diff options
Diffstat (limited to 'src/VBox/Runtime/common/checksum/alt-sha1.cpp')
-rw-r--r-- | src/VBox/Runtime/common/checksum/alt-sha1.cpp | 525 |
1 files changed, 525 insertions, 0 deletions
diff --git a/src/VBox/Runtime/common/checksum/alt-sha1.cpp b/src/VBox/Runtime/common/checksum/alt-sha1.cpp new file mode 100644 index 00000000..f0714093 --- /dev/null +++ b/src/VBox/Runtime/common/checksum/alt-sha1.cpp @@ -0,0 +1,525 @@ +/* $Id: alt-sha1.cpp $ */ +/** @file + * IPRT - SHA-1 hash functions, Alternative Implementation. + */ + +/* + * Copyright (C) 2009-2020 Oracle Corporation + * + * This file is part of VirtualBox Open Source Edition (OSE), as + * available from http://www.virtualbox.org. This file is free software; + * you can redistribute it and/or modify it under the terms of the GNU + * General Public License (GPL) as published by the Free Software + * Foundation, in version 2 as it comes in the "COPYING" file of the + * VirtualBox OSE distribution. VirtualBox OSE is distributed in the + * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. + * + * The contents of this file may alternatively be used under the terms + * of the Common Development and Distribution License Version 1.0 + * (CDDL) only, as it comes in the "COPYING.CDDL" file of the + * VirtualBox OSE distribution, in which case the provisions of the + * CDDL are applicable instead of those of the GPL. + * + * You may elect to license modified versions of this file under the + * terms and conditions of either the GPL or the CDDL or both. + */ + + +/********************************************************************************************************************************* +* Defined Constants And Macros * +*********************************************************************************************************************************/ +/** The SHA-1 block size (in bytes). */ +#define RTSHA1_BLOCK_SIZE 64U + +/** Enables the unrolled code. */ +#define RTSHA1_UNROLLED 1 + + +/********************************************************************************************************************************* +* Header Files * +*********************************************************************************************************************************/ +#include "internal/iprt.h" +#include <iprt/types.h> +#include <iprt/assert.h> +#include <iprt/asm.h> +#include <iprt/string.h> + + +/** Our private context structure. */ +typedef struct RTSHA1ALTPRIVATECTX +{ + /** The W array. + * Buffering happens in the first 16 words, converted from big endian to host + * endian immediately before processing. The amount of buffered data is kept + * in the 6 least significant bits of cbMessage. */ + uint32_t auW[80]; + /** The message length (in bytes). */ + uint64_t cbMessage; + + /** The 5 hash values. */ + uint32_t auH[5]; +} RTSHA1ALTPRIVATECTX; + +#define RT_SHA1_PRIVATE_ALT_CONTEXT +#include <iprt/sha.h> + + +AssertCompile(RT_SIZEOFMEMB(RTSHA1CONTEXT, abPadding) >= RT_SIZEOFMEMB(RTSHA1CONTEXT, AltPrivate)); +AssertCompileMemberSize(RTSHA1ALTPRIVATECTX, auH, RTSHA1_HASH_SIZE); + + + + +RTDECL(void) RTSha1Init(PRTSHA1CONTEXT pCtx) +{ + pCtx->AltPrivate.cbMessage = 0; + pCtx->AltPrivate.auH[0] = UINT32_C(0x67452301); + pCtx->AltPrivate.auH[1] = UINT32_C(0xefcdab89); + pCtx->AltPrivate.auH[2] = UINT32_C(0x98badcfe); + pCtx->AltPrivate.auH[3] = UINT32_C(0x10325476); + pCtx->AltPrivate.auH[4] = UINT32_C(0xc3d2e1f0); +} +RT_EXPORT_SYMBOL(RTSha1Init); + + +/** + * Initializes the auW array from the specfied input block. + * + * @param pCtx The SHA1 context. + * @param pbBlock The block. Must be 32-bit aligned. + */ +DECLINLINE(void) rtSha1BlockInit(PRTSHA1CONTEXT pCtx, uint8_t const *pbBlock) +{ +#ifdef RTSHA1_UNROLLED + uint32_t const *puSrc = (uint32_t const *)pbBlock; + uint32_t *puW = &pCtx->AltPrivate.auW[0]; + Assert(!((uintptr_t)puSrc & 3)); + Assert(!((uintptr_t)puW & 3)); + + /* Copy and byte-swap the block. Initializing the rest of the Ws are done + in the processing loop. */ +# ifdef RT_LITTLE_ENDIAN + *puW++ = ASMByteSwapU32(*puSrc++); + *puW++ = ASMByteSwapU32(*puSrc++); + *puW++ = ASMByteSwapU32(*puSrc++); + *puW++ = ASMByteSwapU32(*puSrc++); + + *puW++ = ASMByteSwapU32(*puSrc++); + *puW++ = ASMByteSwapU32(*puSrc++); + *puW++ = ASMByteSwapU32(*puSrc++); + *puW++ = ASMByteSwapU32(*puSrc++); + + *puW++ = ASMByteSwapU32(*puSrc++); + *puW++ = ASMByteSwapU32(*puSrc++); + *puW++ = ASMByteSwapU32(*puSrc++); + *puW++ = ASMByteSwapU32(*puSrc++); + + *puW++ = ASMByteSwapU32(*puSrc++); + *puW++ = ASMByteSwapU32(*puSrc++); + *puW++ = ASMByteSwapU32(*puSrc++); + *puW++ = ASMByteSwapU32(*puSrc++); +# else + memcpy(puW, puSrc, RTSHA1_BLOCK_SIZE); +# endif + +#else /* !RTSHA1_UNROLLED */ + uint32_t const *pu32Block = (uint32_t const *)pbBlock; + Assert(!((uintptr_t)pu32Block & 3)); + + unsigned iWord; + for (iWord = 0; iWord < 16; iWord++) + pCtx->AltPrivate.auW[iWord] = RT_BE2H_U32(pu32Block[iWord]); + + for (; iWord < RT_ELEMENTS(pCtx->AltPrivate.auW); iWord++) + { + uint32_t u32 = pCtx->AltPrivate.auW[iWord - 16]; + u32 ^= pCtx->AltPrivate.auW[iWord - 14]; + u32 ^= pCtx->AltPrivate.auW[iWord - 8]; + u32 ^= pCtx->AltPrivate.auW[iWord - 3]; + pCtx->AltPrivate.auW[iWord] = ASMRotateLeftU32(u32, 1); + } +#endif /* !RTSHA1_UNROLLED */ +} + + +/** + * Initializes the auW array from data buffered in the first part of the array. + * + * @param pCtx The SHA1 context. + */ +DECLINLINE(void) rtSha1BlockInitBuffered(PRTSHA1CONTEXT pCtx) +{ +#ifdef RTSHA1_UNROLLED + uint32_t *puW = &pCtx->AltPrivate.auW[0]; + Assert(!((uintptr_t)puW & 3)); + + /* Do the byte swap if necessary. Initializing the rest of the Ws are done + in the processing loop. */ +# ifdef RT_LITTLE_ENDIAN + *puW = ASMByteSwapU32(*puW); puW++; + *puW = ASMByteSwapU32(*puW); puW++; + *puW = ASMByteSwapU32(*puW); puW++; + *puW = ASMByteSwapU32(*puW); puW++; + + *puW = ASMByteSwapU32(*puW); puW++; + *puW = ASMByteSwapU32(*puW); puW++; + *puW = ASMByteSwapU32(*puW); puW++; + *puW = ASMByteSwapU32(*puW); puW++; + + *puW = ASMByteSwapU32(*puW); puW++; + *puW = ASMByteSwapU32(*puW); puW++; + *puW = ASMByteSwapU32(*puW); puW++; + *puW = ASMByteSwapU32(*puW); puW++; + + *puW = ASMByteSwapU32(*puW); puW++; + *puW = ASMByteSwapU32(*puW); puW++; + *puW = ASMByteSwapU32(*puW); puW++; + *puW = ASMByteSwapU32(*puW); puW++; +# endif + +#else /* !RTSHA1_UNROLLED_INIT */ + unsigned iWord; + for (iWord = 0; iWord < 16; iWord++) + pCtx->AltPrivate.auW[iWord] = RT_BE2H_U32(pCtx->AltPrivate.auW[iWord]); + + for (; iWord < RT_ELEMENTS(pCtx->AltPrivate.auW); iWord++) + { + uint32_t u32 = pCtx->AltPrivate.auW[iWord - 16]; + u32 ^= pCtx->AltPrivate.auW[iWord - 14]; + u32 ^= pCtx->AltPrivate.auW[iWord - 8]; + u32 ^= pCtx->AltPrivate.auW[iWord - 3]; + pCtx->AltPrivate.auW[iWord] = ASMRotateLeftU32(u32, 1); + } +#endif /* !RTSHA1_UNROLLED_INIT */ +} + + +/** Function 4.1, Ch(x,y,z). */ +DECL_FORCE_INLINE(uint32_t) rtSha1Ch(uint32_t uX, uint32_t uY, uint32_t uZ) +{ +#if 1 + /* Optimization that saves one operation and probably a temporary variable. */ + uint32_t uResult = uY; + uResult ^= uZ; + uResult &= uX; + uResult ^= uZ; + return uResult; +#else + /* The original. */ + uint32_t uResult = uX & uY; + uResult ^= ~uX & uZ; + return uResult; +#endif +} + + +/** Function 4.1, Parity(x,y,z). */ +DECL_FORCE_INLINE(uint32_t) rtSha1Parity(uint32_t uX, uint32_t uY, uint32_t uZ) +{ + uint32_t uResult = uX; + uResult ^= uY; + uResult ^= uZ; + return uResult; +} + + +/** Function 4.1, Maj(x,y,z). */ +DECL_FORCE_INLINE(uint32_t) rtSha1Maj(uint32_t uX, uint32_t uY, uint32_t uZ) +{ +#if 1 + /* Optimization that save one operation and probably a temporary variable. */ + uint32_t uResult = uY; + uResult ^= uZ; + uResult &= uX; + uResult ^= uY & uZ; + return uResult; +#else + /* The original. */ + uint32_t uResult = (uX & uY); + uResult |= (uX & uZ); + uResult |= (uY & uZ); + return uResult; +#endif +} + + +/** + * Process the current block. + * + * Requires one of the rtSha1BlockInit functions to be called first. + * + * @param pCtx The SHA1 context. + */ +static void rtSha1BlockProcess(PRTSHA1CONTEXT pCtx) +{ + uint32_t uA = pCtx->AltPrivate.auH[0]; + uint32_t uB = pCtx->AltPrivate.auH[1]; + uint32_t uC = pCtx->AltPrivate.auH[2]; + uint32_t uD = pCtx->AltPrivate.auH[3]; + uint32_t uE = pCtx->AltPrivate.auH[4]; + +#ifdef RTSHA1_UNROLLED + /* This fully unrolled version will avoid the variable rotation by + embedding it into the loop unrolling. */ + uint32_t *puW = &pCtx->AltPrivate.auW[0]; +# define SHA1_BODY(a_iWord, a_uK, a_fnFt, a_uA, a_uB, a_uC, a_uD, a_uE) \ + do { \ + if (a_iWord < 16) \ + a_uE += *puW++; \ + else \ + { \ + uint32_t u32 = puW[-16]; \ + u32 ^= puW[-14]; \ + u32 ^= puW[-8]; \ + u32 ^= puW[-3]; \ + u32 = ASMRotateLeftU32(u32, 1); \ + *puW++ = u32; \ + a_uE += u32; \ + } \ + a_uE += (a_uK); \ + a_uE += ASMRotateLeftU32(a_uA, 5); \ + a_uE += a_fnFt(a_uB, a_uC, a_uD); \ + a_uB = ASMRotateLeftU32(a_uB, 30); \ + } while (0) +# define FIVE_ITERATIONS(a_iFirst, a_uK, a_fnFt) \ + do { \ + SHA1_BODY(a_iFirst + 0, a_uK, a_fnFt, uA, uB, uC, uD, uE); \ + SHA1_BODY(a_iFirst + 1, a_uK, a_fnFt, uE, uA, uB, uC, uD); \ + SHA1_BODY(a_iFirst + 2, a_uK, a_fnFt, uD, uE, uA, uB, uC); \ + SHA1_BODY(a_iFirst + 3, a_uK, a_fnFt, uC, uD, uE, uA, uB); \ + SHA1_BODY(a_iFirst + 4, a_uK, a_fnFt, uB, uC, uD, uE, uA); \ + } while (0) +# define TWENTY_ITERATIONS(a_iStart, a_uK, a_fnFt) \ + do { \ + FIVE_ITERATIONS(a_iStart + 0, a_uK, a_fnFt); \ + FIVE_ITERATIONS(a_iStart + 5, a_uK, a_fnFt); \ + FIVE_ITERATIONS(a_iStart + 10, a_uK, a_fnFt); \ + FIVE_ITERATIONS(a_iStart + 15, a_uK, a_fnFt); \ + } while (0) + + TWENTY_ITERATIONS( 0, UINT32_C(0x5a827999), rtSha1Ch); + TWENTY_ITERATIONS(20, UINT32_C(0x6ed9eba1), rtSha1Parity); + TWENTY_ITERATIONS(40, UINT32_C(0x8f1bbcdc), rtSha1Maj); + TWENTY_ITERATIONS(60, UINT32_C(0xca62c1d6), rtSha1Parity); + +#elif 1 /* Version avoiding the constant selection. */ + unsigned iWord = 0; +# define TWENTY_ITERATIONS(a_iWordStop, a_uK, a_uExprBCD) \ + for (; iWord < a_iWordStop; iWord++) \ + { \ + uint32_t uTemp = ASMRotateLeftU32(uA, 5); \ + uTemp += (a_uExprBCD); \ + uTemp += uE; \ + uTemp += pCtx->AltPrivate.auW[iWord]; \ + uTemp += (a_uK); \ + \ + uE = uD; \ + uD = uC; \ + uC = ASMRotateLeftU32(uB, 30); \ + uB = uA; \ + uA = uTemp; \ + } do { } while (0) + TWENTY_ITERATIONS(20, UINT32_C(0x5a827999), rtSha1Ch(uB, uC, uD)); + TWENTY_ITERATIONS(40, UINT32_C(0x6ed9eba1), rtSha1Parity(uB, uC, uD)); + TWENTY_ITERATIONS(60, UINT32_C(0x8f1bbcdc), rtSha1Maj(uB, uC, uD)); + TWENTY_ITERATIONS(80, UINT32_C(0xca62c1d6), rtSha1Parity(uB, uC, uD)); + +#else /* Dead simple implementation. */ + for (unsigned iWord = 0; iWord < RT_ELEMENTS(pCtx->AltPrivate.auW); iWord++) + { + uint32_t uTemp = ASMRotateLeftU32(uA, 5); + uTemp += uE; + uTemp += pCtx->AltPrivate.auW[iWord]; + if (iWord <= 19) + { + uTemp += (uB & uC) | (~uB & uD); + uTemp += UINT32_C(0x5a827999); + } + else if (iWord <= 39) + { + uTemp += uB ^ uC ^ uD; + uTemp += UINT32_C(0x6ed9eba1); + } + else if (iWord <= 59) + { + uTemp += (uB & uC) | (uB & uD) | (uC & uD); + uTemp += UINT32_C(0x8f1bbcdc); + } + else + { + uTemp += uB ^ uC ^ uD; + uTemp += UINT32_C(0xca62c1d6); + } + + uE = uD; + uD = uC; + uC = ASMRotateLeftU32(uB, 30); + uB = uA; + uA = uTemp; + } +#endif + + pCtx->AltPrivate.auH[0] += uA; + pCtx->AltPrivate.auH[1] += uB; + pCtx->AltPrivate.auH[2] += uC; + pCtx->AltPrivate.auH[3] += uD; + pCtx->AltPrivate.auH[4] += uE; +} + + +RTDECL(void) RTSha1Update(PRTSHA1CONTEXT pCtx, const void *pvBuf, size_t cbBuf) +{ + Assert(pCtx->AltPrivate.cbMessage < UINT64_MAX / 2); + uint8_t const *pbBuf = (uint8_t const *)pvBuf; + + /* + * Deal with buffered bytes first. + */ + size_t cbBuffered = (size_t)pCtx->AltPrivate.cbMessage & (RTSHA1_BLOCK_SIZE - 1U); + if (cbBuffered) + { + size_t cbMissing = RTSHA1_BLOCK_SIZE - cbBuffered; + if (cbBuf >= cbMissing) + { + memcpy((uint8_t *)&pCtx->AltPrivate.auW[0] + cbBuffered, pbBuf, cbMissing); + pCtx->AltPrivate.cbMessage += cbMissing; + pbBuf += cbMissing; + cbBuf -= cbMissing; + + rtSha1BlockInitBuffered(pCtx); + rtSha1BlockProcess(pCtx); + } + else + { + memcpy((uint8_t *)&pCtx->AltPrivate.auW[0] + cbBuffered, pbBuf, cbBuf); + pCtx->AltPrivate.cbMessage += cbBuf; + return; + } + } + + if (!