summaryrefslogtreecommitdiffstats
path: root/src/VBox/Runtime/common/asn1/asn1-ut-time-decode.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/VBox/Runtime/common/asn1/asn1-ut-time-decode.cpp')
-rw-r--r--src/VBox/Runtime/common/asn1/asn1-ut-time-decode.cpp405
1 files changed, 405 insertions, 0 deletions
diff --git a/src/VBox/Runtime/common/asn1/asn1-ut-time-decode.cpp b/src/VBox/Runtime/common/asn1/asn1-ut-time-decode.cpp
new file mode 100644
index 00000000..789dac68
--- /dev/null
+++ b/src/VBox/Runtime/common/asn1/asn1-ut-time-decode.cpp
@@ -0,0 +1,405 @@
+/* $Id: asn1-ut-time-decode.cpp $ */
+/** @file
+ * IPRT - ASN.1, UTC TIME and GENERALIZED TIME Types, Decoding.
+ */
+
+/*
+ * Copyright (C) 2006-2020 Oracle Corporation
+ *
+ * This file is part of VirtualBox Open Source Edition (OSE), as
+ * available from http://www.virtualbox.org. This file is free software;
+ * you can redistribute it and/or modify it under the terms of the GNU
+ * General Public License (GPL) as published by the Free Software
+ * Foundation, in version 2 as it comes in the "COPYING" file of the
+ * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
+ * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
+ *
+ * The contents of this file may alternatively be used under the terms
+ * of the Common Development and Distribution License Version 1.0
+ * (CDDL) only, as it comes in the "COPYING.CDDL" file of the
+ * VirtualBox OSE distribution, in which case the provisions of the
+ * CDDL are applicable instead of those of the GPL.
+ *
+ * You may elect to license modified versions of this file under the
+ * terms and conditions of either the GPL or the CDDL or both.
+ */
+
+
+/*********************************************************************************************************************************
+* Header Files *
+*********************************************************************************************************************************/
+#include "internal/iprt.h"
+#include <iprt/asn1.h>
+
+#include <iprt/alloca.h>
+#include <iprt/err.h>
+#include <iprt/string.h>
+#include <iprt/ctype.h>
+
+#include <iprt/formats/asn1.h>
+
+
+/**
+ * Common code for UTCTime and GeneralizedTime converters that normalizes the
+ * converted time and checks that the input values doesn't change.
+ *
+ * @returns IPRT status code.
+ * @param pCursor The cursor to use when reporting an error.
+ * @param pThis The time to normalize and check.
+ * @param pszType The type name.
+ * @param pszErrorTag The error tag.
+ */
+static int rtAsn1Time_NormalizeTime(PRTASN1CURSOR pCursor, PRTASN1TIME pThis, const char *pszType, const char *pszErrorTag)
+{
+ int rc;
+ if ( pThis->Time.u8Month > 0
+ && pThis->Time.u8Month <= 12
+ && pThis->Time.u8Hour < 24
+ && pThis->Time.u8Minute < 60
+ && pThis->Time.u8Second <= 60)
+ {
+ /* Work around clever rounding error in DER_CFDateToUTCTime() on OS X. This also
+ supresses any attempt at feeding us leap seconds. If we pass 60 to the
+ normalization code will move on to the next min/hour/day, which is wrong both
+ for the OS X issue and for unwanted leap seconds. Leap seconds are not valid
+ ASN.1 by the by according to the specs available to us. */
+ if (pThis->Time.u8Second < 60)
+ { /* likely */ }
+ else
+ pThis->Time.u8Second = 59;
+
+ /* Normalize and move on. */
+ RTTIME const TimeCopy = pThis->Time;
+ if (RTTimeNormalize(&pThis->Time))
+ {
+ if ( TimeCopy.u8MonthDay == pThis->Time.u8MonthDay
+ && TimeCopy.u8Month == pThis->Time.u8Month
+ && TimeCopy.i32Year == pThis->Time.i32Year
+ && TimeCopy.u8Hour == pThis->Time.u8Hour
+ && TimeCopy.u8Minute == pThis->Time.u8Minute
+ && TimeCopy.u8Second == pThis->Time.u8Second)
+ return VINF_SUCCESS;
+
