diff options
Diffstat (limited to '')
-rw-r--r-- | src/VBox/Runtime/r0drv/linux/memobj-r0drv-linux.c | 1966 |
1 files changed, 1966 insertions, 0 deletions
diff --git a/src/VBox/Runtime/r0drv/linux/memobj-r0drv-linux.c b/src/VBox/Runtime/r0drv/linux/memobj-r0drv-linux.c new file mode 100644 index 00000000..6ae59089 --- /dev/null +++ b/src/VBox/Runtime/r0drv/linux/memobj-r0drv-linux.c @@ -0,0 +1,1966 @@ +/* $Id: memobj-r0drv-linux.c $ */ +/** @file + * IPRT - Ring-0 Memory Objects, Linux. + */ + +/* + * Copyright (C) 2006-2020 Oracle Corporation + * + * This file is part of VirtualBox Open Source Edition (OSE), as + * available from http://www.virtualbox.org. This file is free software; + * you can redistribute it and/or modify it under the terms of the GNU + * General Public License (GPL) as published by the Free Software + * Foundation, in version 2 as it comes in the "COPYING" file of the + * VirtualBox OSE distribution. VirtualBox OSE is distributed in the + * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. + * + * The contents of this file may alternatively be used under the terms + * of the Common Development and Distribution License Version 1.0 + * (CDDL) only, as it comes in the "COPYING.CDDL" file of the + * VirtualBox OSE distribution, in which case the provisions of the + * CDDL are applicable instead of those of the GPL. + * + * You may elect to license modified versions of this file under the + * terms and conditions of either the GPL or the CDDL or both. + */ + + +/********************************************************************************************************************************* +* Header Files * +*********************************************************************************************************************************/ +#include "the-linux-kernel.h" + +#include <iprt/memobj.h> +#include <iprt/assert.h> +#include <iprt/err.h> +#include <iprt/log.h> +#include <iprt/mem.h> +#include <iprt/process.h> +#include <iprt/string.h> +#include "internal/memobj.h" +#include "internal/iprt.h" + + +/********************************************************************************************************************************* +* Defined Constants And Macros * +*********************************************************************************************************************************/ +/* early 2.6 kernels */ +#ifndef PAGE_SHARED_EXEC +# define PAGE_SHARED_EXEC PAGE_SHARED +#endif +#ifndef PAGE_READONLY_EXEC +# define PAGE_READONLY_EXEC PAGE_READONLY +#endif + +/** @def IPRT_USE_ALLOC_VM_AREA_FOR_EXEC + * Whether we use alloc_vm_area (3.2+) for executable memory. + * This is a must for 5.8+, but we enable it all the way back to 3.2.x for + * better W^R compliance (fExecutable flag). */ +#if RTLNX_VER_RANGE(3,2,0, 5,10,0) || defined(DOXYGEN_RUNNING) +# define IPRT_USE_ALLOC_VM_AREA_FOR_EXEC +#endif +/** @def IPRT_USE_APPLY_TO_PAGE_RANGE_FOR_EXEC + * alloc_vm_area was removed with 5.10 so we have to resort to a different way + * to allocate executable memory. + * It would be possible to remove IPRT_USE_ALLOC_VM_AREA_FOR_EXEC and use + * this path execlusively for 3.2+ but no time to test it really works on every + * supported kernel, so better play safe for now. + */ +#if RTLNX_VER_MIN(5,10,0) || defined(DOXYGEN_RUNNING) +# define IPRT_USE_APPLY_TO_PAGE_RANGE_FOR_EXEC +#endif + +/* + * 2.6.29+ kernels don't work with remap_pfn_range() anymore because + * track_pfn_vma_new() is apparently not defined for non-RAM pages. + * It should be safe to use vm_insert_page() older kernels as well. + */ +#if RTLNX_VER_MIN(2,6,23) +# define VBOX_USE_INSERT_PAGE +#endif +#if defined(CONFIG_X86_PAE) \ + && ( defined(HAVE_26_STYLE_REMAP_PAGE_RANGE) \ + || RTLNX_VER_RANGE(2,6,0, 2,6,11) ) +# define VBOX_USE_PAE_HACK +#endif + +/* gfp_t was introduced in 2.6.14, define it for earlier. */ +#if RTLNX_VER_MAX(2,6,14) +# define gfp_t unsigned +#endif + +/* + * Wrappers around mmap_lock/mmap_sem difference. + */ +#if RTLNX_VER_MIN(5,8,0) +# define LNX_MM_DOWN_READ(a_pMm) down_read(&(a_pMm)->mmap_lock) +# define LNX_MM_UP_READ(a_pMm) up_read(&(a_pMm)->mmap_lock) +# define LNX_MM_DOWN_WRITE(a_pMm) down_write(&(a_pMm)->mmap_lock) +# define LNX_MM_UP_WRITE(a_pMm) up_write(&(a_pMm)->mmap_lock) +#else +# define LNX_MM_DOWN_READ(a_pMm) down_read(&(a_pMm)->mmap_sem) +# define LNX_MM_UP_READ(a_pMm) up_read(&(a_pMm)->mmap_sem) +# define LNX_MM_DOWN_WRITE(a_pMm) down_write(&(a_pMm)->mmap_sem) +# define LNX_MM_UP_WRITE(a_pMm) up_write(&(a_pMm)->mmap_sem) +#endif + + +/********************************************************************************************************************************* +* Structures and Typedefs * +*********************************************************************************************************************************/ +/** + * The Linux version of the memory object structure. + */ +typedef struct RTR0MEMOBJLNX +{ + /** The core structure. */ + RTR0MEMOBJINTERNAL Core; + /** Set if the allocation is contiguous. + * This means it has to be given back as one chunk. */ + bool fContiguous; + /** Set if executable allocation. */ + bool fExecutable; + /** Set if we've vmap'ed the memory into ring-0. */ + bool fMappedToRing0; +#ifdef IPRT_USE_ALLOC_VM_AREA_FOR_EXEC + /** Return from alloc_vm_area() that we now need to use for executable + * memory. */ + struct vm_struct *pArea; + /** PTE array that goes along with pArea (must be freed). */ + pte_t **papPtesForArea; +#endif + /** The pages in the apPages array. */ + size_t cPages; + /** Array of struct page pointers. (variable size) */ + struct page *apPages[1]; +} RTR0MEMOBJLNX; +/** Pointer to the linux memory object. */ +typedef RTR0MEMOBJLNX *PRTR0MEMOBJLNX; + + +static void rtR0MemObjLinuxFreePages(PRTR0MEMOBJLNX pMemLnx); + + +/** + * Helper that converts from a RTR0PROCESS handle to a linux task. + * + * @returns The corresponding Linux task. + * @param R0Process IPRT ring-0 process handle. + */ +static struct task_struct *rtR0ProcessToLinuxTask(RTR0PROCESS R0Process) +{ + /** @todo fix rtR0ProcessToLinuxTask!! */ + /** @todo many (all?) callers currently assume that we return 'current'! */ + return R0Process == RTR0ProcHandleSelf() ? current : NULL; +} + + +/** + * Compute order. Some functions allocate 2^order pages. + * + * @returns order. + * @param cPages Number of pages. + */ +static int rtR0MemObjLinuxOrder(size_t cPages) +{ + int iOrder; + size_t cTmp; + + for (iOrder = 0, cTmp = cPages; cTmp >>= 1; ++iOrder) + ; + if (cPages & ~((size_t)1 << iOrder)) + ++iOrder; + + return iOrder; +} + + +/** + * Converts from RTMEM_PROT_* to Linux PAGE_*. + * + * @returns Linux page protection constant. + * @param fProt The IPRT protection mask. + * @param fKernel Whether it applies to kernel or user space. + */ +static pgprot_t rtR0MemObjLinuxConvertProt(unsigned fProt, bool fKernel) +{ + switch (fProt) + { + default: + AssertMsgFailed(("%#x %d\n", fProt, fKernel)); RT_FALL_THRU(); + case RTMEM_PROT_NONE: + return PAGE_NONE; + + case RTMEM_PROT_READ: + return fKernel ? PAGE_KERNEL_RO : PAGE_READONLY; + + case RTMEM_PROT_WRITE: + case RTMEM_PROT_WRITE | RTMEM_PROT_READ: + return fKernel ? PAGE_KERNEL : PAGE_SHARED; + + case RTMEM_PROT_EXEC: + case RTMEM_PROT_EXEC | RTMEM_PROT_READ: +#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64) + if (fKernel) + { + pgprot_t fPg = MY_PAGE_KERNEL_EXEC; + pgprot_val(fPg) &= ~_PAGE_RW; + return fPg; + } + return PAGE_READONLY_EXEC; +#else + return fKernel ? MY_PAGE_KERNEL_EXEC : PAGE_READONLY_EXEC; +#endif + + case RTMEM_PROT_WRITE | RTMEM_PROT_EXEC: + case RTMEM_PROT_WRITE | RTMEM_PROT_EXEC | RTMEM_PROT_READ: + return fKernel ? MY_PAGE_KERNEL_EXEC : PAGE_SHARED_EXEC; + } +} + + +/** + * Worker for rtR0MemObjNativeReserveUser and rtR0MemObjNativerMapUser that creates + * an empty user space mapping. + * + * We acquire the mmap_sem/mmap_lock of the task! + * + * @returns Pointer to the mapping. + * (void *)-1 on failure. + * @param R3PtrFixed (RTR3PTR)-1 if anywhere, otherwise a specific location. + * @param cb The size of the mapping. + * @param uAlignment The alignment of the mapping. + * @param pTask The Linux task to create this mapping in. + * @param fProt The RTMEM_PROT_* mask. + */ +static void *rtR0MemObjLinuxDoMmap(RTR3PTR R3PtrFixed, size_t cb, size_t uAlignment, struct task_struct *pTask, unsigned fProt) +{ + unsigned fLnxProt; + unsigned long ulAddr; + + Assert(pTask == current); /* do_mmap */ + RT_NOREF_PV(pTask); + + /* + * Convert from IPRT protection to mman.h PROT_ and call do_mmap. + */ + fProt &= (RTMEM_PROT_NONE | RTMEM_PROT_READ | RTMEM_PROT_WRITE | RTMEM_PROT_EXEC); + if (fProt == RTMEM_PROT_NONE) + fLnxProt = PROT_NONE; + else + { + fLnxProt = 0; + if (fProt & RTMEM_PROT_READ) + fLnxProt |= PROT_READ; + if (fProt & RTMEM_PROT_WRITE) + fLnxProt |= PROT_WRITE; + if (fProt & RTMEM_PROT_EXEC) + fLnxProt |= PROT_EXEC; + } + + if (R3PtrFixed != (RTR3PTR)-1) + { +#if RTLNX_VER_MIN(3,5,0) + ulAddr = vm_mmap(NULL, R3PtrFixed, cb, fLnxProt, MAP_SHARED | MAP_ANONYMOUS | MAP_FIXED, 0); +#else + LNX_MM_DOWN_WRITE(pTask->mm); + ulAddr = do_mmap(NULL, R3PtrFixed, cb, fLnxProt, MAP_SHARED | MAP_ANONYMOUS | MAP_FIXED, 0); + LNX_MM_UP_WRITE(pTask->mm); +#endif + } + else + { +#if RTLNX_VER_MIN(3,5,0) + ulAddr = vm_mmap(NULL, 0, cb, fLnxProt, MAP_SHARED | MAP_ANONYMOUS, 0); +#else + LNX_MM_DOWN_WRITE(pTask->mm); + ulAddr = do_mmap(NULL, 0, cb, fLnxProt, MAP_SHARED | MAP_ANONYMOUS, 0); + LNX_MM_UP_WRITE(pTask->mm); +#endif + if ( !