summaryrefslogtreecommitdiffstats
path: root/src/VBox/Runtime/r0drv/linux/memobj-r0drv-linux.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-27 14:19:18 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-27 14:19:18 +0000
commit4035b1bfb1e5843a539a8b624d21952b756974d1 (patch)
treef1e9cd5bf548cbc57ff2fddfb2b4aa9ae95587e2 /src/VBox/Runtime/r0drv/linux/memobj-r0drv-linux.c
parentInitial commit. (diff)
downloadvirtualbox-upstream.tar.xz
virtualbox-upstream.zip
Adding upstream version 6.1.22-dfsg.upstream/6.1.22-dfsgupstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to '')
-rw-r--r--src/VBox/Runtime/r0drv/linux/memobj-r0drv-linux.c1966
1 files changed, 1966 insertions, 0 deletions
diff --git a/src/VBox/Runtime/r0drv/linux/memobj-r0drv-linux.c b/src/VBox/Runtime/r0drv/linux/memobj-r0drv-linux.c
new file mode 100644
index 00000000..6ae59089
--- /dev/null
+++ b/src/VBox/Runtime/r0drv/linux/memobj-r0drv-linux.c
@@ -0,0 +1,1966 @@
+/* $Id: memobj-r0drv-linux.c $ */
+/** @file
+ * IPRT - Ring-0 Memory Objects, Linux.
+ */
+
+/*
+ * Copyright (C) 2006-2020 Oracle Corporation
+ *
+ * This file is part of VirtualBox Open Source Edition (OSE), as
+ * available from http://www.virtualbox.org. This file is free software;
+ * you can redistribute it and/or modify it under the terms of the GNU
+ * General Public License (GPL) as published by the Free Software
+ * Foundation, in version 2 as it comes in the "COPYING" file of the
+ * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
+ * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
+ *
+ * The contents of this file may alternatively be used under the terms
+ * of the Common Development and Distribution License Version 1.0
+ * (CDDL) only, as it comes in the "COPYING.CDDL" file of the
+ * VirtualBox OSE distribution, in which case the provisions of the
+ * CDDL are applicable instead of those of the GPL.
+ *
+ * You may elect to license modified versions of this file under the
+ * terms and conditions of either the GPL or the CDDL or both.
+ */
+
+
+/*********************************************************************************************************************************
+* Header Files *
+*********************************************************************************************************************************/
+#include "the-linux-kernel.h"
+
+#include <iprt/memobj.h>
+#include <iprt/assert.h>
+#include <iprt/err.h>
+#include <iprt/log.h>
+#include <iprt/mem.h>
+#include <iprt/process.h>
+#include <iprt/string.h>
+#include "internal/memobj.h"
+#include "internal/iprt.h"
+
+
+/*********************************************************************************************************************************
+* Defined Constants And Macros *
+*********************************************************************************************************************************/
+/* early 2.6 kernels */
+#ifndef PAGE_SHARED_EXEC
+# define PAGE_SHARED_EXEC PAGE_SHARED
+#endif
+#ifndef PAGE_READONLY_EXEC
+# define PAGE_READONLY_EXEC PAGE_READONLY
+#endif
+
+/** @def IPRT_USE_ALLOC_VM_AREA_FOR_EXEC
+ * Whether we use alloc_vm_area (3.2+) for executable memory.
+ * This is a must for 5.8+, but we enable it all the way back to 3.2.x for
+ * better W^R compliance (fExecutable flag). */
+#if RTLNX_VER_RANGE(3,2,0, 5,10,0) || defined(DOXYGEN_RUNNING)
+# define IPRT_USE_ALLOC_VM_AREA_FOR_EXEC
+#endif
+/** @def IPRT_USE_APPLY_TO_PAGE_RANGE_FOR_EXEC
+ * alloc_vm_area was removed with 5.10 so we have to resort to a different way
+ * to allocate executable memory.
+ * It would be possible to remove IPRT_USE_ALLOC_VM_AREA_FOR_EXEC and use
+ * this path execlusively for 3.2+ but no time to test it really works on every
+ * supported kernel, so better play safe for now.
+ */
+#if RTLNX_VER_MIN(5,10,0) || defined(DOXYGEN_RUNNING)
+# define IPRT_USE_APPLY_TO_PAGE_RANGE_FOR_EXEC
+#endif
+
+/*
+ * 2.6.29+ kernels don't work with remap_pfn_range() anymore because
+ * track_pfn_vma_new() is apparently not defined for non-RAM pages.
+ * It should be safe to use vm_insert_page() older kernels as well.
+ */
+#if RTLNX_VER_MIN(2,6,23)
+# define VBOX_USE_INSERT_PAGE
+#endif
+#if defined(CONFIG_X86_PAE) \
+ && ( defined(HAVE_26_STYLE_REMAP_PAGE_RANGE) \
+ || RTLNX_VER_RANGE(2,6,0, 2,6,11) )
+# define VBOX_USE_PAE_HACK
+#endif
+
+/* gfp_t was introduced in 2.6.14, define it for earlier. */
+#if RTLNX_VER_MAX(2,6,14)
+# define gfp_t unsigned
+#endif
+
+/*
+ * Wrappers around mmap_lock/mmap_sem difference.
+ */
+#if RTLNX_VER_MIN(5,8,0)
+# define LNX_MM_DOWN_READ(a_pMm) down_read(&(a_pMm)->mmap_lock)
+# define LNX_MM_UP_READ(a_pMm) up_read(&(a_pMm)->mmap_lock)
+# define LNX_MM_DOWN_WRITE(a_pMm) down_write(&(a_pMm)->mmap_lock)
+# define LNX_MM_UP_WRITE(a_pMm) up_write(&(a_pMm)->mmap_lock)
+#else
+# define LNX_MM_DOWN_READ(a_pMm) down_read(&(a_pMm)->mmap_sem)
+# define LNX_MM_UP_READ(a_pMm) up_read(&(a_pMm)->mmap_sem)
+# define LNX_MM_DOWN_WRITE(a_pMm) down_write(&(a_pMm)->mmap_sem)
+# define LNX_MM_UP_WRITE(a_pMm) up_write(&(a_pMm)->mmap_sem)
+#endif
+
+
+/*********************************************************************************************************************************
+* Structures and Typedefs *
+*********************************************************************************************************************************/
+/**
+ * The Linux version of the memory object structure.
+ */
+typedef struct RTR0MEMOBJLNX
+{
+ /** The core structure. */
+ RTR0MEMOBJINTERNAL Core;
+ /** Set if the allocation is contiguous.
+ * This means it has to be given back as one chunk. */
+ bool fContiguous;
+ /** Set if executable allocation. */
+ bool fExecutable;
+ /** Set if we've vmap'ed the memory into ring-0. */
+ bool fMappedToRing0;
+#ifdef IPRT_USE_ALLOC_VM_AREA_FOR_EXEC
+ /** Return from alloc_vm_area() that we now need to use for executable
+ * memory. */
+ struct vm_struct *pArea;
+ /** PTE array that goes along with pArea (must be freed). */
+ pte_t **papPtesForArea;
+#endif
+ /** The pages in the apPages array. */
+ size_t cPages;
+ /** Array of struct page pointers. (variable size) */
+ struct page *apPages[1];
+} RTR0MEMOBJLNX;
+/** Pointer to the linux memory object. */
+typedef RTR0MEMOBJLNX *PRTR0MEMOBJLNX;
+
+
+static void rtR0MemObjLinuxFreePages(PRTR0MEMOBJLNX pMemLnx);
+
+
+/**
+ * Helper that converts from a RTR0PROCESS handle to a linux task.
+ *
+ * @returns The corresponding Linux task.
+ * @param R0Process IPRT ring-0 process handle.
+ */
+static struct task_struct *rtR0ProcessToLinuxTask(RTR0PROCESS R0Process)
+{
+ /** @todo fix rtR0ProcessToLinuxTask!! */
+ /** @todo many (all?) callers currently assume that we return 'current'! */
+ return R0Process == RTR0ProcHandleSelf() ? current : NULL;
+}
+
+
+/**
+ * Compute order. Some functions allocate 2^order pages.
+ *
+ * @returns order.
+ * @param cPages Number of pages.
+ */
+static int rtR0MemObjLinuxOrder(size_t cPages)
+{
+ int iOrder;
+ size_t cTmp;
+
+ for (iOrder = 0, cTmp = cPages; cTmp >>= 1; ++iOrder)
+ ;
+ if (cPages & ~((size_t)1 << iOrder))
+ ++iOrder;
+
+ return iOrder;
+}
+
+
+/**
+ * Converts from RTMEM_PROT_* to Linux PAGE_*.
+ *
+ * @returns Linux page protection constant.
+ * @param fProt The IPRT protection mask.
+ * @param fKernel Whether it applies to kernel or user space.
+ */
+static pgprot_t rtR0MemObjLinuxConvertProt(unsigned fProt, bool fKernel)
+{
+ switch (fProt)
+ {
+ default:
+ AssertMsgFailed(("%#x %d\n", fProt, fKernel)); RT_FALL_THRU();
+ case RTMEM_PROT_NONE:
+ return PAGE_NONE;
+
+ case RTMEM_PROT_READ:
+ return fKernel ? PAGE_KERNEL_RO : PAGE_READONLY;
+
+ case RTMEM_PROT_WRITE:
+ case RTMEM_PROT_WRITE | RTMEM_PROT_READ:
+ return fKernel ? PAGE_KERNEL : PAGE_SHARED;
+
+ case RTMEM_PROT_EXEC:
+ case RTMEM_PROT_EXEC | RTMEM_PROT_READ:
+#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
+ if (fKernel)
+ {
+ pgprot_t fPg = MY_PAGE_KERNEL_EXEC;
+ pgprot_val(fPg) &= ~_PAGE_RW;
+ return fPg;
+ }
+ return PAGE_READONLY_EXEC;
+#else
+ return fKernel ? MY_PAGE_KERNEL_EXEC : PAGE_READONLY_EXEC;
+#endif
+
+ case RTMEM_PROT_WRITE | RTMEM_PROT_EXEC:
+ case RTMEM_PROT_WRITE | RTMEM_PROT_EXEC | RTMEM_PROT_READ:
+ return fKernel ? MY_PAGE_KERNEL_EXEC : PAGE_SHARED_EXEC;
+ }
+}
+
+
+/**
+ * Worker for rtR0MemObjNativeReserveUser and rtR0MemObjNativerMapUser that creates
+ * an empty user space mapping.
+ *
+ * We acquire the mmap_sem/mmap_lock of the task!
+ *
+ * @returns Pointer to the mapping.
+ * (void *)-1 on failure.
