+ long ndiags;
+ long *kvd, *kvdf, *kvdb;
+ xdalgoenv_t xenv;
+ diffdata_t dd1, dd2;
+
+ if (XDF_DIFF_ALG(xpp->flags) == XDF_PATIENCE_DIFF)
+ return xdl_do_patience_diff(mf1, mf2, xpp, xe);
+
+ if (XDF_DIFF_ALG(xpp->flags) == XDF_HISTOGRAM_DIFF)
+ return xdl_do_histogram_diff(mf1, mf2, xpp, xe);
+
+ if (xdl_prepare_env(mf1, mf2, xpp, xe) < 0) {
+
+ return -1;
+ }
+
+ /*
+ * Allocate and setup K vectors to be used by the differential algorithm.
+ * One is to store the forward path and one to store the backward path.
+ */
+ ndiags = xe->xdf1.nreff + xe->xdf2.nreff + 3;
+ if (!(kvd = (long *) xdl_malloc((2 * ndiags + 2) * sizeof(long)))) {
+
+ xdl_free_env(xe);
+ return -1;
+ }
+ kvdf = kvd;
+ kvdb = kvdf + ndiags;
+ kvdf += xe->xdf2.nreff + 1;
+ kvdb += xe->xdf2.nreff + 1;
+
+ xenv.mxcost = xdl_bogosqrt(ndiags);
+ if (xenv.mxcost < XDL_MAX_COST_MIN)
+ xenv.mxcost = XDL_MAX_COST_MIN;
+ xenv.snake_cnt = XDL_SNAKE_CNT;
+ xenv.heur_min = XDL_HEUR_MIN_COST;
+
+ dd1.nrec = xe->xdf1.nreff;
+ dd1.ha = xe->xdf1.ha;
+ dd1.rchg = xe->xdf1.rchg;
+ dd1.rindex = xe->xdf1.rindex;
+ dd2.nrec = xe->xdf2.nreff;
+ dd2.ha = xe->xdf2.ha;
+ dd2.rchg = xe->xdf2.rchg;
+ dd2.rindex = xe->xdf2.rindex;
+
+ if (xdl_recs_cmp(&dd1, 0, dd1.nrec, &dd2, 0, dd2.nrec,
+ kvdf, kvdb, (xpp->flags & XDF_NEED_MINIMAL) != 0, &xenv) < 0) {
+
+ xdl_free(kvd);
+ xdl_free_env(xe);
+ return -1;
+ }
+
+ xdl_free(kvd);
+
+ return 0;
+}
+
+
+static xdchange_t *xdl_add_change(xdchange_t *xscr, long i1, long i2, long chg1, long chg2) {
+ xdchange_t *xch;
+
+ if (!(xch = (xdchange_t *) xdl_malloc(sizeof(xdchange_t))))
+ return NULL;
+
+ xch->next = xscr;
+ xch->i1 = i1;
+ xch->i2 = i2;
+ xch->chg1 = chg1;
+ xch->chg2 = chg2;
+ xch->ignore = 0;
+
+ return xch;
+}
+
+
+static int recs_match(xrecord_t *rec1, xrecord_t *rec2, long flags)
+{
+ return (rec1->ha == rec2->ha &&
+ xdl_recmatch(rec1->ptr, rec1->size,
+ rec2->ptr, rec2->size,
+ flags));
+}
+
+/*
+ * If a line is indented more than this, xget_indent() just returns this value.
+ * This avoids having to do absurd amounts of work for data that are not
+ * human-readable text, and also ensures that the output of xget_indent fits within
+ * an int.
+ */
+#define MAX_INDENT 200
+
+/*
+ * Return the amount of indentation of the specified line, treating TAB as 8
+ * columns. Return -1 if line is empty or contains only whitespace. Clamp the
+ * output value at MAX_INDENT.
+ */
+static int xget_indent(xrecord_t *rec)
+{
+ long i;
+ int ret = 0;
+
+ for (i = 0; i < rec->size; i++) {
+ char c = rec->ptr[i];
+
+ if (!XDL_ISSPACE(c))
+ return ret;
+ else if (c == ' ')
+ ret += 1;
+ else if (c == '\t')
+ ret += 8 - ret % 8;
+ // ignore other whitespace characters
+
+ if (ret >= MAX_INDENT)
+ return MAX_INDENT;
+ }
+
+ // The line contains only whitespace.