(ulAddr & ~PAGE_MASK) + && (ulAddr & (uAlignment - 1))) + { + /** @todo implement uAlignment properly... We'll probably need to make some dummy mappings to fill + * up alignment gaps. This is of course complicated by fragmentation (which we might have cause + * ourselves) and further by there begin two mmap strategies (top / bottom). */ + /* For now, just ignore uAlignment requirements... */ + } + } + + + if (ulAddr & ~PAGE_MASK) /* ~PAGE_MASK == PAGE_OFFSET_MASK */ + return (void *)-1; + return (void *)ulAddr; +} + + +/** + * Worker that destroys a user space mapping. + * Undoes what rtR0MemObjLinuxDoMmap did. + * + * We acquire the mmap_sem/mmap_lock of the task! + * + * @param pv The ring-3 mapping. + * @param cb The size of the mapping. + * @param pTask The Linux task to destroy this mapping in. + */ +static void rtR0MemObjLinuxDoMunmap(void *pv, size_t cb, struct task_struct *pTask) +{ +#if RTLNX_VER_MIN(3,5,0) + Assert(pTask == current); RT_NOREF_PV(pTask); + vm_munmap((unsigned long)pv, cb); +#elif defined(USE_RHEL4_MUNMAP) + LNX_MM_DOWN_WRITE(pTask->mm); + do_munmap(pTask->mm, (unsigned long)pv, cb, 0); /* should it be 1 or 0? */ + LNX_MM_UP_WRITE(pTask->mm); +#else + LNX_MM_DOWN_WRITE(pTask->mm); + do_munmap(pTask->mm, (unsigned long)pv, cb); + LNX_MM_UP_WRITE(pTask->mm); +#endif +} + + +/** + * Internal worker that allocates physical pages and creates the memory object for them. + * + * @returns IPRT status code. + * @param ppMemLnx Where to store the memory object pointer. + * @param enmType The object type. + * @param cb The number of bytes to allocate. + * @param uAlignment The alignment of the physical memory. + * Only valid if fContiguous == true, ignored otherwise. + * @param fFlagsLnx The page allocation flags (GPFs). + * @param fContiguous Whether the allocation must be contiguous. + * @param fExecutable Whether the memory must be executable. + * @param rcNoMem What to return when we're out of pages. + */ +static int rtR0MemObjLinuxAllocPages(PRTR0MEMOBJLNX *ppMemLnx, RTR0MEMOBJTYPE enmType, size_t cb, + size_t uAlignment, gfp_t fFlagsLnx, bool fContiguous, bool fExecutable, int rcNoMem) +{ + size_t iPage; + size_t const cPages = cb >> PAGE_SHIFT; + struct page *paPages; + + /* + * Allocate a memory object structure that's large enough to contain + * the page pointer array. + */ + PRTR0MEMOBJLNX pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(RT_UOFFSETOF_DYN(RTR0MEMOBJLNX, apPages[cPages]), enmType, NULL, cb); + if (!pMemLnx) + return VERR_NO_MEMORY; + pMemLnx->cPages = cPages; + + if (cPages > 255) + { +# ifdef __GFP_REPEAT + /* Try hard to allocate the memory, but the allocation attempt might fail. */ + fFlagsLnx |= __GFP_REPEAT; +# endif +# ifdef __GFP_NOMEMALLOC + /* Introduced with Linux 2.6.12: Don't use emergency reserves */ + fFlagsLnx |= __GFP_NOMEMALLOC; +# endif + } + + /* + * Allocate the pages. + * For small allocations we'll try contiguous first and then fall back on page by page. + */ +#if RTLNX_VER_MIN(2,4,22) + if ( fContiguous + || cb <= PAGE_SIZE * 2) + { +# ifdef VBOX_USE_INSERT_PAGE + paPages = alloc_pages(fFlagsLnx | __GFP_COMP | __GFP_NOWARN, rtR0MemObjLinuxOrder(cPages)); +# else + paPages = alloc_pages(fFlagsLnx | __GFP_NOWARN, rtR0MemObjLinuxOrder(cPages)); +# endif + if (paPages) + { + fContiguous = true; + for (iPage = 0; iPage < cPages; iPage++) + pMemLnx->apPages[iPage] = &paPages[iPage]; + } + else if (fContiguous) + { + rtR0MemObjDelete(&pMemLnx->Core); + return rcNoMem; + } + } + + if (!fContiguous) + { + for (iPage = 0; iPage < cPages; iPage++) + { + pMemLnx->apPages[iPage] = alloc_page(fFlagsLnx | __GFP_NOWARN); + if (RT_UNLIKELY(!pMemLnx->apPages[iPage])) + { + while (iPage-- > 0) + __free_page(pMemLnx->apPages[iPage]); + rtR0MemObjDelete(&pMemLnx->Core); + return rcNoMem; + } + } + } + +#else /* < 2.4.22 */ + /** @todo figure out why we didn't allocate page-by-page on 2.4.21 and older... */ + paPages = alloc_pages(fFlagsLnx, rtR0MemObjLinuxOrder(cPages)); + if (!paPages) + { + rtR0MemObjDelete(&pMemLnx->Core); + return rcNoMem; + } + for (iPage = 0; iPage < cPages; iPage++) + { + pMemLnx->apPages[iPage] = &paPages[iPage]; + if (fExecutable) + MY_SET_PAGES_EXEC(pMemLnx->apPages[iPage], 1); + if (PageHighMem(pMemLnx->apPages[iPage])) + BUG(); + } + + fContiguous = true; +#endif /* < 2.4.22 */ + pMemLnx->fContiguous = fContiguous; + pMemLnx->fExecutable = fExecutable; + +#if RTLNX_VER_MAX(4,5,0) + /* + * Reserve the pages. + * + * Linux >= 4.5 with CONFIG_DEBUG_VM panics when setting PG_reserved on compound + * pages. According to Michal Hocko this shouldn't be necessary anyway because + * as pages which are not on the LRU list are never evictable. + */ + for (iPage = 0; iPage < cPages; iPage++) + SetPageReserved(pMemLnx->apPages[iPage]); +#endif + + /* + * Note that the physical address of memory allocated with alloc_pages(flags, order) + * is always 2^(PAGE_SHIFT+order)-aligned. + */ + if ( fContiguous + && uAlignment > PAGE_SIZE) + { + /* + * Check for alignment constraints. The physical address of memory allocated with + * alloc_pages(flags, order) is always 2^(PAGE_SHIFT+order)-aligned. + */ + if (RT_UNLIKELY(page_to_phys(pMemLnx->apPages[0]) & (uAlignment - 1))) + { + /* + * This should never happen! + */ + printk("rtR0MemObjLinuxAllocPages(cb=0x%lx, uAlignment=0x%lx): alloc_pages(..., %d) returned physical memory at 0x%lx!