+ rc = RTAsn1CursorSetInfo(pCursor, VERR_ASN1_TIME_NORMALIZE_MISMATCH,
+ "%s: Normalized result not the same as %s: '%.*s' / %04u-%02u-%02uT%02u:%02u:%02u vs %04u-%02u-%02uT%02u:%02u:%02u",
+ pszErrorTag, pszType, pThis->Asn1Core.cb, pThis->Asn1Core.uData.pch,
+ TimeCopy.i32Year, TimeCopy.u8Month, TimeCopy.u8MonthDay,
+ TimeCopy.u8Hour, TimeCopy.u8Minute, TimeCopy.u8Second,
+ pThis->Time.i32Year, pThis->Time.u8Month, pThis->Time.u8MonthDay,
+ pThis->Time.u8Hour, pThis->Time.u8Minute, pThis->Time.u8Second);
+ }
+ else
+ rc = RTAsn1CursorSetInfo(pCursor, VERR_ASN1_TIME_NORMALIZE_ERROR,
+ "%s: RTTimeNormalize failed on %s: '%.*s'",
+ pszErrorTag, pszType, pThis->Asn1Core.cb, pThis->Asn1Core.uData.pch);
+ }
+ else
+ rc = RTAsn1CursorSetInfo(pCursor, VERR_ASN1_TIME_BAD_NORMALIZE_INPUT,
+ "%s: Bad %s values: '%.*s'; mth=%u h=%u min=%u sec=%u",
+ pszErrorTag, pszType, pThis->Asn1Core.cb, pThis->Asn1Core.uData.pch,
+ pThis->Time.u8Month, pThis->Time.u8Hour, pThis->Time.u8Minute, pThis->Time.u8Second);
+ return rc;
+}
+
+
+/**
+ * Converts the UTCTime string into an the RTTIME member of RTASN1TIME.
+ *
+ * @returns IPRT status code.
+ * @param pCursor The cursor to use when reporting an error.
+ * @param pThis The time to parse.
+ * @param pszErrorTag The error tag.
+ */
+static int rtAsn1Time_ConvertUTCTime(PRTASN1CURSOR pCursor, PRTASN1TIME pThis, const char *pszErrorTag)
+{
+ /*
+ * While the current spec says the seconds field is not optional, this
+ * restriction was added later on. So, when parsing UTCTime we must deal
+ * with it being absent.
+ */
+ int rc;
+ bool fHaveSeconds = pThis->Asn1Core.cb == sizeof("YYMMDDHHMMSSZ") - 1;
+ if (fHaveSeconds || pThis->Asn1Core.cb == sizeof("YYMMDDHHMMZ") - 1)
+ {
+ const char *pachTime = pThis->Asn1Core.uData.pch;
+
+ /* Basic encoding validation. */
+ if ( RT_C_IS_DIGIT(pachTime[0]) /* Y */
+ && RT_C_IS_DIGIT(pachTime[1]) /* Y */
+ && RT_C_IS_DIGIT(pachTime[2]) /* M */
+ && RT_C_IS_DIGIT(pachTime[3]) /* M */
+ && RT_C_IS_DIGIT(pachTime[4]) /* D */
+ && RT_C_IS_DIGIT(pachTime[5]) /* D */
+ && RT_C_IS_DIGIT(pachTime[6]) /* H */
+ && RT_C_IS_DIGIT(pachTime[7]) /* H */
+ && RT_C_IS_DIGIT(pachTime[8]) /* M */
+ && RT_C_IS_DIGIT(pachTime[9]) /* M */
+ && ( !fHaveSeconds
+ || ( RT_C_IS_DIGIT(pachTime[10]) /* S */
+ && RT_C_IS_DIGIT(pachTime[11]) /* S */ ) )
+ && pachTime[fHaveSeconds ? 12 : 10] == 'Z'
+ )
+ {
+ /* Basic conversion. */
+ pThis->Time.i32Year = (pachTime[0] - '0') * 10 + (pachTime[1] - '0');
+ pThis->Time.i32Year += pThis->Time.i32Year < 50 ? 2000 : 1900;
+ pThis->Time.u8Month = (pachTime[2] - '0') * 10 + (pachTime[3] - '0');
+ pThis->Time.u8WeekDay = 0;
+ pThis->Time.u16YearDay = 0;
+ pThis->Time.u8MonthDay = (pachTime[4] - '0') * 10 + (pachTime[5] - '0');
+ pThis->Time.u8Hour = (pachTime[6] - '0') * 10 + (pachTime[7] - '0');
+ pThis->Time.u8Minute = (pachTime[8] - '0') * 10 + (pachTime[9] - '0');
+ if (fHaveSeconds)
+ pThis->Time.u8Second = (pachTime[10] - '0') * 10 + (pachTime[11] - '0');
+ else
+ pThis->Time.u8Second = 0;
+ pThis->Time.u32Nanosecond = 0;
+ pThis->Time.fFlags = RTTIME_FLAGS_TYPE_UTC;
+ pThis->Time.offUTC = 0;
+
+ /* Check the convered data and normalize the time structure. */
+ rc = rtAsn1Time_NormalizeTime(pCursor, pThis, "UTCTime", pszErrorTag);
+ if (RT_SUCCESS(rc))
+ return rc;
+ }
+ else
+ rc = RTAsn1CursorSetInfo(pCursor, VERR_ASN1_INVALID_UTC_TIME_ENCODING, "%s: Bad UTCTime encoding: '%.*s'",
+ pszErrorTag, pThis->Asn1Core.cb, pachTime);
+ }
+ else
+ rc = RTAsn1CursorSetInfo(pCursor, VERR_ASN1_INVALID_UTC_TIME_ENCODING, "%s: Bad UTCTime length: %#x",
+ pszErrorTag, pThis->Asn1Core.cb);
+ RT_ZERO(*pThis);
+ return rc;
+}
+
+
+/**
+ * Converts the fraction part of a generalized time into nanoseconds.