+ return -1;
+}
+
+/*
+ * If more than this number of consecutive blank rows are found, just return
+ * this value. This avoids requiring O(N^2) work for pathological cases, and
+ * also ensures that the output of score_split fits in an int.
+ */
+#define MAX_BLANKS 20
+
+// Characteristics measured about a hypothetical split position.
+struct split_measurement {
+ /*
+ * Is the split at the end of the file (aside from any blank lines)?
+ */
+ int end_of_file;
+
+ /*
+ * How much is the line immediately following the split indented (or -1 if
+ * the line is blank):
+ */
+ int indent;
+
+ /*
+ * How many consecutive lines above the split are blank?
+ */
+ int pre_blank;
+
+ /*
+ * How much is the nearest non-blank line above the split indented (or -1
+ * if there is no such line)?
+ */
+ int pre_indent;
+
+ /*
+ * How many lines after the line following the split are blank?
+ */
+ int post_blank;
+
+ /*
+ * How much is the nearest non-blank line after the line following the
+ * split indented (or -1 if there is no such line)?
+ */
+ int post_indent;
+};
+
+struct split_score {
+ // The effective indent of this split (smaller is preferred).
+ int effective_indent;
+
+ // Penalty for this split (smaller is preferred).
+ int penalty;
+};
+
+/*
+ * Fill m with information about a hypothetical split of xdf above line split.
+ */
+static void measure_split(const xdfile_t *xdf, long split,
+ struct split_measurement *m)
+{
+ long i;
+
+ if (split >= xdf->nrec) {
+ m->end_of_file = 1;
+ m->indent = -1;
+ } else {
+ m->end_of_file = 0;
+ m->indent = xget_indent(xdf->recs[split]);
+ }
+
+ m->pre_blank = 0;
+ m->pre_indent = -1;
+ for (i = split - 1; i >= 0; i--) {
+ m->pre_indent = xget_indent(xdf->recs[i]);
+ if (m->pre_indent != -1)
+ break;
+ m->pre_blank += 1;
+ if (m->pre_blank == MAX_BLANKS) {
+ m->pre_indent = 0;
+ break;
+ }
+ }
+
+ m->post_blank = 0;
+ m->post_indent = -1;
+ for (i = split + 1; i < xdf->nrec; i++) {
+ m->post_indent = xget_indent(xdf->recs[i]);
+ if (m->post_indent != -1)
+ break;
+ m->post_blank += 1;
+ if (m->post_blank == MAX_BLANKS) {
+ m->post_indent = 0;
+ break;
+ }
+ }
+}
+
+/*
+ * The empirically-determined weight factors used by score_split() below.
+ * Larger values means that the position is a less favorable place to split.
+ *
+ * Note that scores are only ever compared against each other, so multiplying
+ * all of these weight/penalty values by the same factor wouldn't change the
+ * heuristic's behavior. Still, we need to set that arbitrary scale *somehow*.
+ * In practice, these numbers are chosen to be large enough that they can be
+ * adjusted relative to each other with sufficient precision despite using
+ * integer math.
+ */
+
+// Penalty if there are no non-blank lines before the split
+#define START_OF_FILE_PENALTY 1
+
+// Penalty if there are no non-blank lines after the split
+#define END_OF_FILE_PENALTY 21
+
+// Multiplier for the number of blank lines around the split
+#define TOTAL_BLANK_WEIGHT (-30)
+
+// Multiplier for the number of blank lines after the split
+#define POST_BLANK_WEIGHT 6
+
+/*
+ * Penalties applied if the line is indented more than its predecessor
+ */
+#define RELATIVE_INDENT_PENALTY (-4)
+#define RELATIVE_INDENT_WITH_BLANK_PENALTY 10
+
+/*
+ * Penalties applied if the line is indented less than both its predecessor and
+ * its successor
+ */
+#define RELATIVE_OUTDENT_PENALTY 24
+#define RELATIVE_OUTDENT_WITH_BLANK_PENALTY 17
+
+/*
+ * Penalties applied if the line is indented less than its predecessor but not
+ * less than its successor
+ */
+#define RELATIVE_DEDENT_PENALTY 23
+#define RELATIVE_DEDENT_WITH_BLANK_PENALTY 17
+
+/*
+ * We only consider whether the sum of the effective indents for splits are
+ * less than (-1), equal to (0), or greater than (+1) each other. The resulting
+ * value is multiplied by the following weight and combined with the penalty to
+ * determine the better of two scores.