\n", + (unsigned long)cb, (unsigned long)uAlignment, rtR0MemObjLinuxOrder(cPages), (unsigned long)page_to_phys(pMemLnx->apPages[0])); + rtR0MemObjLinuxFreePages(pMemLnx); + return rcNoMem; + } + } + + *ppMemLnx = pMemLnx; + return VINF_SUCCESS; +} + + +/** + * Frees the physical pages allocated by the rtR0MemObjLinuxAllocPages() call. + * + * This method does NOT free the object. + * + * @param pMemLnx The object which physical pages should be freed. + */ +static void rtR0MemObjLinuxFreePages(PRTR0MEMOBJLNX pMemLnx) +{ + size_t iPage = pMemLnx->cPages; + if (iPage > 0) + { + /* + * Restore the page flags. + */ + while (iPage-- > 0) + { +#if RTLNX_VER_MAX(4,5,0) + /* See SetPageReserved() in rtR0MemObjLinuxAllocPages() */ + ClearPageReserved(pMemLnx->apPages[iPage]); +#endif +#if RTLNX_VER_MAX(2,4,22) + if (pMemLnx->fExecutable) + MY_SET_PAGES_NOEXEC(pMemLnx->apPages[iPage], 1); +#endif + } + + /* + * Free the pages. + */ +#if RTLNX_VER_MIN(2,4,22) + if (!pMemLnx->fContiguous) + { + iPage = pMemLnx->cPages; + while (iPage-- > 0) + __free_page(pMemLnx->apPages[iPage]); + } + else +#endif + __free_pages(pMemLnx->apPages[0], rtR0MemObjLinuxOrder(pMemLnx->cPages)); + + pMemLnx->cPages = 0; + } +} + + +#ifdef IPRT_USE_APPLY_TO_PAGE_RANGE_FOR_EXEC +/** + * User data passed to the apply_to_page_range() callback. + */ +typedef struct LNXAPPLYPGRANGE +{ + /** Pointer to the memory object. */ + PRTR0MEMOBJLNX pMemLnx; + /** The page protection flags to apply. */ + pgprot_t fPg; +} LNXAPPLYPGRANGE; +/** Pointer to the user data. */ +typedef LNXAPPLYPGRANGE *PLNXAPPLYPGRANGE; +/** Pointer to the const user data. */ +typedef const LNXAPPLYPGRANGE *PCLNXAPPLYPGRANGE; + +/** + * Callback called in apply_to_page_range(). + * + * @returns Linux status code. + * @param pPte Pointer to the page table entry for the given address. + * @param uAddr The address to apply the new protection to. + * @param pvUser The opaque user data. + */ +static int rtR0MemObjLinuxApplyPageRange(pte_t *pPte, unsigned long uAddr, void *pvUser) +{ + PCLNXAPPLYPGRANGE pArgs = (PCLNXAPPLYPGRANGE)pvUser; + PRTR0MEMOBJLNX pMemLnx = pArgs->pMemLnx; + size_t idxPg = (uAddr - (unsigned long)pMemLnx->Core.pv) >> PAGE_SHIFT; + + set_pte(pPte, mk_pte(pMemLnx->apPages[idxPg], pArgs->fPg)); + return 0; +} +#endif + + +/** + * Maps the allocation into ring-0. + * + * This will update the RTR0MEMOBJLNX::Core.pv and RTR0MEMOBJ::fMappedToRing0 members. + * + * Contiguous mappings that isn't in 'high' memory will already be mapped into kernel + * space, so we'll use that mapping if possible. If execute access is required, we'll + * play safe and do our own mapping. + * + * @returns IPRT status code. + * @param pMemLnx The linux memory object to map. + * @param fExecutable Whether execute access is required. + */ +static int rtR0MemObjLinuxVMap(PRTR0MEMOBJLNX pMemLnx, bool fExecutable) +{ + int rc = VINF_SUCCESS; + + /* + * Choose mapping strategy. + */ + bool fMustMap = fExecutable + || !pMemLnx->fContiguous; + if (!fMustMap) + { + size_t iPage = pMemLnx->cPages; + while (iPage-- > 0) + if (PageHighMem(pMemLnx->apPages[iPage])) + { + fMustMap = true; + break; + } + } + + Assert(!pMemLnx->Core.pv); + Assert(!pMemLnx->fMappedToRing0); + + if (fMustMap) + { + /* + * Use vmap - 2.4.22 and later. + */ +#if RTLNX_VER_MIN(2,4,22) + pgprot_t fPg; + pgprot_val(fPg) = _PAGE_PRESENT | _PAGE_RW; +# ifdef _PAGE_NX + if (!fExecutable) + pgprot_val(fPg) |= _PAGE_NX; +# endif + +# ifdef IPRT_USE_ALLOC_VM_AREA_FOR_EXEC + if (fExecutable) + { +# if RTLNX_VER_MIN(3,2,51) + pte_t **papPtes = (pte_t **)kmalloc_array(pMemLnx->cPages, sizeof(papPtes[0]), GFP_KERNEL); +# else + pte_t **papPtes = (pte_t **)kmalloc(pMemLnx->cPages * sizeof(papPtes[0]), GFP_KERNEL); +# endif + if (papPtes) + { + pMemLnx->pArea = alloc_vm_area(pMemLnx->Core.cb, papPtes); /* Note! pArea->nr_pages is not set. */ + if (pMemLnx->pArea) + { + size_t i; + Assert(pMemLnx->pArea->size >= pMemLnx->Core.cb); /* Note! includes guard page. */ + Assert(pMemLnx->pArea->addr); +# ifdef _PAGE_NX + pgprot_val(fPg) |= _PAGE_NX; /* Uses RTR0MemObjProtect to clear NX when memory