+ *
+ * @returns IPRT status code.
+ * @param pCursor The cursor to use when reporting an error.
+ * @param pchFraction Pointer to the start of the fraction (dot).
+ * @param cchFraction The length of the fraction.
+ * @param pThis The time object we're working on,
+ * Time.u32Nanoseconds will be update.
+ * @param pszErrorTag The error tag.
+ */
+static int rtAsn1Time_ConvertGeneralizedTimeFraction(PRTASN1CURSOR pCursor, const char *pchFraction, uint32_t cchFraction,
+ PRTASN1TIME pThis, const char *pszErrorTag)
+{
+ pThis->Time.u32Nanosecond = 0;
+
+ /*
+ * Check the dot.
+ */
+ if (*pchFraction != '.')
+ return RTAsn1CursorSetInfo(pCursor, VERR_ASN1_INVALID_GENERALIZED_TIME_ENCODING,
+ "%s: Expected GeneralizedTime fraction dot, found: '%c' ('%.*s')",
+ pszErrorTag, *pchFraction, pThis->Asn1Core.cb, pThis->Asn1Core.uData.pch);
+ pchFraction++;
+ cchFraction--;
+ if (!cchFraction)
+ return RTAsn1CursorSetInfo(pCursor, VERR_ASN1_INVALID_GENERALIZED_TIME_ENCODING,
+ "%s: No digit following GeneralizedTime fraction dot: '%.*s'",
+ pszErrorTag, pThis->Asn1Core.cb, pThis->Asn1Core);
+
+ /*
+ * Do the conversion.
+ */
+ char chLastDigit;
+ uint32_t uMult = 100000000;
+ do
+ {
+ char chDigit = chLastDigit = *pchFraction;
+ if (!RT_C_IS_DIGIT(chDigit))
+ return RTAsn1CursorSetInfo(pCursor, VERR_ASN1_INVALID_GENERALIZED_TIME_ENCODING,
+ "%s: Bad GeneralizedTime fraction digit: '%.*s'",
+ pszErrorTag, pThis->Asn1Core.cb, pThis->Asn1Core.uData.pch);
+ pThis->Time.u32Nanosecond += uMult * (uint32_t)(chDigit - '0');
+
+ /* Advance */
+ cchFraction--;
+ pchFraction++;
+ uMult /= 10;
+ } while (cchFraction > 0 && uMult > 0);
+
+ /*
+ * Lazy bird: For now, we don't permit higher resolution than we can
+ * internally represent. Deal with this if it ever becomes an issue.
+ */
+ if (cchFraction > 0)
+ return RTAsn1CursorSetInfo(pCursor, VERR_ASN1_INVALID_GENERALIZED_TIME_ENCODING,
+ "%s: Bad GeneralizedTime fraction too long: '%.*s'",
+ pszErrorTag, pThis->Asn1Core.cb, pThis->Asn1Core.uData.pch);
+ if (chLastDigit == '0')
+ return RTAsn1CursorSetInfo(pCursor, VERR_ASN1_INVALID_GENERALIZED_TIME_ENCODING,
+ "%s: Trailing zeros not allowed for GeneralizedTime: '%.*s'",
+ pszErrorTag, pThis->Asn1Core.cb, pThis->Asn1Core.uData.pch);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Converts the GeneralizedTime string into an the RTTIME member of RTASN1TIME.
+ *
+ * @returns IPRT status code.
+ * @param pCursor The cursor to use when reporting an error.
+ * @param pThis The time to parse.
+ * @param pszErrorTag The error tag.