+ * @param R3PtrFixed (RTR3PTR)-1 if anywhere, otherwise a specific location.
+ * @param cb The size of the mapping.
+ * @param uAlignment The alignment of the mapping.
+ * @param pTask The Linux task to create this mapping in.
+ * @param fProt The RTMEM_PROT_* mask.
+ */
+static void *rtR0MemObjLinuxDoMmap(RTR3PTR R3PtrFixed, size_t cb, size_t uAlignment, struct task_struct *pTask, unsigned fProt)
+{
+ unsigned fLnxProt;
+ unsigned long ulAddr;
+
+ Assert(pTask == current); /* do_mmap */
+ RT_NOREF_PV(pTask);
+
+ /*
+ * Convert from IPRT protection to mman.h PROT_ and call do_mmap.
+ */
+ fProt &= (RTMEM_PROT_NONE | RTMEM_PROT_READ | RTMEM_PROT_WRITE | RTMEM_PROT_EXEC);
+ if (fProt == RTMEM_PROT_NONE)
+ fLnxProt = PROT_NONE;
+ else
+ {
+ fLnxProt = 0;
+ if (fProt & RTMEM_PROT_READ)
+ fLnxProt |= PROT_READ;
+ if (fProt & RTMEM_PROT_WRITE)
+ fLnxProt |= PROT_WRITE;
+ if (fProt & RTMEM_PROT_EXEC)
+ fLnxProt |= PROT_EXEC;
+ }
+
+ if (R3PtrFixed != (RTR3PTR)-1)
+ {
+#if RTLNX_VER_MIN(3,5,0)
+ ulAddr = vm_mmap(NULL, R3PtrFixed, cb, fLnxProt, MAP_SHARED | MAP_ANONYMOUS | MAP_FIXED, 0);
+#else
+ LNX_MM_DOWN_WRITE(pTask->mm);
+ ulAddr = do_mmap(NULL, R3PtrFixed, cb, fLnxProt, MAP_SHARED | MAP_ANONYMOUS | MAP_FIXED, 0);
+ LNX_MM_UP_WRITE(pTask->mm);
+#endif
+ }
+ else
+ {
+#if RTLNX_VER_MIN(3,5,0)
+ ulAddr = vm_mmap(NULL, 0, cb, fLnxProt, MAP_SHARED | MAP_ANONYMOUS, 0);
+#else
+ LNX_MM_DOWN_WRITE(pTask->mm);
+ ulAddr = do_mmap(NULL, 0, cb, fLnxProt, MAP_SHARED | MAP_ANONYMOUS, 0);
+ LNX_MM_UP_WRITE(pTask->mm);
+#endif
+ if ( !(ulAddr & ~PAGE_MASK)
+ && (ulAddr & (uAlignment - 1)))
+ {
+ /** @todo implement uAlignment properly... We'll probably need to make some dummy mappings to fill
+ * up alignment gaps. This is of course complicated by fragmentation (which we might have cause
+ * ourselves) and further by there begin two mmap strategies (top / bottom). */
+ /* For now, just ignore uAlignment requirements... */
+ }
+ }
+
+
+ if (ulAddr & ~PAGE_MASK) /* ~PAGE_MASK == PAGE_OFFSET_MASK */
+ return (void *)-1;
+ return (void *)ulAddr;
+}
+
+
+/**
+ * Worker that destroys a user space mapping.
+ * Undoes what rtR0MemObjLinuxDoMmap did.
+ *
+ * We acquire the mmap_sem/mmap_lock of the task!
+ *
+ * @param pv The ring-3 mapping.
+ * @param cb The size of the mapping.
+ * @param pTask The Linux task to destroy this mapping in.
+ */
+static void rtR0MemObjLinuxDoMunmap(void *pv, size_t cb, struct task_struct *pTask)
+{
+#if RTLNX_VER_MIN(3,5,0)
+ Assert(pTask == current); RT_NOREF_PV(pTask);
+ vm_munmap((unsigned long)pv, cb);
+#elif defined(USE_RHEL4_MUNMAP)
+ LNX_MM_DOWN_WRITE(pTask->mm);
+ do_munmap(pTask->mm, (unsigned long)pv, cb, 0); /* should it be 1 or 0? */
+ LNX_MM_UP_WRITE(pTask->mm);
+#else
+ LNX_MM_DOWN_WRITE(pTask->mm);
+ do_munmap(pTask->mm, (unsigned long)pv, cb);
+ LNX_MM_UP_WRITE(pTask->mm);
+#endif
+}
+
+
+/**
+ * Internal worker that allocates physical pages and creates the memory object for them.
+ *
+ * @returns IPRT status code.
+ * @param ppMemLnx Where to store the memory object pointer.
+ * @param enmType The object type.
+ * @param cb The number of bytes to allocate.
+ * @param uAlignment The alignment of the physical memory.
+ * Only valid if fContiguous == true, ignored otherwise.
+ * @param fFlagsLnx The page allocation flags (GPFs).
+ * @param fContiguous Whether the allocation must be contiguous.
+ * @param fExecutable Whether the memory must be executable.
+ * @param rcNoMem What to return when we're out of pages.
+ */
+static int rtR0MemObjLinuxAllocPages(PRTR0MEMOBJLNX *ppMemLnx, RTR0MEMOBJTYPE enmType, size_t cb,
+ size_t uAlignment, gfp_t fFlagsLnx, bool fContiguous, bool fExecutable, int rcNoMem)
+{
+ size_t iPage;
+ size_t const cPages = cb >> PAGE_SHIFT;
+ struct page *paPages;
+
+ /*
+ * Allocate a memory object structure that's large enough to contain
+ * the page pointer array.
+ */
+ PRTR0MEMOBJLNX pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(RT_UOFFSETOF_DYN(RTR0MEMOBJLNX, apPages[cPages]), enmType, NULL, cb);
+ if (!pMemLnx)
+ return VERR_NO_MEMORY;
+ pMemLnx->cPages = cPages;
+
+ if (cPages > 255)
+ {
+# ifdef __GFP_REPEAT
+ /* Try hard to allocate the memory, but the allocation attempt might fail. */
+ fFlagsLnx |= __GFP_REPEAT;
+# endif
+# ifdef __GFP_NOMEMALLOC
+ /* Introduced with Linux 2.6.12: Don't use emergency reserves */
+ fFlagsLnx |= __GFP_NOMEMALLOC;
+# endif
+ }
+
+ /*
+ * Allocate the pages.
+ * For small allocations we'll try contiguous first and then fall back on page by page.
+ */
+#if RTLNX_VER_MIN(2,4,22)
+ if ( fContiguous
+ || cb <= PAGE_SIZE * 2)
+ {
+# ifdef VBOX_USE_INSERT_PAGE
+ paPages = alloc_pages(fFlagsLnx | __GFP_COMP | __GFP_NOWARN, rtR0MemObjLinuxOrder(cPages));
+# else
+ paPages = alloc_pages(fFlagsLnx | __GFP_NOWARN, rtR0MemObjLinuxOrder(cPages));
+# endif
+ if (paPages)
+ {
+ fContiguous = true;
+ for (iPage = 0; iPage < cPages; iPage++)
+ pMemLnx->apPages[iPage] = &paPages[iPage];
+ }
+ else if (fContiguous)
+ {
+ rtR0MemObjDelete(&pMemLnx->Core);
+ return rcNoMem;
+ }
+ }
+
+ if (!fContiguous)
+ {
+ for (iPage = 0; iPage < cPages; iPage++)
+ {
+ pMemLnx->apPages[iPage] = alloc_page(fFlagsLnx | __GFP_NOWARN);
+ if (RT_UNLIKELY(!pMemLnx->apPages[iPage]))
+ {
+ while (iPage-- > 0)
+ __free_page(pMemLnx->apPages[iPage]);
+ rtR0MemObjDelete(&pMemLnx->Core);
+ return rcNoMem;
+ }
+ }
+ }
+
+#else /* < 2.4.22 */
+ /** @todo figure out why we didn't allocate page-by-page on 2.4.21 and older... */
+ paPages = alloc_pages(fFlagsLnx, rtR0MemObjLinuxOrder(cPages));
+ if (!paPages)
+ {
+ rtR0MemObjDelete(&pMemLnx->Core);
+ return rcNoMem;
+ }
+ for (iPage = 0; iPage < cPages; iPage++)
+ {
+ pMemLnx->apPages[iPage] = &paPages[iPage];
+ if (fExecutable)
+ MY_SET_PAGES_EXEC(pMemLnx->apPages[iPage], 1);
+ if (PageHighMem(pMemLnx->apPages[iPage]))
+ BUG();
+ }
+
+ fContiguous = true;
+#endif /* < 2.4.22 */
+ pMemLnx->fContiguous = fContiguous;
+ pMemLnx->fExecutable = fExecutable;
+
+#if RTLNX_VER_MAX(4,5,0)
+ /*
+ * Reserve the pages.
+ *
+ * Linux >= 4.5 with CONFIG_DEBUG_VM panics when setting PG_reserved on compound
+ * pages. According to Michal Hocko this shouldn't be necessary anyway because
+ * as pages which are not on the LRU list are never evictable.
+ */
+ for (iPage = 0; iPage < cPages; iPage++)
+ SetPageReserved(pMemLnx->apPages[iPage]);
+#endif
+
+ /*
+ * Note that the physical address of memory allocated with alloc_pages(flags, order)
+ * is always 2^(PAGE_SHIFT+order)-aligned.
+ */
+ if ( fContiguous
+ && uAlignment > PAGE_SIZE)
+ {
+ /*
+ * Check for alignment constraints. The physical address of memory allocated with
+ * alloc_pages(flags, order) is always 2^(PAGE_SHIFT+order)-aligned.
+ */
+ if (RT_UNLIKELY(page_to_phys(pMemLnx->apPages[0]) & (uAlignment - 1)))
+ {
+ /*
+ * This should never happen!
+ */
+ printk("rtR0MemObjLinuxAllocPages(cb=0x%lx, uAlignment=0x%lx): alloc_pages(..., %d) returned physical memory at 0x%lx!\n",
+ (unsigned long)cb, (unsigned long)uAlignment, rtR0MemObjLinuxOrder(cPages), (unsigned long)page_to_phys(pMemLnx->apPages[0]));
+ rtR0MemObjLinuxFreePages(pMemLnx);
+ return rcNoMem;
+ }
+ }
+
+ *ppMemLnx = pMemLnx;
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Frees the physical pages allocated by the rtR0MemObjLinuxAllocPages() call.
+ *
+ * This method does NOT free the object.
+ *
+ * @param pMemLnx The object which physical pages should be freed.