+ */
+#define INDENT_WEIGHT 60
+
+/*
+ * How far do we slide a hunk at most?
+ */
+#define INDENT_HEURISTIC_MAX_SLIDING 100
+
+/*
+ * Compute a badness score for the hypothetical split whose measurements are
+ * stored in m. The weight factors were determined empirically using the tools and
+ * corpus described in
+ *
+ * https://github.com/mhagger/diff-slider-tools
+ *
+ * Also see that project if you want to improve the weights based on, for example,
+ * a larger or more diverse corpus.
+ */
+static void score_add_split(const struct split_measurement *m, struct split_score *s)
+{
+ /*
+ * A place to accumulate penalty factors (positive makes this index more
+ * favored):
+ */
+ int post_blank, total_blank, indent, any_blanks;
+
+ if (m->pre_indent == -1 && m->pre_blank == 0)
+ s->penalty += START_OF_FILE_PENALTY;
+
+ if (m->end_of_file)
+ s->penalty += END_OF_FILE_PENALTY;
+
+ /*
+ * Set post_blank to the number of blank lines following the split,
+ * including the line immediately after the split:
+ */
+ post_blank = (m->indent == -1) ? 1 + m->post_blank : 0;
+ total_blank = m->pre_blank + post_blank;
+
+ // Penalties based on nearby blank lines:
+ s->penalty += TOTAL_BLANK_WEIGHT * total_blank;
+ s->penalty += POST_BLANK_WEIGHT * post_blank;
+
+ if (m->indent != -1)
+ indent = m->indent;
+ else
+ indent = m->post_indent;
+
+ any_blanks = (total_blank != 0);
+
+ // Note that the effective indent is -1 at the end of the file:
+ s->effective_indent += indent;
+
+ if (indent == -1) {
+ // No additional adjustments needed.
+ } else if (m->pre_indent == -1) {
+ // No additional adjustments needed.
+ } else if (indent > m->pre_indent) {
+ /*
+ * The line is indented more than its predecessor.
+ */
+ s->penalty += any_blanks ?
+ RELATIVE_INDENT_WITH_BLANK_PENALTY :
+ RELATIVE_INDENT_PENALTY;
+ } else if (indent == m->pre_indent) {
+ /*
+ * The line has the same indentation level as its predecessor.
+ * No additional adjustments needed.
+ */
+ } else {
+ /*
+ * The line is indented less than its predecessor. It could be
+ * the block terminator of the previous block, but it could
+ * also be the start of a new block (e.g., an "else" block, or
+ * maybe the previous block didn't have a block terminator).
+ * Try to distinguish those cases based on what comes next:
+ */
+ if (m->post_indent != -1 && m->post_indent > indent) {
+ /*
+ * The following line is indented more. So it is likely
+ * that this line is the start of a block.
+ */
+ s->penalty += any_blanks ?
+ RELATIVE_OUTDENT_WITH_BLANK_PENALTY :
+ RELATIVE_OUTDENT_PENALTY;
+ } else {
+ /*
+ * That was probably the end of a block.
+ */
+ s->penalty += any_blanks ?
+ RELATIVE_DEDENT_WITH_BLANK_PENALTY :
+ RELATIVE_DEDENT_PENALTY;
+ }
+ }
+}
+
+static int score_cmp(struct split_score *s1, struct split_score *s2)
+{
+ // -1 if s1.effective_indent < s2->effective_indent, etc.