ready, W^X fashion. */ +# endif + pMemLnx->papPtesForArea = papPtes; + for (i = 0; i < pMemLnx->cPages; i++) + *papPtes[i] = mk_pte(pMemLnx->apPages[i], fPg); + pMemLnx->Core.pv = pMemLnx->pArea->addr; + pMemLnx->fMappedToRing0 = true; + } + else + { + kfree(papPtes); + rc = VERR_MAP_FAILED; + } + } + else + rc = VERR_MAP_FAILED; + } + else +# endif + { +# if defined(IPRT_USE_APPLY_TO_PAGE_RANGE_FOR_EXEC) + if (fExecutable) + pgprot_val(fPg) |= _PAGE_NX; /* Uses RTR0MemObjProtect to clear NX when memory ready, W^X fashion. */ +# endif + +# ifdef VM_MAP + pMemLnx->Core.pv = vmap(&pMemLnx->apPages[0], pMemLnx->cPages, VM_MAP, fPg); +# else + pMemLnx->Core.pv = vmap(&pMemLnx->apPages[0], pMemLnx->cPages, VM_ALLOC, fPg); +# endif + if (pMemLnx->Core.pv) + pMemLnx->fMappedToRing0 = true; + else + rc = VERR_MAP_FAILED; + } +#else /* < 2.4.22 */ + rc = VERR_NOT_SUPPORTED; +#endif + } + else + { + /* + * Use the kernel RAM mapping. + */ + pMemLnx->Core.pv = phys_to_virt(page_to_phys(pMemLnx->apPages[0])); + Assert(pMemLnx->Core.pv); + } + + return rc; +} + + +/** + * Undoes what rtR0MemObjLinuxVMap() did. + * + * @param pMemLnx The linux memory object. + */ +static void rtR0MemObjLinuxVUnmap(PRTR0MEMOBJLNX pMemLnx) +{ +#if RTLNX_VER_MIN(2,4,22) +# ifdef IPRT_USE_ALLOC_VM_AREA_FOR_EXEC + if (pMemLnx->pArea) + { +# if 0 + pte_t **papPtes = pMemLnx->papPtesForArea; + size_t i; + for (i = 0; i < pMemLnx->cPages; i++) + *papPtes[i] = 0; +# endif + free_vm_area(pMemLnx->pArea); + kfree(pMemLnx->papPtesForArea); + pMemLnx->pArea = NULL; + pMemLnx->papPtesForArea = NULL; + } + else +# endif + if (pMemLnx->fMappedToRing0) + { + Assert(pMemLnx->Core.pv); + vunmap(pMemLnx->Core.pv); + pMemLnx->fMappedToRing0 = false; + } +#else /* < 2.4.22 */ + Assert(!pMemLnx->fMappedToRing0); +#endif + pMemLnx->Core.pv = NULL; +} + + +DECLHIDDEN(int) rtR0MemObjNativeFree(RTR0MEMOBJ pMem) +{ + IPRT_LINUX_SAVE_EFL_AC(); + PRTR0MEMOBJLNX pMemLnx = (PRTR0MEMOBJLNX)pMem; + + /* + * Release any memory that we've allocated or locked. + */ + switch (pMemLnx->Core.enmType) + { + case RTR0MEMOBJTYPE_LOW: + case RTR0MEMOBJTYPE_PAGE: + case RTR0MEMOBJTYPE_CONT: + case RTR0MEMOBJTYPE_PHYS: + case RTR0MEMOBJTYPE_PHYS_NC: + rtR0MemObjLinuxVUnmap(pMemLnx); + rtR0MemObjLinuxFreePages(pMemLnx); + break; + + case RTR0MEMOBJTYPE_LOCK: + if (pMemLnx->Core.u.Lock.R0Process != NIL_RTR0PROCESS) + { + struct task_struct *pTask = rtR0ProcessToLinuxTask(pMemLnx->Core.u.Lock.R0Process); + size_t iPage; + Assert(pTask); + if (pTask && pTask->mm) + LNX_MM_DOWN_READ(pTask->mm); + + iPage = pMemLnx->cPages; + while (iPage-- > 0) + { + if (!PageReserved(pMemLnx->apPages[iPage])) + SetPageDirty(pMemLnx->apPages[iPage]); +#if RTLNX_VER_MIN(4,6,0) + put_page(pMemLnx->apPages[iPage]); +#else + page_cache_release(pMemLnx->apPages[iPage]); +#endif + } + + if (pTask && pTask->mm) + LNX_MM_UP_READ(pTask->mm); + } + /* else: kernel memory - nothing to do here. */ + break; + + case RTR0MEMOBJTYPE_RES_VIRT: + Assert(pMemLnx->Core.pv); + if (pMemLnx->Core.u.ResVirt.R0Process != NIL_RTR0PROCESS) + { + struct task_struct *pTask = rtR0ProcessToLinuxTask(pMemLnx->Core.u.Lock.R0Process); + Assert(pTask); + if (pTask && pTask->mm) + rtR0MemObjLinuxDoMunmap(pMemLnx->Core.pv, pMemLnx->Core.cb, pTask); + } + else + { + vunmap(pMemLnx->Core.pv); + + Assert(pMemLnx->cPages == 1 && pMemLnx->apPages[0] != NULL); + __free_page(pMemLnx->apPages[0]); + pMemLnx->apPages[0] = NULL; + pMemLnx->cPages = 0; + } + pMemLnx->Core.pv = NULL; + break; + + case RTR0MEMOBJTYPE_MAPPING: + Assert(pMemLnx->cPages == 0); Assert(pMemLnx->Core.pv); + if (pMemLnx->Core.u.ResVirt.R0Process != NIL_RTR0PROCESS) + { + struct task_struct *pTask = rtR0ProcessToLinuxTask(pMemLnx->Core.u.Lock.R0Process); + Assert(pTask); + if (pTask && pTask->mm) + rtR0MemObjLinuxDoMunmap(pMemLnx->Core.pv, pMemLnx->Core.cb, pTask); + } + else + vunmap(pMemLnx->Core.pv); + pMemLnx->Core.pv = NULL; + break; + + default: + AssertMsgFailed(("enmType=%d\n", pMemLnx->Core.enmType)); + return VERR_INTERNAL_ERROR; + } + IPRT_LINUX_RESTORE_EFL_ONLY_AC(); + return VINF_SUCCESS; +} + + +DECLHIDDEN(int) rtR0MemObjNativeAllocPage(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable) +{ + IPRT_LINUX_SAVE_EFL_AC(); + PRTR0MEMOBJLNX pMemLnx; + int rc; + +#if RTLNX_VER_MIN(2,4,22) + rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_PAGE, cb, PAGE_SIZE, GFP_HIGHUSER, + false /* non-contiguous */, fExecutable, VERR_NO_MEMORY); +#else + rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_PAGE, cb, PAGE_SIZE, GFP_USER, + false /* non-contiguous */, fExecutable, VERR_NO_MEMORY); +#endif + if (RT_SUCCESS(rc)) + { + rc = rtR0MemObjLinuxVMap(pMemLnx, fExecutable); + if (RT_SUCCESS(rc)) + { + *ppMem = &pMemLnx->Core; + IPRT_LINUX_RESTORE_EFL_AC(); + return rc; + } + + rtR0MemObjLinuxFreePages(pMemLnx); + rtR0MemObjDelete(&pMemLnx->Core); + } + + IPRT_LINUX_RESTORE_EFL_AC(); + return rc; +} + + +DECLHIDDEN(int) rtR0MemObjNativeAllocLow(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable) +{ + IPRT_LINUX_SAVE_EFL_AC(); + PRTR0MEMOBJLNX pMemLnx; + int rc; + + /* Try to avoid GFP_DMA. GFM_DMA32 was introduced with Linux 2.6.15. */ +#if (defined(RT_ARCH_AMD64) || defined(CONFIG_X86_PAE)) && defined(GFP_DMA32) + /* ZONE_DMA32: 0-4GB */ + rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_LOW, cb, PAGE_SIZE, GFP_DMA32, + false /* non-contiguous */, fExecutable, VERR_NO_LOW_MEMORY); + if (RT_FAILURE(rc)) +#endif +#ifdef RT_ARCH_AMD64 + /* ZONE_DMA: 0-16MB */ + rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_LOW, cb, PAGE_SIZE, GFP_DMA, + false /* non-contiguous */, fExecutable, VERR_NO_LOW_MEMORY); +#else +# ifdef CONFIG_X86_PAE +# endif + /* ZONE_NORMAL: 0-896MB */ + rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_LOW, cb, PAGE_SIZE, GFP_USER, + false /* non-contiguous */, fExecutable, VERR_NO_LOW_MEMORY); +#endif + if (RT_SUCCESS(rc)) + { + rc = rtR0MemObjLinuxVMap(pMemLnx, fExecutable); + if (RT_SUCCESS(rc)) + { + *ppMem = &pMemLnx->Core; + IPRT_LINUX_RESTORE_EFL_AC(); + return rc; + } + + rtR0MemObjLinuxFreePages(pMemLnx); + rtR0MemObjDelete(&pMemLnx->Core); + } + + IPRT_LINUX_RESTORE_EFL_AC(); + return rc; +} + + +DECLHIDDEN(int) rtR0MemObjNativeAllocCont(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable) +{ + IPRT_LINUX_SAVE_EFL_AC(); + PRTR0MEMOBJLNX pMemLnx; + int rc; + +#if (defined(RT_ARCH_AMD64) || defined(CONFIG_X86_PAE)) && defined(GFP_DMA32) + /* ZONE_DMA32: 0-4GB */ + rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_CONT, cb, PAGE_SIZE, GFP_DMA32, + true /* contiguous */, fExecutable, VERR_NO_CONT_MEMORY); + if (RT_FAILURE(rc)) +#endif +#ifdef RT_ARCH_AMD64 + /* ZONE_DMA: 0-16MB */ + rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_CONT, cb, PAGE_SIZE, GFP_DMA, + true /* contiguous */, fExecutable, VERR_NO_CONT_MEMORY); +#else + /* ZONE_NORMAL (32-bit hosts): 0-896MB */ + rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_CONT, cb, PAGE_SIZE, GFP_USER, + true /* contiguous */, fExecutable, VERR_NO_CONT_MEMORY); +#endif + if (RT_SUCCESS(rc)) + { + rc = rtR0MemObjLinuxVMap(pMemLnx, fExecutable); + if (RT_SUCCESS(rc)) + { +#if defined(RT_STRICT) && (defined(RT_ARCH_AMD64) || defined(CONFIG_HIGHMEM64G)) + size_t iPage = pMemLnx->cPages; + while (iPage-- > 0) + Assert(page_to_phys(pMemLnx->apPages[iPage]) < _4G); +#endif + pMemLnx->Core.u.Cont.Phys = page_to_phys(pMemLnx->apPages[0]); + *ppMem = &pMemLnx->Core; + IPRT_LINUX_RESTORE_EFL_AC(); + return rc; + } + + rtR0MemObjLinuxFreePages(pMemLnx); + rtR0MemObjDelete(&pMemLnx->Core); + } + + IPRT_LINUX_RESTORE_EFL_AC(); + return rc; +} + + +/** + * Worker for rtR0MemObjLinuxAllocPhysSub that tries one allocation strategy. + * + * @returns IPRT status code. + * @param ppMemLnx Where to + * @param enmType The object type. + * @param cb The size of the allocation. + * @param uAlignment The alignment of the physical memory. + * Only valid for fContiguous == true, ignored otherwise. + * @param PhysHighest See rtR0MemObjNativeAllocPhys. + * @param fGfp The Linux GFP flags to use for the allocation. + */ +static int rtR0MemObjLinuxAllocPhysSub2(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJTYPE enmType, + size_t cb, size_t uAlignment, RTHCPHYS PhysHighest, gfp_t fGfp) +{ + PRTR0MEMOBJLNX pMemLnx; + int rc; + + rc = rtR0MemObjLinuxAllocPages(&pMemLnx, enmType, cb, uAlignment, fGfp, + enmType == RTR0MEMOBJTYPE_PHYS /* contiguous / non-contiguous */, + false /*fExecutable*/, VERR_NO_PHYS_MEMORY); + if (RT_FAILURE(rc)) + return rc; + + /* + * Check the addresses if necessary. (Can be optimized a bit for PHYS.) + */ + if (PhysHighest != NIL_RTHCPHYS) + { + size_t iPage = pMemLnx->cPages; + while (iPage-- > 0) + if (page_to_phys(pMemLnx->apPages[iPage]) > PhysHighest) + { + rtR0MemObjLinuxFreePages(pMemLnx); + rtR0MemObjDelete(&pMemLnx->Core); + return VERR_NO_MEMORY; + } + } + + /* + * Complete the object. + */ + if (enmType == RTR0MEMOBJTYPE_PHYS) + { + pMemLnx->Core.u.Phys.PhysBase = page_to_phys(pMemLnx->apPages[0]); + pMemLnx->Core.u.Phys.fAllocated = true; + } + *ppMem = &pMemLnx->Core; + return rc; +} + + +/** + * Worker for rtR0MemObjNativeAllocPhys and rtR0MemObjNativeAllocPhysNC. + * + * @returns IPRT status code. + * @param ppMem Where to store the memory object pointer on success. + * @param enmType The object type. + * @param cb The size of the allocation. + * @param uAlignment The alignment of the physical memory. + * Only valid for enmType == RTR0MEMOBJTYPE_PHYS, ignored