+ */
+static void rtR0MemObjLinuxFreePages(PRTR0MEMOBJLNX pMemLnx)
+{
+ size_t iPage = pMemLnx->cPages;
+ if (iPage > 0)
+ {
+ /*
+ * Restore the page flags.
+ */
+ while (iPage-- > 0)
+ {
+#if RTLNX_VER_MAX(4,5,0)
+ /* See SetPageReserved() in rtR0MemObjLinuxAllocPages() */
+ ClearPageReserved(pMemLnx->apPages[iPage]);
+#endif
+#if RTLNX_VER_MAX(2,4,22)
+ if (pMemLnx->fExecutable)
+ MY_SET_PAGES_NOEXEC(pMemLnx->apPages[iPage], 1);
+#endif
+ }
+
+ /*
+ * Free the pages.
+ */
+#if RTLNX_VER_MIN(2,4,22)
+ if (!pMemLnx->fContiguous)
+ {
+ iPage = pMemLnx->cPages;
+ while (iPage-- > 0)
+ __free_page(pMemLnx->apPages[iPage]);
+ }
+ else
+#endif
+ __free_pages(pMemLnx->apPages[0], rtR0MemObjLinuxOrder(pMemLnx->cPages));
+
+ pMemLnx->cPages = 0;
+ }
+}
+
+
+#ifdef IPRT_USE_APPLY_TO_PAGE_RANGE_FOR_EXEC
+/**
+ * User data passed to the apply_to_page_range() callback.
+ */
+typedef struct LNXAPPLYPGRANGE
+{
+ /** Pointer to the memory object. */
+ PRTR0MEMOBJLNX pMemLnx;
+ /** The page protection flags to apply. */
+ pgprot_t fPg;
+} LNXAPPLYPGRANGE;
+/** Pointer to the user data. */
+typedef LNXAPPLYPGRANGE *PLNXAPPLYPGRANGE;
+/** Pointer to the const user data. */
+typedef const LNXAPPLYPGRANGE *PCLNXAPPLYPGRANGE;
+
+/**
+ * Callback called in apply_to_page_range().
+ *
+ * @returns Linux status code.
+ * @param pPte Pointer to the page table entry for the given address.
+ * @param uAddr The address to apply the new protection to.
+ * @param pvUser The opaque user data.
+ */
+static int rtR0MemObjLinuxApplyPageRange(pte_t *pPte, unsigned long uAddr, void *pvUser)
+{
+ PCLNXAPPLYPGRANGE pArgs = (PCLNXAPPLYPGRANGE)pvUser;
+ PRTR0MEMOBJLNX pMemLnx = pArgs->pMemLnx;
+ size_t idxPg = (uAddr - (unsigned long)pMemLnx->Core.pv) >> PAGE_SHIFT;
+
+ set_pte(pPte, mk_pte(pMemLnx->apPages[idxPg], pArgs->fPg));
+ return 0;
+}
+#endif
+
+
+/**
+ * Maps the allocation into ring-0.
+ *
+ * This will update the RTR0MEMOBJLNX::Core.pv and RTR0MEMOBJ::fMappedToRing0 members.
+ *
+ * Contiguous mappings that isn't in 'high' memory will already be mapped into kernel
+ * space, so we'll use that mapping if possible. If execute access is required, we'll
+ * play safe and do our own mapping.
+ *
+ * @returns IPRT status code.
+ * @param pMemLnx The linux memory object to map.
+ * @param fExecutable Whether execute access is required.
+ */
+static int rtR0MemObjLinuxVMap(PRTR0MEMOBJLNX pMemLnx, bool fExecutable)
+{
+ int rc = VINF_SUCCESS;
+
+ /*
+ * Choose mapping strategy.
+ */
+ bool fMustMap = fExecutable
+ || !pMemLnx->fContiguous;
+ if (!fMustMap)
+ {
+ size_t iPage = pMemLnx->cPages;
+ while (iPage-- > 0)
+ if (PageHighMem(pMemLnx->apPages[iPage]))
+ {
+ fMustMap = true;
+ break;
+ }
+ }
+
+ Assert(!pMemLnx->Core.pv);
+ Assert(!pMemLnx->fMappedToRing0);
+
+ if (fMustMap)
+ {
+ /*
+ * Use vmap - 2.4.22 and later.
+ */
+#if RTLNX_VER_MIN(2,4,22)
+ pgprot_t fPg;
+ pgprot_val(fPg) = _PAGE_PRESENT | _PAGE_RW;
+# ifdef _PAGE_NX
+ if (!fExecutable)
+ pgprot_val(fPg) |= _PAGE_NX;
+# endif
+
+# ifdef IPRT_USE_ALLOC_VM_AREA_FOR_EXEC
+ if (fExecutable)
+ {
+# if RTLNX_VER_MIN(3,2,51)
+ pte_t **papPtes = (pte_t **)kmalloc_array(pMemLnx->cPages, sizeof(papPtes[0]), GFP_KERNEL);
+# else
+ pte_t **papPtes = (pte_t **)kmalloc(pMemLnx->cPages * sizeof(papPtes[0]), GFP_KERNEL);
+# endif
+ if (papPtes)
+ {
+ pMemLnx->pArea = alloc_vm_area(pMemLnx->Core.cb, papPtes); /* Note! pArea->nr_pages is not set. */
+ if (pMemLnx->pArea)
+ {
+ size_t i;
+ Assert(pMemLnx->pArea->size >= pMemLnx->Core.cb); /* Note! includes guard page. */
+ Assert(pMemLnx->pArea->addr);
+# ifdef _PAGE_NX
+ pgprot_val(fPg) |= _PAGE_NX; /* Uses RTR0MemObjProtect to clear NX when memory ready, W^X fashion. */
+# endif
+ pMemLnx->papPtesForArea = papPtes;
+ for (i = 0; i < pMemLnx->cPages; i++)
+ *papPtes[i] = mk_pte(pMemLnx->apPages[i], fPg);
+ pMemLnx->Core.pv = pMemLnx->pArea->addr;
+ pMemLnx->fMappedToRing0 = true;
+ }
+ else
+ {
+ kfree(papPtes);
+ rc = VERR_MAP_FAILED;
+ }
+ }
+ else
+ rc = VERR_MAP_FAILED;
+ }
+ else
+# endif
+ {
+# if defined(IPRT_USE_APPLY_TO_PAGE_RANGE_FOR_EXEC)
+ if (fExecutable)
+ pgprot_val(fPg) |= _PAGE_NX; /* Uses RTR0MemObjProtect to clear NX when memory ready, W^X fashion. */
+# endif
+
+# ifdef VM_MAP
+ pMemLnx->Core.pv = vmap(&pMemLnx->apPages[0], pMemLnx->cPages, VM_MAP, fPg);
+# else
+ pMemLnx->Core.pv = vmap(&pMemLnx->apPages[0], pMemLnx->cPages, VM_ALLOC, fPg);
+# endif
+ if (pMemLnx->Core.pv)
+ pMemLnx->fMappedToRing0 = true;
+ else
+ rc = VERR_MAP_FAILED;
+ }
+#else /* < 2.4.22 */
+ rc = VERR_NOT_SUPPORTED;
+#endif
+ }
+ else
+ {
+ /*
+ * Use the kernel RAM mapping.
+ */
+ pMemLnx->Core.pv = phys_to_virt(page_to_phys(pMemLnx->apPages[0]));
+ Assert(pMemLnx->Core.pv);
+ }
+
+ return rc;
+}
+
+
+/**
+ * Undoes what rtR0MemObjLinuxVMap() did.
+ *
+ * @param pMemLnx The linux memory object.
+ */
+static void rtR0MemObjLinuxVUnmap(PRTR0MEMOBJLNX pMemLnx)
+{
+#if RTLNX_VER_MIN(2,4,22)
+# ifdef IPRT_USE_ALLOC_VM_AREA_FOR_EXEC
+ if (pMemLnx->pArea)
+ {
+# if 0
+ pte_t **papPtes = pMemLnx->papPtesForArea;
+ size_t i;
+ for (i = 0; i < pMemLnx->cPages; i++)
+ *papPtes[i] = 0;
+# endif
+ free_vm_area(pMemLnx->pArea);
+ kfree(pMemLnx->papPtesForArea);
+ pMemLnx->pArea = NULL;
+ pMemLnx->papPtesForArea = NULL;
+ }
+ else
+# endif
+ if (pMemLnx->fMappedToRing0)
+ {
+ Assert(pMemLnx->Core.pv);
+ vunmap(pMemLnx->Core.pv);
+ pMemLnx->fMappedToRing0 = false;
+ }
+#else /* < 2.4.22 */
+ Assert(!pMemLnx->fMappedToRing0);
+#endif
+ pMemLnx->Core.pv = NULL;
+}
+
+
+DECLHIDDEN(int) rtR0MemObjNativeFree(RTR0MEMOBJ pMem)
+{
+ IPRT_LINUX_SAVE_EFL_AC();
+ PRTR0MEMOBJLNX pMemLnx = (PRTR0MEMOBJLNX)pMem;
+
+ /*
+ * Release any memory that we've allocated or locked.