+ */
+static int rtAsn1Time_ConvertGeneralizedTime(PRTASN1CURSOR pCursor, PRTASN1TIME pThis, const char *pszErrorTag)
+{
+ int rc;
+ if (pThis->Asn1Core.cb >= sizeof("YYYYMMDDHHMMSSZ") - 1)
+ {
+ const char *pachTime = pThis->Asn1Core.uData.pch;
+
+ /* Basic encoding validation. */
+ if ( RT_C_IS_DIGIT(pachTime[0]) /* Y */
+ && RT_C_IS_DIGIT(pachTime[1]) /* Y */
+ && RT_C_IS_DIGIT(pachTime[2]) /* Y */
+ && RT_C_IS_DIGIT(pachTime[3]) /* Y */
+ && RT_C_IS_DIGIT(pachTime[4]) /* M */
+ && RT_C_IS_DIGIT(pachTime[5]) /* M */
+ && RT_C_IS_DIGIT(pachTime[6]) /* D */
+ && RT_C_IS_DIGIT(pachTime[7]) /* D */
+ && RT_C_IS_DIGIT(pachTime[8]) /* H */
+ && RT_C_IS_DIGIT(pachTime[9]) /* H */
+ && RT_C_IS_DIGIT(pachTime[10]) /* M */
+ && RT_C_IS_DIGIT(pachTime[11]) /* M */
+ && RT_C_IS_DIGIT(pachTime[12]) /* S */ /** @todo was this once optional? */
+ && RT_C_IS_DIGIT(pachTime[13]) /* S */
+ && pachTime[pThis->Asn1Core.cb - 1] == 'Z'
+ )
+ {
+ /* Basic conversion. */
+ pThis->Time.i32Year = 1000 * (pachTime[0] - '0')
+ + 100 * (pachTime[1] - '0')
+ + 10 * (pachTime[2] - '0')
+ + (pachTime[3] - '0');
+ pThis->Time.u8Month = (pachTime[4] - '0') * 10 + (pachTime[5] - '0');
+ pThis->Time.u8WeekDay = 0;
+ pThis->Time.u16YearDay = 0;
+ pThis->Time.u8MonthDay = (pachTime[6] - '0') * 10 + (pachTime[7] - '0');
+ pThis->Time.u8Hour = (pachTime[8] - '0') * 10 + (pachTime[9] - '0');
+ pThis->Time.u8Minute = (pachTime[10] - '0') * 10 + (pachTime[11] - '0');
+ pThis->Time.u8Second = (pachTime[12] - '0') * 10 + (pachTime[13] - '0');
+ pThis->Time.u32Nanosecond = 0;
+ pThis->Time.fFlags = RTTIME_FLAGS_TYPE_UTC;
+ pThis->Time.offUTC = 0;
+
+ /* Optional fraction part. */
+ rc = VINF_SUCCESS;
+ uint32_t cchLeft = pThis->Asn1Core.cb - 14 - 1;
+ if (cchLeft > 0)
+ rc = rtAsn1Time_ConvertGeneralizedTimeFraction(pCursor, pachTime + 14, cchLeft, pThis, pszErrorTag);
+
+ /* Check the convered data and normalize the time structure. */
+ if (RT_SUCCESS(rc))
+ {
+ rc = rtAsn1Time_NormalizeTime(pCursor, pThis, "GeneralizedTime", pszErrorTag);
+ if (RT_SUCCESS(rc))
+ return VINF_SUCCESS;
+ }
+ }
+ else
+ rc = RTAsn1CursorSetInfo(pCursor, VERR_ASN1_INVALID_GENERALIZED_TIME_ENCODING,
+ "%s: Bad GeneralizedTime encoding: '%.*s'",
+ pszErrorTag, pThis->Asn1Core.cb, pachTime);
+ }
+ else
+ rc = RTAsn1CursorSetInfo(pCursor, VERR_ASN1_INVALID_GENERALIZED_TIME_ENCODING,
+ "%s: Bad GeneralizedTime length: %#x",
+ pszErrorTag, pThis->Asn1Core.cb);
+ RT_ZERO(*pThis);
+ return rc;
+}
+
+
+RTDECL(int) RTAsn1Time_DecodeAsn1(PRTASN1CURSOR pCursor, uint32_t fFlags, PRTASN1TIME pThis, const char *pszErrorTag)
+{
+ Assert(!(fFlags & RTASN1CURSOR_GET_F_IMPLICIT)); RT_NOREF_PV(fFlags);
+ int rc = RTAsn1CursorReadHdr(pCursor, &pThis->Asn1Core, pszErrorTag);