((uintptr_t)pbBuf & 3)) + { + /* + * Process full blocks directly from the input buffer. + */ + while (cbBuf >= RTSHA1_BLOCK_SIZE) + { + rtSha1BlockInit(pCtx, pbBuf); + rtSha1BlockProcess(pCtx); + + pCtx->AltPrivate.cbMessage += RTSHA1_BLOCK_SIZE; + pbBuf += RTSHA1_BLOCK_SIZE; + cbBuf -= RTSHA1_BLOCK_SIZE; + } + } + else + { + /* + * Unaligned input, so buffer it. + */ + while (cbBuf >= RTSHA1_BLOCK_SIZE) + { + memcpy((uint8_t *)&pCtx->AltPrivate.auW[0], pbBuf, RTSHA1_BLOCK_SIZE); + rtSha1BlockInitBuffered(pCtx); + rtSha1BlockProcess(pCtx); + + pCtx->AltPrivate.cbMessage += RTSHA1_BLOCK_SIZE; + pbBuf += RTSHA1_BLOCK_SIZE; + cbBuf -= RTSHA1_BLOCK_SIZE; + } + } + + /* + * Stash any remaining bytes into the context buffer. + */ + if (cbBuf > 0) + { + memcpy((uint8_t *)&pCtx->AltPrivate.auW[0], pbBuf, cbBuf); + pCtx->AltPrivate.cbMessage += cbBuf; + } +} +RT_EXPORT_SYMBOL(RTSha1Update); + + +static void rtSha1FinalInternal(PRTSHA1CONTEXT pCtx) +{ + Assert(pCtx->AltPrivate.cbMessage < UINT64_MAX / 2); + + /* + * Complete the message by adding a single bit (0x80), padding till + * the next 448-bit boundrary, the add the message length. + */ + uint64_t const cMessageBits = pCtx->AltPrivate.cbMessage * 8; + + unsigned cbMissing = RTSHA1_BLOCK_SIZE - ((unsigned)pCtx->AltPrivate.cbMessage & (RTSHA1_BLOCK_SIZE - 1U)); + static uint8_t const s_abSingleBitAndSomePadding[12] = { 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; + if (cbMissing < 1U + 8U) + /* Less than 64+8 bits left in the current block, force a new block. */ + RTSha1Update(pCtx, &s_abSingleBitAndSomePadding, sizeof(s_abSingleBitAndSomePadding)); + else + RTSha1Update(pCtx, &s_abSingleBitAndSomePadding, 1); + + unsigned cbBuffered = (unsigned)pCtx->AltPrivate.cbMessage & (RTSHA1_BLOCK_SIZE - 1U); + cbMissing = RTSHA1_BLOCK_SIZE - cbBuffered; + Assert(cbMissing >= 8); + memset((uint8_t *)&pCtx->AltPrivate.auW[0] + cbBuffered, 0, cbMissing - 8); + + *(uint64_t *)&pCtx->AltPrivate.auW[14] = RT_H2BE_U64(cMessageBits); + + /* + * Process the last buffered block constructed/completed above. + */ + rtSha1BlockInitBuffered(pCtx); + rtSha1BlockProcess(pCtx); + + /* + * Convert the byte order of the hash words and we're done. + */ + pCtx->AltPrivate.auH[0] = RT_H2BE_U32(pCtx->AltPrivate.auH[0]); + pCtx->AltPrivate.auH[1] = RT_H2BE_U32(pCtx->AltPrivate.auH[1]); + pCtx->AltPrivate.auH[2] = RT_H2BE_U32(pCtx->AltPrivate.auH[2]); + pCtx->AltPrivate.auH[3] = RT_H2BE_U32(pCtx->AltPrivate.auH[3]); + pCtx->AltPrivate.auH[4] = RT_H2BE_U32(pCtx->AltPrivate.auH[4]); +} + + +DECLINLINE(void) rtSha1WipeCtx(PRTSHA1CONTEXT pCtx) +{ + RT_ZERO(pCtx->AltPrivate); + pCtx->AltPrivate.cbMessage = UINT64_MAX; +} + + +RTDECL(void) RTSha1Final(PRTSHA1CONTEXT pCtx, uint8_t pabDigest[RTSHA1_HASH_SIZE]) +{ + rtSha1FinalInternal(pCtx); + memcpy(pabDigest, &pCtx->AltPrivate.auH[0], RTSHA1_HASH_SIZE); + rtSha1WipeCtx(pCtx); +} +RT_EXPORT_SYMBOL(RTSha1Final); + + +RTDECL(void) RTSha1(const void *pvBuf, size_t cbBuf, uint8_t pabDigest[RTSHA1_HASH_SIZE]) +{ + RTSHA1CONTEXT Ctx; + RTSha1Init(&Ctx); + RTSha1Update(&Ctx, pvBuf, cbBuf); + RTSha1Final(&Ctx, pabDigest); +} +RT_EXPORT_SYMBOL(RTSha1); + + +RTDECL(bool) RTSha1Check(const void *pvBuf, size_t cbBuf, uint8_t const pabHash[RTSHA1_HASH_SIZE]) +{ + RTSHA1CONTEXT Ctx; + RTSha1Init(&Ctx); + RTSha1Update(&Ctx, pvBuf, cbBuf); + rtSha1FinalInternal(&Ctx); + + bool fRet = memcmp(pabHash, &Ctx.AltPrivate.auH[0], RTSHA1_HASH_SIZE) == 0; + + rtSha1WipeCtx(&Ctx); + return fRet; +} +RT_EXPORT_SYMBOL(RTSha1Check); + |