+ */
+ switch (pMemLnx->Core.enmType)
+ {
+ case RTR0MEMOBJTYPE_LOW:
+ case RTR0MEMOBJTYPE_PAGE:
+ case RTR0MEMOBJTYPE_CONT:
+ case RTR0MEMOBJTYPE_PHYS:
+ case RTR0MEMOBJTYPE_PHYS_NC:
+ rtR0MemObjLinuxVUnmap(pMemLnx);
+ rtR0MemObjLinuxFreePages(pMemLnx);
+ break;
+
+ case RTR0MEMOBJTYPE_LOCK:
+ if (pMemLnx->Core.u.Lock.R0Process != NIL_RTR0PROCESS)
+ {
+ struct task_struct *pTask = rtR0ProcessToLinuxTask(pMemLnx->Core.u.Lock.R0Process);
+ size_t iPage;
+ Assert(pTask);
+ if (pTask && pTask->mm)
+ LNX_MM_DOWN_READ(pTask->mm);
+
+ iPage = pMemLnx->cPages;
+ while (iPage-- > 0)
+ {
+ if (!PageReserved(pMemLnx->apPages[iPage]))
+ SetPageDirty(pMemLnx->apPages[iPage]);
+#if RTLNX_VER_MIN(4,6,0)
+ put_page(pMemLnx->apPages[iPage]);
+#else
+ page_cache_release(pMemLnx->apPages[iPage]);
+#endif
+ }
+
+ if (pTask && pTask->mm)
+ LNX_MM_UP_READ(pTask->mm);
+ }
+ /* else: kernel memory - nothing to do here. */
+ break;
+
+ case RTR0MEMOBJTYPE_RES_VIRT:
+ Assert(pMemLnx->Core.pv);
+ if (pMemLnx->Core.u.ResVirt.R0Process != NIL_RTR0PROCESS)
+ {
+ struct task_struct *pTask = rtR0ProcessToLinuxTask(pMemLnx->Core.u.Lock.R0Process);
+ Assert(pTask);
+ if (pTask && pTask->mm)
+ rtR0MemObjLinuxDoMunmap(pMemLnx->Core.pv, pMemLnx->Core.cb, pTask);
+ }
+ else
+ {
+ vunmap(pMemLnx->Core.pv);
+
+ Assert(pMemLnx->cPages == 1 && pMemLnx->apPages[0] != NULL);
+ __free_page(pMemLnx->apPages[0]);
+ pMemLnx->apPages[0] = NULL;
+ pMemLnx->cPages = 0;
+ }
+ pMemLnx->Core.pv = NULL;
+ break;
+
+ case RTR0MEMOBJTYPE_MAPPING:
+ Assert(pMemLnx->cPages == 0); Assert(pMemLnx->Core.pv);
+ if (pMemLnx->Core.u.ResVirt.R0Process != NIL_RTR0PROCESS)
+ {
+ struct task_struct *pTask = rtR0ProcessToLinuxTask(pMemLnx->Core.u.Lock.R0Process);
+ Assert(pTask);
+ if (pTask && pTask->mm)
+ rtR0MemObjLinuxDoMunmap(pMemLnx->Core.pv, pMemLnx->Core.cb, pTask);
+ }
+ else
+ vunmap(pMemLnx->Core.pv);
+ pMemLnx->Core.pv = NULL;
+ break;
+
+ default:
+ AssertMsgFailed(("enmType=%d\n", pMemLnx->Core.enmType));
+ return VERR_INTERNAL_ERROR;
+ }
+ IPRT_LINUX_RESTORE_EFL_ONLY_AC();
+ return VINF_SUCCESS;
+}
+
+
+DECLHIDDEN(int) rtR0MemObjNativeAllocPage(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
+{
+ IPRT_LINUX_SAVE_EFL_AC();
+ PRTR0MEMOBJLNX pMemLnx;
+ int rc;
+
+#if RTLNX_VER_MIN(2,4,22)
+ rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_PAGE, cb, PAGE_SIZE, GFP_HIGHUSER,
+ false /* non-contiguous */, fExecutable, VERR_NO_MEMORY);
+#else
+ rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_PAGE, cb, PAGE_SIZE, GFP_USER,
+ false /* non-contiguous */, fExecutable, VERR_NO_MEMORY);
+#endif
+ if (RT_SUCCESS(rc))
+ {
+ rc = rtR0MemObjLinuxVMap(pMemLnx, fExecutable);
+ if (RT_SUCCESS(rc))
+ {
+ *ppMem = &pMemLnx->Core;
+ IPRT_LINUX_RESTORE_EFL_AC();
+ return rc;
+ }
+
+ rtR0MemObjLinuxFreePages(pMemLnx);
+ rtR0MemObjDelete(&pMemLnx->Core);
+ }
+
+ IPRT_LINUX_RESTORE_EFL_AC();
+ return rc;
+}
+
+
+DECLHIDDEN(int) rtR0MemObjNativeAllocLow(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
+{
+ IPRT_LINUX_SAVE_EFL_AC();
+ PRTR0MEMOBJLNX pMemLnx;
+ int rc;
+
+ /* Try to avoid GFP_DMA. GFM_DMA32 was introduced with Linux 2.6.15. */
+#if (defined(RT_ARCH_AMD64) || defined(CONFIG_X86_PAE)) && defined(GFP_DMA32)
+ /* ZONE_DMA32: 0-4GB */
+ rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_LOW, cb, PAGE_SIZE, GFP_DMA32,
+ false /* non-contiguous */, fExecutable, VERR_NO_LOW_MEMORY);
+ if (RT_FAILURE(rc))
+#endif
+#ifdef RT_ARCH_AMD64
+ /* ZONE_DMA: 0-16MB */
+ rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_LOW, cb, PAGE_SIZE, GFP_DMA,
+ false /* non-contiguous */, fExecutable, VERR_NO_LOW_MEMORY);
+#else
+# ifdef CONFIG_X86_PAE
+# endif
+ /* ZONE_NORMAL: 0-896MB */
+ rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_LOW, cb, PAGE_SIZE, GFP_USER,
+ false /* non-contiguous */, fExecutable, VERR_NO_LOW_MEMORY);
+#endif
+ if (RT_SUCCESS(rc))
+ {
+ rc = rtR0MemObjLinuxVMap(pMemLnx, fExecutable);
+ if (RT_SUCCESS(rc))
+ {
+ *ppMem = &pMemLnx->Core;
+ IPRT_LINUX_RESTORE_EFL_AC();
+ return rc;
+ }
+
+ rtR0MemObjLinuxFreePages(pMemLnx);
+ rtR0MemObjDelete(&pMemLnx->Core);
+ }
+
+ IPRT_LINUX_RESTORE_EFL_AC();
+ return rc;
+}
+
+
+DECLHIDDEN(int) rtR0MemObjNativeAllocCont(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
+{
+ IPRT_LINUX_SAVE_EFL_AC();
+ PRTR0MEMOBJLNX pMemLnx;
+ int rc;
+
+#if (defined(RT_ARCH_AMD64) || defined(CONFIG_X86_PAE)) && defined(GFP_DMA32)
+ /* ZONE_DMA32: 0-4GB */
+ rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_CONT, cb, PAGE_SIZE, GFP_DMA32,
+ true /* contiguous */, fExecutable, VERR_NO_CONT_MEMORY);
+ if (RT_FAILURE(rc))
+#endif
+#ifdef RT_ARCH_AMD64
+ /* ZONE_DMA: 0-16MB */
+ rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_CONT, cb, PAGE_SIZE, GFP_DMA,
+ true /* contiguous */, fExecutable, VERR_NO_CONT_MEMORY);
+#else
+ /* ZONE_NORMAL (32-bit hosts): 0-896MB */
+ rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_CONT, cb, PAGE_SIZE, GFP_USER,
+ true /* contiguous */, fExecutable, VERR_NO_CONT_MEMORY);
+#endif
+ if (RT_SUCCESS(rc))
+ {
+ rc = rtR0MemObjLinuxVMap(pMemLnx, fExecutable);
+ if (RT_SUCCESS(rc))
+ {
+#if defined(RT_STRICT) && (defined(RT_ARCH_AMD64) || defined(CONFIG_HIGHMEM64G))
+ size_t iPage = pMemLnx->cPages;
+ while (iPage-- > 0)
+ Assert(page_to_phys(pMemLnx->apPages[iPage]) < _4G);
+#endif
+ pMemLnx->Core.u.Cont.Phys = page_to_phys(pMemLnx->apPages[0]);
+ *ppMem = &pMemLnx->Core;
+ IPRT_LINUX_RESTORE_EFL_AC();
+ return rc;
+ }
+
+ rtR0MemObjLinuxFreePages(pMemLnx);
+ rtR0MemObjDelete(&pMemLnx->Core);
+ }
+
+ IPRT_LINUX_RESTORE_EFL_AC();
+ return rc;
+}
+
+
+/**
+ * Worker for rtR0MemObjLinuxAllocPhysSub that tries one allocation strategy.
+ *
+ * @returns IPRT status code.
+ * @param ppMemLnx Where to
+ * @param enmType The object type.
+ * @param cb The size of the allocation.
+ * @param uAlignment The alignment of the physical memory.
+ * Only valid for fContiguous == true, ignored otherwise.
+ * @param PhysHighest See rtR0MemObjNativeAllocPhys.
+ * @param fGfp The Linux GFP flags to use for the allocation.
+ */
+static int rtR0MemObjLinuxAllocPhysSub2(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJTYPE enmType,
+ size_t cb, size_t uAlignment, RTHCPHYS PhysHighest, gfp_t fGfp)
+{
+ PRTR0MEMOBJLNX pMemLnx;
+ int rc;
+
+ rc = rtR0MemObjLinuxAllocPages(&pMemLnx, enmType, cb, uAlignment, fGfp,
+ enmType == RTR0MEMOBJTYPE_PHYS /* contiguous / non-contiguous */,
+ false /*fExecutable*/, VERR_NO_PHYS_MEMORY);
+ if (RT_FAILURE(rc))
+ return rc;
+
+ /*
+ * Check the addresses if necessary. (Can be optimized a bit for PHYS.)
+ */
+ if (PhysHighest != NIL_RTHCPHYS)
+ {
+ size_t iPage = pMemLnx->cPages;
+ while (iPage-- > 0)
+ if (page_to_phys(pMemLnx->apPages[iPage]) > PhysHighest)
+ {
+ rtR0MemObjLinuxFreePages(pMemLnx);
+ rtR0MemObjDelete(&pMemLnx->Core);
+ return VERR_NO_MEMORY;
+ }
+ }
+
+ /*
+ * Complete the object.
+ */
+ if (enmType == RTR0MEMOBJTYPE_PHYS)
+ {
+ pMemLnx->Core.u.Phys.PhysBase = page_to_phys(pMemLnx->apPages[0]);
+ pMemLnx->Core.u.Phys.fAllocated = true;
+ }
+ *ppMem = &pMemLnx->Core;
+ return rc;
+}
+
+
+/**
+ * Worker for rtR0MemObjNativeAllocPhys and rtR0MemObjNativeAllocPhysNC.
+ *
+ * @returns IPRT status code.
+ * @param ppMem Where to store the memory object pointer on success.
+ * @param enmType The object type.
+ * @param cb The size of the allocation.
+ * @param uAlignment The alignment of the physical memory.
+ * Only valid for enmType == RTR0MEMOBJTYPE_PHYS, ignored otherwise.
+ * @param PhysHighest See rtR0MemObjNativeAllocPhys.
+ */
+static int rtR0MemObjLinuxAllocPhysSub(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJTYPE enmType,
+ size_t cb, size_t uAlignment, RTHCPHYS PhysHighest)
+{
+ int rc;
+ IPRT_LINUX_SAVE_EFL_AC();
+
+ /*
+ * There are two clear cases and that's the <=16MB and anything-goes ones.
+ * When the physical address limit is somewhere in-between those two we'll
+ * just have to try, starting with HIGHUSER and working our way thru the
+ * different types, hoping we'll get lucky.
+ *
+ * We should probably move this physical address restriction logic up to
+ * the page alloc function as it would be more efficient there. But since
+ * we don't expect this to be a performance issue just yet it can wait.