+ if (RT_SUCCESS(rc))
+ {
+ if (pThis->Asn1Core.fClass == (ASN1_TAGCLASS_UNIVERSAL | ASN1_TAGFLAG_PRIMITIVE) )
+ {
+ if (pThis->Asn1Core.uTag == ASN1_TAG_UTC_TIME)
+ {
+ RTAsn1CursorSkip(pCursor, pThis->Asn1Core.cb);
+ pThis->Asn1Core.pOps = &g_RTAsn1Time_Vtable;
+ pThis->Asn1Core.fFlags |= RTASN1CORE_F_PRIMITE_TAG_STRUCT;
+ return rtAsn1Time_ConvertUTCTime(pCursor, pThis, pszErrorTag);
+ }
+
+ if (pThis->Asn1Core.uTag == ASN1_TAG_GENERALIZED_TIME)
+ {
+ RTAsn1CursorSkip(pCursor, pThis->Asn1Core.cb);
+ pThis->Asn1Core.pOps = &g_RTAsn1Time_Vtable;
+ pThis->Asn1Core.fFlags |= RTASN1CORE_F_PRIMITE_TAG_STRUCT;
+ return rtAsn1Time_ConvertGeneralizedTime(pCursor, pThis, pszErrorTag);
+ }
+
+ rc = RTAsn1CursorSetInfo(pCursor, VERR_ASN1_CURSOR_TAG_MISMATCH, "%s: Not UTCTime nor GeneralizedTime: uTag=%#x",
+ pszErrorTag, pThis->Asn1Core.uTag);
+ }
+ else
+ rc = RTAsn1CursorSetInfo(pCursor, VERR_ASN1_CURSOR_TAG_FLAG_CLASS_MISMATCH,
+ "%s: Not UTCTime nor GeneralizedTime: fClass=%#x / uTag=%#x",
+ pszErrorTag, pThis->Asn1Core.fClass, pThis->Asn1Core.uTag);
+ }
+ RT_ZERO(*pThis);
+ return rc;
+}
+
+
+RTDECL(int) RTAsn1UtcTime_DecodeAsn1(PRTASN1CURSOR pCursor, uint32_t fFlags, PRTASN1TIME pThis, const char *pszErrorTag)
+{
+ int rc = RTAsn1CursorReadHdr(pCursor, &pThis->Asn1Core, pszErrorTag);
+ if (RT_SUCCESS(rc))
+ {
+ rc = RTAsn1CursorMatchTagClassFlags(pCursor, &pThis->Asn1Core, ASN1_TAG_UTC_TIME,
+ ASN1_TAGCLASS_UNIVERSAL | ASN1_TAGFLAG_PRIMITIVE,
+ fFlags, pszErrorTag, "UTC TIME");
+ if (RT_SUCCESS(rc))
+ {
+ RTAsn1CursorSkip(pCursor, pThis->Asn1Core.cb);
+ pThis->Asn1Core.pOps = &g_RTAsn1Time_Vtable;
+ pThis->Asn1Core.fFlags |= RTASN1CORE_F_PRIMITE_TAG_STRUCT;
+ return rtAsn1Time_ConvertUTCTime(pCursor, pThis, pszErrorTag);
+ }
+ }
+ RT_ZERO(*pThis);
+ return rc;
+}
+
+
+RTDECL(int) RTAsn1GeneralizedTime_DecodeAsn1(PRTASN1CURSOR pCursor, uint32_t fFlags, PRTASN1TIME pThis, const char *pszErrorTag)
+{
+ int rc = RTAsn1CursorReadHdr(pCursor, &pThis->Asn1Core, pszErrorTag);
+ if (RT_SUCCESS(rc))
+ {
+ rc = RTAsn1CursorMatchTagClassFlags(pCursor, &pThis->Asn1Core, ASN1_TAG_GENERALIZED_TIME,
+ ASN1_TAGCLASS_UNIVERSAL | ASN1_TAGFLAG_PRIMITIVE,
+ fFlags, pszErrorTag, "GENERALIZED TIME");
+ if (RT_SUCCESS(rc))
+ {
+ RTAsn1CursorSkip(pCursor, pThis->Asn1Core.cb);
+ pThis->Asn1Core.pOps = &g_RTAsn1Time_Vtable;
+ pThis->Asn1Core.fFlags |= RTASN1CORE_F_PRIMITE_TAG_STRUCT;
+ return rtAsn1Time_ConvertGeneralizedTime(pCursor, pThis, pszErrorTag);
+ }
+ }
+ RT_ZERO(*pThis);
+ return rc;
+}
+
+
+/*
+ * Generate code for the associated collection types.
+ */
+#define RTASN1TMPL_TEMPLATE_FILE "../common/asn1/asn1-ut-time-template.h"
+#include <iprt/asn1-generator-internal-header.h>
+#include <iprt/asn1-generator-asn1-decoder.h>
+