+ int cmp_indents = ((s1->effective_indent > s2->effective_indent) -
+ (s1->effective_indent < s2->effective_indent));
+
+ return INDENT_WEIGHT * cmp_indents + (s1->penalty - s2->penalty);
+}
+
+/*
+ * Represent a group of changed lines in an xdfile_t (i.e., a contiguous group
+ * of lines that was inserted or deleted from the corresponding version of the
+ * file). We consider there to be such a group at the beginning of the file, at
+ * the end of the file, and between any two unchanged lines, though most such
+ * groups will usually be empty.
+ *
+ * If the first line in a group is equal to the line following the group, then
+ * the group can be slid down. Similarly, if the last line in a group is equal
+ * to the line preceding the group, then the group can be slid up. See
+ * group_slide_down() and group_slide_up().
+ *
+ * Note that loops that are testing for changed lines in xdf->rchg do not need
+ * index bounding since the array is prepared with a zero at position -1 and N.
+ */
+struct xdlgroup {
+ /*
+ * The index of the first changed line in the group, or the index of
+ * the unchanged line above which the (empty) group is located.
+ */
+ long start;
+
+ /*
+ * The index of the first unchanged line after the group. For an empty
+ * group, end is equal to start.
+ */
+ long end;
+};
+
+/*
+ * Initialize g to point at the first group in xdf.
+ */
+static void group_init(xdfile_t *xdf, struct xdlgroup *g)
+{
+ g->start = g->end = 0;
+ while (xdf->rchg[g->end])
+ g->end++;
+}
+
+/*
+ * Move g to describe the next (possibly empty) group in xdf and return 0. If g
+ * is already at the end of the file, do nothing and return -1.
+ */
+static inline int group_next(xdfile_t *xdf, struct xdlgroup *g)
+{
+ if (g->end == xdf->nrec)
+ return -1;
+
+ g->start = g->end + 1;
+ for (g->end = g->start; xdf->rchg[g->end]; g->end++)
+ ;
+
+ return 0;
+}
+
+/*
+ * Move g to describe the previous (possibly empty) group in xdf and return 0.
+ * If g is already at the beginning of the file, do nothing and return -1.
+ */
+static inline int group_previous(xdfile_t *xdf, struct xdlgroup *g)
+{
+ if (g->start == 0)
+ return -1;
+
+ g->end = g->start - 1;
+ for (g->start = g->end; xdf->rchg[g->start - 1]; g->start--)
+ ;
+
+ return 0;
+}
+
+/*
+ * If g can be slid toward the end of the file, do so, and if it bumps into a
+ * following group, expand this group to include it. Return 0 on success or -1
+ * if g cannot be slid down.
+ */
+static int group_slide_down(xdfile_t *xdf, struct xdlgroup *g, long flags)
+{
+ if (g->end < xdf->nrec &&
+ recs_match(xdf->recs[g->start], xdf->recs[g->end], flags)) {
+ xdf->rchg[g->start++] = 0;
+ xdf->rchg[g->end++] = 1;
+
+ while (xdf->rchg[g->end])
+ g->end++;
+
+ return 0;
+ } else {
+ return -1;
+ }
+}
+
+/*
+ * If g can be slid toward the beginning of the file, do so, and if it bumps
+ * into a previous group, expand this group to include it. Return 0 on success
+ * or -1 if g cannot be slid up.
+ */
+static int group_slide_up(xdfile_t *xdf, struct xdlgroup *g, long flags)
+{
+ if (g->start > 0 &&
+ recs_match(xdf->recs[g->start - 1], xdf->recs[g->end - 1], flags)) {
+ xdf->rchg[--g->start] = 1;
+ xdf->rchg[--g->end] = 0;
+
+ while (xdf->rchg[g->start - 1])
+ g->start--;
+
+ return 0;
+ } else {
+ return -1;
+ }
+}
+
+static void xdl_bug(const char *msg)
+{
+ fprintf(stderr, "BUG: %s\n", msg);
+ exit(1);
+}
+
+/*
+ * Move back and forward change groups for a consistent and pretty diff output.
+ * This also helps in finding joinable change groups and reducing the diff
+ * size.