+ */
+ if (PhysHighest == NIL_RTHCPHYS)
+ /* ZONE_HIGHMEM: the whole physical memory */
+ rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, uAlignment, PhysHighest, GFP_HIGHUSER);
+ else if (PhysHighest <= _1M * 16)
+ /* ZONE_DMA: 0-16MB */
+ rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, uAlignment, PhysHighest, GFP_DMA);
+ else
+ {
+ rc = VERR_NO_MEMORY;
+ if (RT_FAILURE(rc))
+ /* ZONE_HIGHMEM: the whole physical memory */
+ rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, uAlignment, PhysHighest, GFP_HIGHUSER);
+ if (RT_FAILURE(rc))
+ /* ZONE_NORMAL: 0-896MB */
+ rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, uAlignment, PhysHighest, GFP_USER);
+#ifdef GFP_DMA32
+ if (RT_FAILURE(rc))
+ /* ZONE_DMA32: 0-4GB */
+ rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, uAlignment, PhysHighest, GFP_DMA32);
+#endif
+ if (RT_FAILURE(rc))
+ /* ZONE_DMA: 0-16MB */
+ rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, uAlignment, PhysHighest, GFP_DMA);
+ }
+ IPRT_LINUX_RESTORE_EFL_AC();
+ return rc;
+}
+
+
+/**
+ * Translates a kernel virtual address to a linux page structure by walking the
+ * page tables.
+ *
+ * @note We do assume that the page tables will not change as we are walking
+ * them. This assumption is rather forced by the fact that I could not
+ * immediately see any way of preventing this from happening. So, we
+ * take some extra care when accessing them.
+ *
+ * Because of this, we don't want to use this function on memory where
+ * attribute changes to nearby pages is likely to cause large pages to
+ * be used or split up. So, don't use this for the linear mapping of
+ * physical memory.
+ *
+ * @returns Pointer to the page structur or NULL if it could not be found.
+ * @param pv The kernel virtual address.
+ */
+RTDECL(struct page *) rtR0MemObjLinuxVirtToPage(void *pv)
+{
+ unsigned long ulAddr = (unsigned long)pv;
+ unsigned long pfn;
+ struct page *pPage;
+ pte_t *pEntry;
+ union
+ {
+ pgd_t Global;
+#if RTLNX_VER_MIN(4,12,0)
+ p4d_t Four;
+#endif
+#if RTLNX_VER_MIN(2,6,11)
+ pud_t Upper;
+#endif
+ pmd_t Middle;
+ pte_t Entry;
+ } u;
+
+ /* Should this happen in a situation this code will be called in? And if
+ * so, can it change under our feet? See also
+ * "Documentation/vm/active_mm.txt" in the kernel sources. */
+ if (RT_UNLIKELY(!current->active_mm))
+ return NULL;
+ u.Global = *pgd_offset(current->active_mm, ulAddr);
+ if (RT_UNLIKELY(pgd_none(u.Global)))
+ return NULL;
+#if RTLNX_VER_MIN(2,6,11)
+# if RTLNX_VER_MIN(4,12,0)
+ u.Four = *p4d_offset(&u.Global, ulAddr);
+ if (RT_UNLIKELY(p4d_none(u.Four)))
+ return NULL;
+ if (p4d_large(u.Four))
+ {
+ pPage = p4d_page(u.Four);
+ AssertReturn(pPage, NULL);
+ pfn = page_to_pfn(pPage); /* doing the safe way... */
+ AssertCompile(P4D_SHIFT - PAGE_SHIFT < 31);
+ pfn += (ulAddr >> PAGE_SHIFT) & ((UINT32_C(1) << (P4D_SHIFT - PAGE_SHIFT)) - 1);
+ return pfn_to_page(pfn);
+ }
+ u.Upper = *pud_offset(&u.Four, ulAddr);
+# else /* < 4.12 */
+ u.Upper = *pud_offset(&u.Global, ulAddr);
+# endif /* < 4.12 */
+ if (RT_UNLIKELY(pud_none(u.Upper)))
+ return NULL;
+# if RTLNX_VER_MIN(2,6,25)
+ if (pud_large(u.Upper))
+ {
+ pPage = pud_page(u.Upper);
+ AssertReturn(pPage, NULL);
+ pfn = page_to_pfn(pPage); /* doing the safe way... */
+ pfn += (ulAddr >> PAGE_SHIFT) & ((UINT32_C(1) << (PUD_SHIFT - PAGE_SHIFT)) - 1);
+ return pfn_to_page(pfn);
+ }
+# endif
+ u.Middle = *pmd_offset(&u.Upper, ulAddr);
+#else /* < 2.6.11 */
+ u.Middle = *pmd_offset(&u.Global, ulAddr);
+#endif /* < 2.6.11 */
+ if (RT_UNLIKELY(pmd_none(u.Middle)))
+ return NULL;
+#if RTLNX_VER_MIN(2,6,0)
+ if (pmd_large(u.Middle))
+ {
+ pPage = pmd_page(u.Middle);
+ AssertReturn(pPage, NULL);
+ pfn = page_to_pfn(pPage); /* doing the safe way... */
+ pfn += (ulAddr >> PAGE_SHIFT) & ((UINT32_C(1) << (PMD_SHIFT - PAGE_SHIFT)) - 1);
+ return pfn_to_page(pfn);
+ }
+#endif
+
+#if RTLNX_VER_MIN(2,5,5) || defined(pte_offset_map) /* As usual, RHEL 3 had pte_offset_map earlier. */
+ pEntry = pte_offset_map(&u.Middle, ulAddr);
+#else
+ pEntry = pte_offset(&u.Middle, ulAddr);
+#endif
+ if (RT_UNLIKELY(!pEntry))
+ return NULL;
+ u.Entry = *pEntry;
+#if RTLNX_VER_MIN(2,5,5) || defined(pte_offset_map)
+ pte_unmap(pEntry);
+#endif
+
+ if (RT_UNLIKELY(!pte_present(u.Entry)))
+ return NULL;
+ return pte_page(u.Entry);
+}
+RT_EXPORT_SYMBOL(rtR0MemObjLinuxVirtToPage);
+
+
+DECLHIDDEN(int) rtR0MemObjNativeAllocPhys(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, RTHCPHYS PhysHighest, size_t uAlignment)
+{
+ return rtR0MemObjLinuxAllocPhysSub(ppMem, RTR0MEMOBJTYPE_PHYS, cb, uAlignment, PhysHighest);
+}
+
+
+DECLHIDDEN(int) rtR0MemObjNativeAllocPhysNC(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, RTHCPHYS PhysHighest)
+{
+ return rtR0MemObjLinuxAllocPhysSub(ppMem, RTR0MEMOBJTYPE_PHYS_NC, cb, PAGE_SIZE, PhysHighest);
+}
+
+
+DECLHIDDEN(int) rtR0MemObjNativeEnterPhys(PPRTR0MEMOBJINTERNAL ppMem, RTHCPHYS Phys, size_t cb, uint32_t uCachePolicy)
+{
+ IPRT_LINUX_SAVE_EFL_AC();
+
+ /*
+ * All we need to do here is to validate that we can use
+ * ioremap on the specified address (32/64-bit dma_addr_t).
+ */
+ PRTR0MEMOBJLNX pMemLnx;
+ dma_addr_t PhysAddr = Phys;
+ AssertMsgReturn(PhysAddr == Phys, ("%#llx\n", (unsigned long long)Phys), VERR_ADDRESS_TOO_BIG);
+
+ pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(sizeof(*pMemLnx), RTR0MEMOBJTYPE_PHYS, NULL, cb);
+ if (!pMemLnx)
+ {
+ IPRT_LINUX_RESTORE_EFL_AC();
+ return VERR_NO_MEMORY;
+ }
+
+ pMemLnx->Core.u.Phys.PhysBase = PhysAddr;
+ pMemLnx->Core.u.Phys.fAllocated = false;
+ pMemLnx->Core.u.Phys.uCachePolicy = uCachePolicy;
+ Assert(!pMemLnx->cPages);
+ *ppMem = &pMemLnx->Core;
+ IPRT_LINUX_RESTORE_EFL_AC();
+ return VINF_SUCCESS;
+}
+
+/* openSUSE Leap 42.3 detection :-/ */
+#if RTLNX_VER_RANGE(4,4,0, 4,6,0) && defined(FAULT_FLAG_REMOTE)
+# define GET_USER_PAGES_API KERNEL_VERSION(4, 10, 0) /* no typo! */
+#else
+# define GET_USER_PAGES_API LINUX_VERSION_CODE
+#endif
+
+DECLHIDDEN(int) rtR0MemObjNativeLockUser(PPRTR0MEMOBJINTERNAL ppMem, RTR3PTR R3Ptr, size_t cb, uint32_t fAccess, RTR0PROCESS R0Process)
+{
+ IPRT_LINUX_SAVE_EFL_AC();
+ const int cPages = cb >> PAGE_SHIFT;
+ struct task_struct *pTask = rtR0ProcessToLinuxTask(R0Process);
+ struct vm_area_struct **papVMAs;
+ PRTR0MEMOBJLNX pMemLnx;
+ int rc = VERR_NO_MEMORY;
+ int const fWrite = fAccess & RTMEM_PROT_WRITE ? 1 : 0;
+
+ /*
+ * Check for valid task and size overflows.
+ */
+ if (!pTask)
+ return VERR_NOT_SUPPORTED;
+ if (((size_t)cPages << PAGE_SHIFT) != cb)
+ return VERR_OUT_OF_RANGE;
+
+ /*
+ * Allocate the memory object and a temporary buffer for the VMAs.
+ */
+ pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(RT_UOFFSETOF_DYN(RTR0MEMOBJLNX, apPages[cPages]), RTR0MEMOBJTYPE_LOCK, (void *)R3Ptr, cb);
+ if (!pMemLnx)
+ {
+ IPRT_LINUX_RESTORE_EFL_AC();
+ return VERR_NO_MEMORY;
+ }
+
+ papVMAs = (struct vm_area_struct **)RTMemAlloc(sizeof(*papVMAs) * cPages);
+ if (papVMAs)
+ {
+ LNX_MM_DOWN_READ(pTask->mm);
+
+ /*
+ * Get user pages.
+ */
+/** @todo r=bird: Should we not force read access too? */
+#if GET_USER_PAGES_API >= KERNEL_VERSION(4, 6, 0)
+ if (R0Process == RTR0ProcHandleSelf())
+ rc = get_user_pages(R3Ptr, /* Where from. */
+ cPages, /* How many pages. */
+# if GET_USER_PAGES_API >= KERNEL_VERSION(4, 9, 0)
+ fWrite ? FOLL_WRITE | /* Write to memory. */
+ FOLL_FORCE /* force write access. */
+ : 0, /* Write to memory. */
+# else
+ fWrite, /* Write to memory. */
+ fWrite, /* force write access. */
+# endif
+ &pMemLnx->apPages[0], /* Page array. */
+ papVMAs); /* vmas */
+ /*
+ * Actually this should not happen at the moment as call this function
+ * only for our own process.
+ */
+ else
+ rc = get_user_pages_remote(
+# if GET_USER_PAGES_API < KERNEL_VERSION(5, 9, 0)
+ pTask, /* Task for fault accounting. */
+# endif
+ pTask->mm, /* Whose pages. */
+ R3Ptr, /* Where from. */
+ cPages, /* How many pages. */
+# if GET_USER_PAGES_API >= KERNEL_VERSION(4, 9, 0)
+ fWrite ? FOLL_WRITE | /* Write to memory. */
+ FOLL_FORCE /* force write access. */
+ : 0, /* Write to memory. */
+# else
+ fWrite, /* Write to memory. */
+ fWrite, /* force write access. */
+# endif
+ &pMemLnx->apPages[0], /* Page array. */
+ papVMAs /* vmas */
+# if GET_USER_PAGES_API >= KERNEL_VERSION(4, 10, 0)
+ , NULL /* locked */
+# endif
+ );
+#else /* GET_USER_PAGES_API < KERNEL_VERSION(4, 6, 0) */
+ rc = get_user_pages(pTask, /* Task for fault accounting. */
+ pTask->mm, /* Whose pages. */
+ R3Ptr, /* Where from. */
+ cPages, /* How many pages. */
+/* The get_user_pages API change was back-ported to 4.4.168. */
+# if RTLNX_VER_RANGE(4,4,168, 4,5,0)
+ fWrite ? FOLL_WRITE | /* Write to memory. */
+ FOLL_FORCE /* force write access. */
+ : 0, /* Write to memory. */
+# else
+ fWrite, /* Write to memory. */
+ fWrite, /* force write access. */
+# endif
+ &pMemLnx->apPages[0], /* Page array. */
+ papVMAs); /* vmas */
+#endif /* GET_USER_PAGES_API < KERNEL_VERSION(4, 6, 0) */
+ if (rc == cPages)
+ {
+ /*
+ * Flush dcache (required?), protect against fork and _really_ pin the page
+ * table entries. get_user_pages() will protect against swapping out the
+ * pages but it will NOT protect against removing page table entries. This
+ * can be achieved with
+ * - using mlock / mmap(..., MAP_LOCKED, ...) from userland. This requires
+ * an appropriate limit set up with setrlimit(..., RLIMIT_MEMLOCK, ...).
+ * Usual Linux distributions support only a limited size of locked pages
+ * (e.g. 32KB).
+ * - setting the PageReserved bit (as we do in rtR0MemObjLinuxAllocPages()
+ * or by
+ * - setting the VM_LOCKED flag. This is the same as doing mlock() without
+ * a range check.
+ */
+ /** @todo The Linux fork() protection will require more work if this API
+ * is to be used for anything but locking VM pages. */
+ while (rc-- > 0)
+ {
+ flush_dcache_page(pMemLnx->apPages[rc]);
+ papVMAs[rc]->vm_flags |= VM_DONTCOPY | VM_LOCKED;
+ }
+
+ LNX_MM_UP_READ(pTask->mm);
+
+ RTMemFree(papVMAs);
+
+ pMemLnx->Core.u.Lock.R0Process = R0Process;
+ pMemLnx->cPages = cPages;
+ Assert(!pMemLnx->fMappedToRing0);
+ *ppMem = &pMemLnx->Core;
+
+ IPRT_LINUX_RESTORE_EFL_AC();
+ return VINF_SUCCESS;
+ }
+
+ /*
+ * Failed - we need to unlock any pages that we succeeded to lock.
+ */
+ while (rc-- > 0)
+ {
+ if (!PageReserved(pMemLnx->apPages[rc]))
+ SetPageDirty(pMemLnx->apPages[rc]);
+#if RTLNX_VER_MIN(4,6,0)
+ put_page(pMemLnx->apPages[rc]);
+#else
+ page_cache_release(pMemLnx->apPages[rc]);
+#endif
+ }
+
+ LNX_MM_UP_READ(pTask->mm);
+
+ RTMemFree(papVMAs);
+ rc = VERR_LOCK_FAILED;
+ }
+
+ rtR0MemObjDelete(&pMemLnx->Core);
+ IPRT_LINUX_RESTORE_EFL_AC();
+ return rc;
+}
+
+
+DECLHIDDEN(int) rtR0MemObjNativeLockKernel(PPRTR0MEMOBJINTERNAL ppMem, void *pv, size_t cb, uint32_t fAccess)
+{
+ IPRT_LINUX_SAVE_EFL_AC();
+ void *pvLast = (uint8_t *)pv + cb - 1;
+ size_t const cPages = cb >> PAGE_SHIFT;
+ PRTR0MEMOBJLNX pMemLnx;
+ bool fLinearMapping;
+ int rc;
+ uint8_t *pbPage;
+ size_t iPage;
+ NOREF(fAccess);
+
+ if ( !RTR0MemKernelIsValidAddr(pv)
+ || !RTR0MemKernelIsValidAddr(pv + cb))
+ return VERR_INVALID_PARAMETER;
+
+ /*
+ * The lower part of the kernel memory has a linear mapping between
+ * physical and virtual addresses. So we take a short cut here. This is
+ * assumed to be the cleanest way to handle those addresses (and the code
+ * is well tested, though the test for determining it is not very nice).
+ * If we ever decide it isn't we can still remove it.
+ */
+#if 0
+ fLinearMapping = (unsigned long)pvLast < VMALLOC_START;
+#else
+ fLinearMapping = (unsigned long)pv >= (unsigned long)__va(0)
+ && (unsigned long)pvLast < (unsigned long)high_memory;
+#endif
+
+ /*
+ * Allocate the memory object.
+ */
+ pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(RT_UOFFSETOF_DYN(RTR0MEMOBJLNX, apPages[cPages]), RTR0MEMOBJTYPE_LOCK, pv, cb);
+ if (!pMemLnx)
+ {
+ IPRT_LINUX_RESTORE_EFL_AC();
+ return VERR_NO_MEMORY;
+ }
+
+ /*
+ * Gather the pages.
+ * We ASSUME all kernel pages are non-swappable and non-movable.
+ */
+ rc = VINF_SUCCESS;
+ pbPage = (uint8_t *)pvLast;
+ iPage = cPages;
+ if (!fLinearMapping)
+ {
+ while (iPage-- > 0)
+ {
+ struct page *pPage = rtR0MemObjLinuxVirtToPage(pbPage);
+ if (RT_UNLIKELY(!pPage))
+ {
+ rc = VERR_LOCK_FAILED;
+ break;
+ }
+ pMemLnx->apPages[iPage] = pPage;
+ pbPage -= PAGE_SIZE;
+ }
+ }
+ else
+ {
+ while (iPage-- > 0)
+ {
+ pMemLnx->apPages[iPage] = virt_to_page(pbPage);
+ pbPage -= PAGE_SIZE;
+ }
+ }
+ if (RT_SUCCESS(rc))
+ {
+ /*
+ * Complete the memory object and return.
+ */
+ pMemLnx->Core.u.Lock.R0Process = NIL_RTR0PROCESS;
+ pMemLnx->cPages = cPages;
+ Assert(!pMemLnx->fMappedToRing0);
+ *ppMem = &pMemLnx->Core;
+
+ IPRT_LINUX_RESTORE_EFL_AC();
+ return VINF_SUCCESS;
+ }
+
+ rtR0MemObjDelete(&pMemLnx->Core);
+ IPRT_LINUX_RESTORE_EFL_AC();
+ return rc;
+}
+
+
+DECLHIDDEN(int) rtR0MemObjNativeReserveKernel(PPRTR0MEMOBJINTERNAL ppMem, void *pvFixed, size_t cb, size_t uAlignment)
+{
+#if RTLNX_VER_MIN(2,4,22)
+ IPRT_LINUX_SAVE_EFL_AC();
+ const size_t cPages = cb >> PAGE_SHIFT;
+ struct page *pDummyPage;
+ struct page **papPages;
+
+ /* check for unsupported stuff. */
+ AssertMsgReturn(pvFixed == (void *)-1, ("%p\n", pvFixed), VERR_NOT_SUPPORTED);
+ if (uAlignment > PAGE_SIZE)
+ return VERR_NOT_SUPPORTED;
+
+ /*
+ * Allocate a dummy page and create a page pointer array for vmap such that
+ * the dummy page is mapped all over the reserved area.
+ */
+ pDummyPage = alloc_page(GFP_HIGHUSER | __GFP_NOWARN);
+ if (pDummyPage)
+ {
+ papPages = RTMemAlloc(sizeof(*papPages) * cPages);
+ if (papPages)
+ {
+ void *pv;
+ size_t iPage = cPages;
+ while (iPage-- > 0)
+ papPages[iPage] = pDummyPage;
+# ifdef VM_MAP
+ pv = vmap(papPages, cPages, VM_MAP, PAGE_KERNEL_RO);
+# else
+ pv = vmap(papPages, cPages, VM_ALLOC, PAGE_KERNEL_RO);
+# endif
+ RTMemFree(papPages);
+ if (pv)
+ {
+ PRTR0MEMOBJLNX pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(sizeof(*pMemLnx), RTR0MEMOBJTYPE_RES_VIRT, pv, cb);
+ if (pMemLnx)
+ {
+ pMemLnx->Core.u.ResVirt.R0Process = NIL_RTR0PROCESS;
+ pMemLnx->cPages = 1;
+ pMemLnx->apPages[0] = pDummyPage;
+ *ppMem = &pMemLnx->Core;
+ IPRT_LINUX_RESTORE_EFL_AC();
+ return VINF_SUCCESS;
+ }
+ vunmap(pv);
+ }
+ }
+ __free_page(pDummyPage);
+ }
+ IPRT_LINUX_RESTORE_EFL_AC();
+ return VERR_NO_MEMORY;
+
+#else /* < 2.4.22 */
+ /*
+ * Could probably use ioremap here, but the caller is in a better position than us
+ * to select some safe physical memory.
+ */
+ return VERR_NOT_SUPPORTED;
+#endif
+}
+
+
+DECLHIDDEN(int) rtR0MemObjNativeReserveUser(PPRTR0MEMOBJINTERNAL ppMem, RTR3PTR R3PtrFixed, size_t cb, size_t uAlignment, RTR0PROCESS R0Process)
+{
+ IPRT_LINUX_SAVE_EFL_AC();
+ PRTR0MEMOBJLNX pMemLnx;
+ void *pv;
+ struct task_struct *pTask = rtR0ProcessToLinuxTask(R0Process);
+ if (!pTask)
+ return VERR_NOT_SUPPORTED;
+
+ /*
+ * Check that the specified alignment is supported.