+ */
+int xdl_change_compact(xdfile_t *xdf, xdfile_t *xdfo, long flags) {
+ struct xdlgroup g, go;
+ long earliest_end, end_matching_other;
+ long groupsize;
+
+ group_init(xdf, &g);
+ group_init(xdfo, &go);
+
+ while (1) {
+ // If the group is empty in the to-be-compacted file, skip it:
+ if (g.end == g.start)
+ goto next;
+
+ /*
+ * Now shift the change up and then down as far as possible in
+ * each direction. If it bumps into any other changes, merge them.
+ */
+ do {
+ groupsize = g.end - g.start;
+
+ /*
+ * Keep track of the last "end" index that causes this
+ * group to align with a group of changed lines in the
+ * other file. -1 indicates that we haven't found such
+ * a match yet:
+ */
+ end_matching_other = -1;
+
+ // Shift the group backward as much as possible:
+ while (!group_slide_up(xdf, &g, flags))
+ if (group_previous(xdfo, &go))
+ xdl_bug("group sync broken sliding up");
+
+ /*
+ * This is this highest that this group can be shifted.
+ * Record its end index:
+ */
+ earliest_end = g.end;
+
+ if (go.end > go.start)
+ end_matching_other = g.end;
+
+ // Now shift the group forward as far as possible:
+ while (1) {
+ if (group_slide_down(xdf, &g, flags))
+ break;
+ if (group_next(xdfo, &go))
+ xdl_bug("group sync broken sliding down");
+
+ if (go.end > go.start)
+ end_matching_other = g.end;
+ }
+ } while (groupsize != g.end - g.start);
+
+ /*
+ * If the group can be shifted, then we can possibly use this
+ * freedom to produce a more intuitive diff.
+ *
+ * The group is currently shifted as far down as possible, so the
+ * heuristics below only have to handle upwards shifts.
+ */
+
+ if (g.end == earliest_end) {
+ // no shifting was possible
+ } else if (end_matching_other != -1) {
+ /*
+ * Move the possibly merged group of changes back to line
+ * up with the last group of changes from the other file
+ * that it can align with.
+ */
+ while (go.end == go.start) {
+ if (group_slide_up(xdf, &g, flags))
+ xdl_bug("match disappeared");
+ if (group_previous(xdfo, &go))
+ xdl_bug("group sync broken sliding to match");
+ }
+ } else if (flags & XDF_INDENT_HEURISTIC) {
+ /*
+ * Indent heuristic: a group of pure add/delete lines
+ * implies two splits, one between the end of the "before"
+ * context and the start of the group, and another between
+ * the end of the group and the beginning of the "after"
+ * context. Some splits are aesthetically better and some
+ * are worse. We compute a badness "score" for each split,
+ * and add the scores for the two splits to define a
+ * "score" for each position that the group can be shifted
+ * to. Then we pick the shift with the lowest score.
+ */
+ long shift, best_shift = -1;
+ struct split_score best_score;
+
+ shift = earliest_end;
+ if (g.end - groupsize - 1 > shift)
+ shift = g.end - groupsize - 1;
+ if (g.end - INDENT_HEURISTIC_MAX_SLIDING > shift)
+ shift = g.end - INDENT_HEURISTIC_MAX_SLIDING;
+ for (; shift <= g.end; shift++) {
+ struct split_measurement m;
+ struct split_score score = {0, 0};
+
+ measure_split(xdf, shift, &m);
+ score_add_split(&m, &score);
+ measure_split(xdf, shift - groupsize, &m);
+ score_add_split(&m, &score);
+ if (best_shift == -1 ||
+ score_cmp(&score, &best_score) <= 0) {
+ best_score.effective_indent = score.effective_indent;
+ best_score.penalty = score.penalty;
+ best_shift = shift;
+ }
+ }
+
+ while (g.end > best_shift) {
+ if (group_slide_up(xdf, &g, flags))
+ xdl_bug("best shift unreached");
+ if (group_previous(xdfo, &go))
+ xdl_bug("group sync broken sliding to blank line");
+ }
+ }
+
+ next:
+ // Move past the just-processed group:
+ if (group_next(xdf, &g))
+ break;
+ if (group_next(xdfo, &go))
+ xdl_bug("group sync broken moving to next group");
+ }
+
+ if (!group_next(xdfo, &go))
+ xdl_bug("group sync broken at end of file");
+
+ return 0;
+}
+
+
+int xdl_build_script(xdfenv_t *xe, xdchange_t **xscr) {
+ xdchange_t *cscr = NULL, *xch;
+ char *rchg1 = xe->xdf1.rchg, *rchg2 = xe->xdf2.rchg;
+ long i1, i2, l1, l2;
+
+ /*
+ * Trivial. Collects "groups" of changes and creates an edit script.