+ */
+ if (uAlignment > PAGE_SIZE)
+ return VERR_NOT_SUPPORTED;
+
+ /*
+ * Let rtR0MemObjLinuxDoMmap do the difficult bits.
+ */
+ pv = rtR0MemObjLinuxDoMmap(R3PtrFixed, cb, uAlignment, pTask, RTMEM_PROT_NONE);
+ if (pv == (void *)-1)
+ {
+ IPRT_LINUX_RESTORE_EFL_AC();
+ return VERR_NO_MEMORY;
+ }
+
+ pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(sizeof(*pMemLnx), RTR0MEMOBJTYPE_RES_VIRT, pv, cb);
+ if (!pMemLnx)
+ {
+ rtR0MemObjLinuxDoMunmap(pv, cb, pTask);
+ IPRT_LINUX_RESTORE_EFL_AC();
+ return VERR_NO_MEMORY;
+ }
+
+ pMemLnx->Core.u.ResVirt.R0Process = R0Process;
+ *ppMem = &pMemLnx->Core;
+ IPRT_LINUX_RESTORE_EFL_AC();
+ return VINF_SUCCESS;
+}
+
+
+DECLHIDDEN(int) rtR0MemObjNativeMapKernel(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJ pMemToMap,
+ void *pvFixed, size_t uAlignment,
+ unsigned fProt, size_t offSub, size_t cbSub)
+{
+ int rc = VERR_NO_MEMORY;
+ PRTR0MEMOBJLNX pMemLnxToMap = (PRTR0MEMOBJLNX)pMemToMap;
+ PRTR0MEMOBJLNX pMemLnx;
+ IPRT_LINUX_SAVE_EFL_AC();
+
+ /* Fail if requested to do something we can't. */
+ AssertMsgReturn(pvFixed == (void *)-1, ("%p\n", pvFixed), VERR_NOT_SUPPORTED);
+ if (uAlignment > PAGE_SIZE)
+ return VERR_NOT_SUPPORTED;
+
+ /*
+ * Create the IPRT memory object.
+ */
+ if (!cbSub)
+ cbSub = pMemLnxToMap->Core.cb - offSub;
+ pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(sizeof(*pMemLnx), RTR0MEMOBJTYPE_MAPPING, NULL, cbSub);
+ if (pMemLnx)
+ {
+ if (pMemLnxToMap->cPages)
+ {
+#if RTLNX_VER_MIN(2,4,22)
+ /*
+ * Use vmap - 2.4.22 and later.
+ */
+ pgprot_t fPg = rtR0MemObjLinuxConvertProt(fProt, true /* kernel */);
+ /** @todo We don't really care too much for EXEC here... 5.8 always adds NX. */
+ Assert(((offSub + cbSub) >> PAGE_SHIFT) <= pMemLnxToMap->cPages);
+# ifdef VM_MAP
+ pMemLnx->Core.pv = vmap(&pMemLnxToMap->apPages[offSub >> PAGE_SHIFT], cbSub >> PAGE_SHIFT, VM_MAP, fPg);
+# else
+ pMemLnx->Core.pv = vmap(&pMemLnxToMap->apPages[offSub >> PAGE_SHIFT], cbSub >> PAGE_SHIFT, VM_ALLOC, fPg);
+# endif
+ if (pMemLnx->Core.pv)
+ {
+ pMemLnx->fMappedToRing0 = true;
+ rc = VINF_SUCCESS;
+ }
+ else
+ rc = VERR_MAP_FAILED;
+
+#else /* < 2.4.22 */
+ /*
+ * Only option here is to share mappings if possible and forget about fProt.
+ */
+ if (rtR0MemObjIsRing3(pMemToMap))
+ rc = VERR_NOT_SUPPORTED;
+ else
+ {
+ rc = VINF_SUCCESS;
+ if (!pMemLnxToMap->Core.pv)
+ rc = rtR0MemObjLinuxVMap(pMemLnxToMap, !!(fProt & RTMEM_PROT_EXEC));
+ if (RT_SUCCESS(rc))
+ {
+ Assert(pMemLnxToMap->Core.pv);
+ pMemLnx->Core.pv = (uint8_t *)pMemLnxToMap->Core.pv + offSub;
+ }
+ }
+#endif
+ }
+ else
+ {
+ /*
+ * MMIO / physical memory.
+ */
+ Assert(pMemLnxToMap->Core.enmType == RTR0MEMOBJTYPE_PHYS && !pMemLnxToMap->Core.u.Phys.fAllocated);
+#if RTLNX_VER_MIN(2,6,25)
+ /*
+ * ioremap() defaults to no caching since the 2.6 kernels.
+ * ioremap_nocache() has been removed finally in 5.6-rc1.
+ */
+ pMemLnx->Core.pv = pMemLnxToMap->Core.u.Phys.uCachePolicy == RTMEM_CACHE_POLICY_MMIO
+ ? ioremap(pMemLnxToMap->Core.u.Phys.PhysBase + offSub, cbSub)
+ : ioremap_cache(pMemLnxToMap->Core.u.Phys.PhysBase + offSub, cbSub);
+#else /* KERNEL_VERSION < 2.6.25 */
+ pMemLnx->Core.pv = pMemLnxToMap->Core.u.Phys.uCachePolicy == RTMEM_CACHE_POLICY_MMIO
+ ? ioremap_nocache(pMemLnxToMap->Core.u.Phys.PhysBase + offSub, cbSub)
+ : ioremap(pMemLnxToMap->Core.u.Phys.PhysBase + offSub, cbSub);
+#endif /* KERNEL_VERSION < 2.6.25 */
+ if (pMemLnx->Core.pv)
+ {
+ /** @todo fix protection. */
+ rc = VINF_SUCCESS;
+ }
+ }
+ if (RT_SUCCESS(rc))
+ {
+ pMemLnx->Core.u.Mapping.R0Process = NIL_RTR0PROCESS;
+ *ppMem = &pMemLnx->Core;
+ IPRT_LINUX_RESTORE_EFL_AC();
+ return VINF_SUCCESS;
+ }
+ rtR0MemObjDelete(&pMemLnx->Core);
+ }
+
+ IPRT_LINUX_RESTORE_EFL_AC();
+ return rc;
+}
+
+
+#ifdef VBOX_USE_PAE_HACK
+/**
+ * Replace the PFN of a PTE with the address of the actual page.
+ *
+ * The caller maps a reserved dummy page at the address with the desired access
+ * and flags.
+ *
+ * This hack is required for older Linux kernels which don't provide
+ * remap_pfn_range().
+ *
+ * @returns 0 on success, -ENOMEM on failure.
+ * @param mm The memory context.
+ * @param ulAddr The mapping address.
+ * @param Phys The physical address of the page to map.
+ */
+static int rtR0MemObjLinuxFixPte(struct mm_struct *mm, unsigned long ulAddr, RTHCPHYS Phys)
+{
+ int rc = -ENOMEM;
+ pgd_t *pgd;
+
+ spin_lock(&mm->page_table_lock);
+
+ pgd = pgd_offset(mm, ulAddr);
+ if (!pgd_none(*pgd) && !pgd_bad(*pgd))
+ {
+ pmd_t *pmd = pmd_offset(pgd, ulAddr);
+ if (!pmd_none(*pmd))
+ {
+ pte_t *ptep = pte_offset_map(pmd, ulAddr);
+ if (ptep)
+ {
+ pte_t pte = *ptep;
+ pte.pte_high &= 0xfff00000;
+ pte.pte_high |= ((Phys >> 32) & 0x000fffff);
+ pte.pte_low &= 0x00000fff;
+ pte.pte_low |= (Phys & 0xfffff000);
+ set_pte(ptep, pte);
+ pte_unmap(ptep);
+ rc = 0;
+ }
+ }
+ }
+
+ spin_unlock(&mm->page_table_lock);
+ return rc;
+}
+#endif /* VBOX_USE_PAE_HACK */
+
+
+DECLHIDDEN(int) rtR0MemObjNativeMapUser(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJ pMemToMap, RTR3PTR R3PtrFixed, size_t uAlignment,
+ unsigned fProt, RTR0PROCESS R0Process, size_t offSub, size_t cbSub)
+{
+ struct task_struct *pTask = rtR0ProcessToLinuxTask(R0Process);
+ PRTR0MEMOBJLNX pMemLnxToMap = (PRTR0MEMOBJLNX)pMemToMap;
+ int rc = VERR_NO_MEMORY;
+ PRTR0MEMOBJLNX pMemLnx;
+#ifdef VBOX_USE_PAE_HACK
+ struct page *pDummyPage;
+ RTHCPHYS DummyPhys;
+#endif
+ IPRT_LINUX_SAVE_EFL_AC();
+
+ /*
+ * Check for restrictions.
+ */
+ if (!pTask)
+ return VERR_NOT_SUPPORTED;
+ if (uAlignment > PAGE_SIZE)
+ return VERR_NOT_SUPPORTED;
+
+#ifdef VBOX_USE_PAE_HACK
+ /*
+ * Allocate a dummy page for use when mapping the memory.
+ */
+ pDummyPage = alloc_page(GFP_USER | __GFP_NOWARN);
+ if (!pDummyPage)
+ {
+ IPRT_LINUX_RESTORE_EFL_AC();
+ return VERR_NO_MEMORY;
+ }
+ SetPageReserved(pDummyPage);
+ DummyPhys = page_to_phys(pDummyPage);
+#endif
+
+ /*
+ * Create the IPRT memory object.
+ */
+ Assert(!offSub || cbSub);
+ if (cbSub == 0)
+ cbSub = pMemLnxToMap->Core.cb;
+ pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(sizeof(*pMemLnx), RTR0MEMOBJTYPE_MAPPING, NULL, cbSub);
+ if (pMemLnx)
+ {
+ /*
+ * Allocate user space mapping.
+ */
+ void *pv;
+ pv = rtR0MemObjLinuxDoMmap(R3PtrFixed, cbSub, uAlignment, pTask, fProt);
+ if (pv != (void *)-1)
+ {
+ /*
+ * Map page by page into the mmap area.
+ * This is generic, paranoid and not very efficient.