+ */
+ for (i1 = xe->xdf1.nrec, i2 = xe->xdf2.nrec; i1 >= 0 || i2 >= 0; i1--, i2--)
+ if (rchg1[i1 - 1] || rchg2[i2 - 1]) {
+ for (l1 = i1; rchg1[i1 - 1]; i1--);
+ for (l2 = i2; rchg2[i2 - 1]; i2--);
+
+ if (!(xch = xdl_add_change(cscr, i1, i2, l1 - i1, l2 - i2))) {
+ xdl_free_script(cscr);
+ return -1;
+ }
+ cscr = xch;
+ }
+
+ *xscr = cscr;
+
+ return 0;
+}
+
+
+void xdl_free_script(xdchange_t *xscr) {
+ xdchange_t *xch;
+
+ while ((xch = xscr) != NULL) {
+ xscr = xscr->next;
+ xdl_free(xch);
+ }
+}
+
+static int xdl_call_hunk_func(xdfenv_t *xe UNUSED, xdchange_t *xscr, xdemitcb_t *ecb,
+ xdemitconf_t const *xecfg)
+{
+ xdchange_t *xch, *xche;
+
+ for (xch = xscr; xch; xch = xche->next) {
+ xche = xdl_get_hunk(&xch, xecfg);
+ if (!xch)
+ break;
+ if (xecfg->hunk_func(xch->i1, xche->i1 + xche->chg1 - xch->i1,
+ xch->i2, xche->i2 + xche->chg2 - xch->i2,
+ ecb->priv) < 0)
+ return -1;
+ }
+ return 0;
+}
+
+static void xdl_mark_ignorable(xdchange_t *xscr, xdfenv_t *xe, long flags)
+{
+ xdchange_t *xch;
+
+ for (xch = xscr; xch; xch = xch->next) {
+ int ignore = 1;
+ xrecord_t **rec;
+ long i;
+
+ rec = &xe->xdf1.recs[xch->i1];
+ for (i = 0; i < xch->chg1 && ignore; i++)
+ ignore = xdl_blankline(rec[i]->ptr, rec[i]->size, flags);
+
+ rec = &xe->xdf2.recs[xch->i2];
+ for (i = 0; i < xch->chg2 && ignore; i++)
+ ignore = xdl_blankline(rec[i]->ptr, rec[i]->size, flags);
+
+ xch->ignore = ignore;
+ }
+}
+
+int xdl_diff(mmfile_t *mf1, mmfile_t *mf2, xpparam_t const *xpp,
+ xdemitconf_t const *xecfg, xdemitcb_t *ecb) {
+ xdchange_t *xscr;
+ xdfenv_t xe;
+ emit_func_t ef = xecfg->hunk_func ? xdl_call_hunk_func : xdl_emit_diff;
+
+ if (xdl_do_diff(mf1, mf2, xpp, &xe) < 0) {
+
+ return -1;
+ }
+ if (xdl_change_compact(&xe.xdf1, &xe.xdf2, xpp->flags) < 0 ||
+ xdl_change_compact(&xe.xdf2, &xe.xdf1, xpp->flags) < 0 ||
+ xdl_build_script(&xe, &xscr) < 0) {
+
+ xdl_free_env(&xe);
+ return -1;
+ }
+ if (xscr) {
+ if (xpp->flags & XDF_IGNORE_BLANK_LINES)
+ xdl_mark_ignorable(xscr, &xe, xpp->flags);
+
+ if (ef(&xe, xscr, ecb, xecfg) < 0) {
+
+ xdl_free_script(xscr);
+ xdl_free_env(&xe);
+ return -1;
+ }
+ xdl_free_script(xscr);
+ }
+ xdl_free_env(&xe);
+
+ return 0;
+}