+ */
+ pgprot_t fPg = rtR0MemObjLinuxConvertProt(fProt, false /* user */);
+ unsigned long ulAddrCur = (unsigned long)pv;
+ const size_t cPages = (offSub + cbSub) >> PAGE_SHIFT;
+ size_t iPage;
+
+ LNX_MM_DOWN_WRITE(pTask->mm);
+
+ rc = VINF_SUCCESS;
+ if (pMemLnxToMap->cPages)
+ {
+ for (iPage = offSub >> PAGE_SHIFT; iPage < cPages; iPage++, ulAddrCur += PAGE_SIZE)
+ {
+#if RTLNX_VER_MAX(2,6,11)
+ RTHCPHYS Phys = page_to_phys(pMemLnxToMap->apPages[iPage]);
+#endif
+#if RTLNX_VER_MIN(2,6,0) || defined(HAVE_26_STYLE_REMAP_PAGE_RANGE)
+ struct vm_area_struct *vma = find_vma(pTask->mm, ulAddrCur); /* this is probably the same for all the pages... */
+ AssertBreakStmt(vma, rc = VERR_INTERNAL_ERROR);
+#endif
+#if RTLNX_VER_MAX(2,6,0) && defined(RT_ARCH_X86)
+ /* remap_page_range() limitation on x86 */
+ AssertBreakStmt(Phys < _4G, rc = VERR_NO_MEMORY);
+#endif
+
+#if defined(VBOX_USE_INSERT_PAGE) && RTLNX_VER_MIN(2,6,22)
+ rc = vm_insert_page(vma, ulAddrCur, pMemLnxToMap->apPages[iPage]);
+ /* Thes flags help making 100% sure some bad stuff wont happen (swap, core, ++).
+ * See remap_pfn_range() in mm/memory.c */
+#if RTLNX_VER_MIN(3,7,0)
+ vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
+#else
+ vma->vm_flags |= VM_RESERVED;
+#endif
+#elif RTLNX_VER_MIN(2,6,11)
+ rc = remap_pfn_range(vma, ulAddrCur, page_to_pfn(pMemLnxToMap->apPages[iPage]), PAGE_SIZE, fPg);
+#elif defined(VBOX_USE_PAE_HACK)
+ rc = remap_page_range(vma, ulAddrCur, DummyPhys, PAGE_SIZE, fPg);
+ if (!rc)
+ rc = rtR0MemObjLinuxFixPte(pTask->mm, ulAddrCur, Phys);
+#elif RTLNX_VER_MIN(2,6,0) || defined(HAVE_26_STYLE_REMAP_PAGE_RANGE)
+ rc = remap_page_range(vma, ulAddrCur, Phys, PAGE_SIZE, fPg);
+#else /* 2.4 */
+ rc = remap_page_range(ulAddrCur, Phys, PAGE_SIZE, fPg);
+#endif
+ if (rc)
+ {
+ rc = VERR_NO_MEMORY;
+ break;
+ }
+ }
+ }
+ else
+ {
+ RTHCPHYS Phys;
+ if (pMemLnxToMap->Core.enmType == RTR0MEMOBJTYPE_PHYS)
+ Phys = pMemLnxToMap->Core.u.Phys.PhysBase;
+ else if (pMemLnxToMap->Core.enmType == RTR0MEMOBJTYPE_CONT)
+ Phys = pMemLnxToMap->Core.u.Cont.Phys;
+ else
+ {
+ AssertMsgFailed(("%d\n", pMemLnxToMap->Core.enmType));
+ Phys = NIL_RTHCPHYS;
+ }
+ if (Phys != NIL_RTHCPHYS)
+ {
+ for (iPage = offSub >> PAGE_SHIFT; iPage < cPages; iPage++, ulAddrCur += PAGE_SIZE, Phys += PAGE_SIZE)
+ {
+#if RTLNX_VER_MIN(2,6,0) || defined(HAVE_26_STYLE_REMAP_PAGE_RANGE)
+ struct vm_area_struct *vma = find_vma(pTask->mm, ulAddrCur); /* this is probably the same for all the pages... */
+ AssertBreakStmt(vma, rc = VERR_INTERNAL_ERROR);
+#endif
+#if RTLNX_VER_MAX(2,6,0) && defined(RT_ARCH_X86)
+ /* remap_page_range() limitation on x86 */
+ AssertBreakStmt(Phys < _4G, rc = VERR_NO_MEMORY);
+#endif
+
+#if RTLNX_VER_MIN(2,6,11)
+ rc = remap_pfn_range(vma, ulAddrCur, Phys, PAGE_SIZE, fPg);
+#elif defined(VBOX_USE_PAE_HACK)
+ rc = remap_page_range(vma, ulAddrCur, DummyPhys, PAGE_SIZE, fPg);
+ if (!rc)
+ rc = rtR0MemObjLinuxFixPte(pTask->mm, ulAddrCur, Phys);
+#elif RTLNX_VER_MIN(2,6,0) || defined(HAVE_26_STYLE_REMAP_PAGE_RANGE)
+ rc = remap_page_range(vma, ulAddrCur, Phys, PAGE_SIZE, fPg);
+#else /* 2.4 */
+ rc = remap_page_range(ulAddrCur, Phys, PAGE_SIZE, fPg);
+#endif
+ if (rc)
+ {
+ rc = VERR_NO_MEMORY;
+ break;
+ }
+ }
+ }
+ }
+
+#ifdef CONFIG_NUMA_BALANCING
+# if RTLNX_VER_MAX(3,13,0) && RTLNX_RHEL_MAX(7,0)
+# define VBOX_NUMA_HACK_OLD
+# endif
+ if (RT_SUCCESS(rc))
+ {
+ /** @todo Ugly hack! But right now we have no other means to
+ * disable automatic NUMA page balancing. */
+# ifdef RT_OS_X86
+# ifdef VBOX_NUMA_HACK_OLD
+ pTask->mm->numa_next_reset = jiffies + 0x7fffffffUL;
+# endif
+ pTask->mm->numa_next_scan = jiffies + 0x7fffffffUL;
+# else
+# ifdef VBOX_NUMA_HACK_OLD
+ pTask->mm->numa_next_reset = jiffies + 0x7fffffffffffffffUL;
+# endif
+ pTask->mm->numa_next_scan = jiffies + 0x7fffffffffffffffUL;
+# endif
+ }
+#endif /* CONFIG_NUMA_BALANCING */
+
+ LNX_MM_UP_WRITE(pTask->mm);
+
+ if (RT_SUCCESS(rc))
+ {
+#ifdef VBOX_USE_PAE_HACK
+ __free_page(pDummyPage);
+#endif
+ pMemLnx->Core.pv = pv;
+ pMemLnx->Core.u.Mapping.R0Process = R0Process;
+ *ppMem = &pMemLnx->Core;
+ IPRT_LINUX_RESTORE_EFL_AC();
+ return VINF_SUCCESS;
+ }
+
+ /*
+ * Bail out.
+ */
+ rtR0MemObjLinuxDoMunmap(pv, cbSub, pTask);
+ }
+ rtR0MemObjDelete(&pMemLnx->Core);
+ }
+#ifdef VBOX_USE_PAE_HACK
+ __free_page(pDummyPage);
+#endif
+
+ IPRT_LINUX_RESTORE_EFL_AC();
+ return rc;
+}
+
+
+DECLHIDDEN(int) rtR0MemObjNativeProtect(PRTR0MEMOBJINTERNAL pMem, size_t offSub, size_t cbSub, uint32_t fProt)
+{
+# ifdef IPRT_USE_ALLOC_VM_AREA_FOR_EXEC
+ /*
+ * Currently only supported when we've got addresses PTEs from the kernel.
+ */
+ PRTR0MEMOBJLNX pMemLnx = (PRTR0MEMOBJLNX)pMem;
+ if (pMemLnx->pArea && pMemLnx->papPtesForArea)
+ {
+ pgprot_t const fPg = rtR0MemObjLinuxConvertProt(fProt, true /*fKernel*/);
+ size_t const cPages = (offSub + cbSub) >> PAGE_SHIFT;
+ pte_t **papPtes = pMemLnx->papPtesForArea;
+ size_t i;
+
+ for (i = offSub >> PAGE_SHIFT; i < cPages; i++)
+ {
+ set_pte(papPtes[i], mk_pte(pMemLnx->apPages[i], fPg));
+ }
+ preempt_disable();
+ __flush_tlb_all();
+ preempt_enable();
+ return VINF_SUCCESS;
+ }
+# elif defined(IPRT_USE_APPLY_TO_PAGE_RANGE_FOR_EXEC)
+ PRTR0MEMOBJLNX pMemLnx = (PRTR0MEMOBJLNX)pMem;
+ if ( pMemLnx->fExecutable
+ && pMemLnx->fMappedToRing0)
+ {
+ LNXAPPLYPGRANGE Args;
+ Args.pMemLnx = pMemLnx;
+ Args.fPg = rtR0MemObjLinuxConvertProt(fProt, true /*fKernel*/);
+ int rcLnx = apply_to_page_range(current->active_mm, (unsigned long)pMemLnx->Core.pv + offSub, cbSub,
+ rtR0MemObjLinuxApplyPageRange, (void *)&Args);
+ if (rcLnx)
+ return VERR_NOT_SUPPORTED;
+
+ return VINF_SUCCESS;
+ }
+# endif
+
+ NOREF(pMem);
+ NOREF(offSub);
+ NOREF(cbSub);
+ NOREF(fProt);
+ return VERR_NOT_SUPPORTED;
+}
+
+
+DECLHIDDEN(RTHCPHYS) rtR0MemObjNativeGetPagePhysAddr(PRTR0MEMOBJINTERNAL pMem, size_t iPage)
+{
+ PRTR0MEMOBJLNX pMemLnx = (PRTR0MEMOBJLNX)pMem;
+
+ if (pMemLnx->cPages)
+ return page_to_phys(pMemLnx->apPages[iPage]);
+
+ switch (pMemLnx->Core.enmType)
+ {
+ case RTR0MEMOBJTYPE_CONT:
+ return pMemLnx->Core.u.Cont.Phys + (iPage << PAGE_SHIFT);
+
+ case RTR0MEMOBJTYPE_PHYS:
+ return pMemLnx->Core.u.Phys.PhysBase + (iPage << PAGE_SHIFT);
+
+ /* the parent knows */
+ case RTR0MEMOBJTYPE_MAPPING:
+ return rtR0MemObjNativeGetPagePhysAddr(pMemLnx->Core.uRel.Child.pParent, iPage);
+
+ /* cPages > 0 */
+ case RTR0MEMOBJTYPE_LOW:
+ case RTR0MEMOBJTYPE_LOCK:
+ case RTR0MEMOBJTYPE_PHYS_NC:
+ case RTR0MEMOBJTYPE_PAGE:
+ default:
+ AssertMsgFailed(("%d\n", pMemLnx->Core.enmType));
+ /* fall thru */
+
+ case RTR0MEMOBJTYPE_RES_VIRT:
+ return NIL_RTHCPHYS;
+ }
+}
+