otherwise. + * @param PhysHighest See rtR0MemObjNativeAllocPhys. + */ +static int rtR0MemObjLinuxAllocPhysSub(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJTYPE enmType, + size_t cb, size_t uAlignment, RTHCPHYS PhysHighest) +{ + int rc; + IPRT_LINUX_SAVE_EFL_AC(); + + /* + * There are two clear cases and that's the <=16MB and anything-goes ones. + * When the physical address limit is somewhere in-between those two we'll + * just have to try, starting with HIGHUSER and working our way thru the + * different types, hoping we'll get lucky. + * + * We should probably move this physical address restriction logic up to + * the page alloc function as it would be more efficient there. But since + * we don't expect this to be a performance issue just yet it can wait. + */ + if (PhysHighest == NIL_RTHCPHYS) + /* ZONE_HIGHMEM: the whole physical memory */ + rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, uAlignment, PhysHighest, GFP_HIGHUSER); + else if (PhysHighest <= _1M * 16) + /* ZONE_DMA: 0-16MB */ + rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, uAlignment, PhysHighest, GFP_DMA); + else + { + rc = VERR_NO_MEMORY; + if (RT_FAILURE(rc)) + /* ZONE_HIGHMEM: the whole physical memory */ + rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, uAlignment, PhysHighest, GFP_HIGHUSER); + if (RT_FAILURE(rc)) + /* ZONE_NORMAL: 0-896MB */ + rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, uAlignment, PhysHighest, GFP_USER); +#ifdef GFP_DMA32 + if (RT_FAILURE(rc)) + /* ZONE_DMA32: 0-4GB */ + rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, uAlignment, PhysHighest, GFP_DMA32); +#endif + if (RT_FAILURE(rc)) + /* ZONE_DMA: 0-16MB */ + rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, uAlignment, PhysHighest, GFP_DMA); + } + IPRT_LINUX_RESTORE_EFL_AC(); + return rc; +} + + +/** + * Translates a kernel virtual address to a linux page structure by walking the + * page tables. + * + * @note We do assume that the page tables will not change as we are walking + * them. This assumption is rather forced by the fact that I could not + * immediately see any way of preventing this from happening. So, we + * take some extra care when accessing them. + * + * Because of this, we don't want to use this function on memory where + * attribute changes to nearby pages is likely to cause large pages to + * be used or split up. So, don't use this for the linear mapping of + * physical memory. + * + * @returns Pointer to the page structur or NULL if it could not be found. + * @param pv The kernel virtual address. + */ +RTDECL(struct page *) rtR0MemObjLinuxVirtToPage(void *pv) +{ + unsigned long ulAddr = (unsigned long)pv; + unsigned long pfn; + struct page *pPage; + pte_t *pEntry; + union + { + pgd_t Global; +#if RTLNX_VER_MIN(4,12,0) + p4d_t Four; +#endif +#if RTLNX_VER_MIN(2,6,11) + pud_t Upper; +#endif + pmd_t Middle; + pte_t Entry; + } u; + + /* Should this happen in a situation this code will be called in? And if + * so, can it change under our feet? See also + * "Documentation/vm/active_mm.txt" in the kernel sources. */ + if (RT_UNLIKELY(!current->active_mm)) + return NULL; + u.Global = *pgd_offset(current->active_mm, ulAddr); + if (RT_UNLIKELY(pgd_none(u.Global))) + return NULL; +#if RTLNX_VER_MIN(2,6,11) +# if RTLNX_VER_MIN(4,12,0) + u.Four = *p4d_offset(&u.Global, ulAddr); + if (RT_UNLIKELY(p4d_none(u.Four))) + return NULL; + if (p4d_large(u.Four)) + { + pPage = p4d_page(u.Four); + AssertReturn(pPage, NULL); + pfn = page_to_pfn(pPage); /* doing the safe way... */ + AssertCompile(P4D_SHIFT - PAGE_SHIFT < 31); + pfn += (ulAddr >> PAGE_SHIFT) & ((UINT32_C(1) << (P4D_SHIFT - PAGE_SHIFT)) - 1); + return pfn_to_page(pfn); + } + u.Upper = *pud_offset(&u.Four, ulAddr); +# else /* < 4.12 */ + u.Upper = *pud_offset(&u.Global, ulAddr); +# endif /* < 4.12 */ + if (RT_UNLIKELY(pud_none(u.Upper))) + return NULL; +# if RTLNX_VER_MIN(2,6,25) + if (pud_large(u.Upper)) + { + pPage = pud_page(u.Upper); + AssertReturn(pPage, NULL); + pfn = page_to_pfn(pPage); /* doing the safe way... */ + pfn += (ulAddr >> PAGE_SHIFT) & ((UINT32_C(1) << (PUD_SHIFT - PAGE_SHIFT)) - 1); + return pfn_to_page(pfn); + } +# endif + u.Middle = *pmd_offset(&u.Upper, ulAddr); +#else /* < 2.6.11 */ + u.Middle = *pmd_offset(&u.Global, ulAddr); +#endif /* < 2.6.11 */ + if (RT_UNLIKELY(pmd_none(u.Middle))) + return NULL; +#if RTLNX_VER_MIN(2,6,0) + if (pmd_large(u.Middle)) + { + pPage = pmd_page(u.Middle); + AssertReturn(pPage, NULL); + pfn = page_to_pfn(pPage); /* doing the safe way... */ + pfn += (ulAddr >> PAGE_SHIFT) & ((UINT32_C(1) << (PMD_SHIFT - PAGE_SHIFT)) - 1); + return pfn_to_page(pfn); + } +#endif + +#if RTLNX_VER_MIN(2,5,5) || defined(pte_offset_map) /* As usual, RHEL 3 had pte_offset_map earlier. */ + pEntry = pte_offset_map(&u.Middle, ulAddr); +#else + pEntry = pte_offset(&u.Middle, ulAddr); +#endif + if (RT_UNLIKELY(!pEntry)) + return NULL; + u.Entry = *pEntry; +#if RTLNX_VER_MIN(2,5,5) || defined(pte_offset_map) + pte_unmap(pEntry); +#endif + + if (RT_UNLIKELY(!pte_present(u.Entry))) + return NULL; + return pte_page(u.Entry); +} +RT_EXPORT_SYMBOL(rtR0MemObjLinuxVirtToPage); + + +DECLHIDDEN(int) rtR0MemObjNativeAllocPhys(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, RTHCPHYS PhysHighest, size_t uAlignment) +{ + return rtR0MemObjLinuxAllocPhysSub(ppMem, RTR0MEMOBJTYPE_PHYS, cb, uAlignment, PhysHighest); +} + + +DECLHIDDEN(int) rtR0MemObjNativeAllocPhysNC(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, RTHCPHYS PhysHighest) +{ + return rtR0MemObjLinuxAllocPhysSub(ppMem, RTR0MEMOBJTYPE_PHYS_NC, cb, PAGE_SIZE, PhysHighest); +} + + +DECLHIDDEN(int) rtR0MemObjNativeEnterPhys(PPRTR0MEMOBJINTERNAL ppMem, RTHCPHYS Phys, size_t cb, uint32_t uCachePolicy) +{ + IPRT_LINUX_SAVE_EFL_AC(); + + /* + * All we need to do here is to validate that we can use + * ioremap on the specified address (32/64-bit dma_addr_t). + */ + PRTR0MEMOBJLNX pMemLnx; + dma_addr_t PhysAddr = Phys; + AssertMsgReturn(PhysAddr == Phys, ("%#llx\n", (unsigned long long)Phys), VERR_ADDRESS_TOO_BIG); + + pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(sizeof(*pMemLnx), RTR0MEMOBJTYPE_PHYS, NULL, cb); + if (!pMemLnx) + { + IPRT_LINUX_RESTORE_EFL_AC(); + return VERR_NO_MEMORY; + } + + pMemLnx->Core.u.Phys.PhysBase = PhysAddr; + pMemLnx->Core.u.Phys.fAllocated = false; + pMemLnx->Core.u.Phys.uCachePolicy = uCachePolicy; + Assert(!pMemLnx->cPages); + *ppMem = &pMemLnx->Core; + IPRT_LINUX_RESTORE_EFL_AC(); + return VINF_SUCCESS; +} + +/* openSUSE Leap 42.3 detection :-/ */ +#if RTLNX_VER_RANGE(4,4,0, 4,6,0) && defined(FAULT_FLAG_REMOTE) +# define GET_USER_PAGES_API KERNEL_VERSION(4, 10, 0) /* no typo! */ +#else +# define GET_USER_PAGES_API LINUX_VERSION_CODE +#endif + +DECLHIDDEN(int) rtR0MemObjNativeLockUser(PPRTR0MEMOBJINTERNAL ppMem, RTR3PTR R3Ptr, size_t cb, uint32_t fAccess, RTR0PROCESS R0Process) +{ + IPRT_LINUX_SAVE_EFL_AC(); + const int cPages = cb >> PAGE_SHIFT; + struct task_struct *pTask = rtR0ProcessToLinuxTask(R0Process); + struct vm_area_struct **papVMAs; + PRTR0MEMOBJLNX pMemLnx; + int rc = VERR_NO_MEMORY; + int const fWrite = fAccess & RTMEM_PROT_WRITE ? 1 : 0; + + /* + * Check for valid task and size overflows. + */ + if (!pTask) + return VERR_NOT_SUPPORTED; + if (((size_t)cPages << PAGE_SHIFT) != cb) + return VERR_OUT_OF_RANGE; + + /* + * Allocate the memory object and a temporary buffer for the VMAs. + */ + pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(RT_UOFFSETOF_DYN(RTR0MEMOBJLNX, apPages[cPages]), RTR0MEMOBJTYPE_LOCK, (void *)R3Ptr, cb); + if (!pMemLnx) + { + IPRT_LINUX_RESTORE_EFL_AC(); + return VERR_NO_MEMORY; + } + + papVMAs = (struct vm_area_struct **)RTMemAlloc(sizeof(*papVMAs) * cPages); + if (papVMAs) + { + LNX_MM_DOWN_READ(pTask->mm); + + /* + * Get user pages. + */ +/** @todo r=bird: Should we not force read access too? */ +#if GET_USER_PAGES_API >= KERNEL_VERSION(4, 6, 0) + if (R0Process == RTR0ProcHandleSelf()) + rc = get_user_pages(R3Ptr, /* Where from. */ + cPages, /* How many pages. */ +# if GET_USER_PAGES_API >= KERNEL_VERSION(4, 9, 0) + fWrite ? FOLL_WRITE | /* Write to memory. */ + FOLL_FORCE /* force write access. */ + : 0, /* Write to memory. */ +# else + fWrite, /* Write to memory. */ + fWrite, /* force write access. */ +# endif + &pMemLnx->apPages[0], /* Page array. */ + papVMAs); /* vmas */ + /* + * Actually this should not happen at the moment as call this function + * only for our own process. + */ + else + rc = get_user_pages_remote( +# if GET_USER_PAGES_API < KERNEL_VERSION(5, 9, 0) + pTask, /* Task for fault accounting. */ +# endif + pTask->mm, /* Whose pages. */ + R3Ptr, /* Where from. */ + cPages, /* How many pages. */ +# if GET_USER_PAGES_API >= KERNEL_VERSION(4, 9, 0) + fWrite ? FOLL_WRITE | /* Write to memory. */ + FOLL_FORCE /* force write access. */ + : 0, /* Write to memory. */ +# else + fWrite, /* Write to memory. */ + fWrite, /* force write access. */ +# endif + &pMemLnx->apPages[0], /* Page array. */ + papVMAs /* vmas */ +# if GET_USER_PAGES_API >= KERNEL_VERSION(4, 10, 0) + , NULL /* locked */ +# endif + ); +#else /* GET_USER_PAGES_API < KERNEL_VERSION(4, 6, 0) */ + rc = get_user_pages(pTask, /* Task for fault accounting. */ + pTask->mm, /* Whose pages. */ + R3Ptr, /* Where from. */ + cPages, /* How many pages. */ +/* The get_user_pages API change was back-ported to 4.4.168. */ +# if RTLNX_VER_RANGE(4,4,168, 4,5,0) + fWrite ? FOLL_WRITE | /* Write to memory. */ + FOLL_FORCE /* force write access. */ + : 0, /* Write to memory. */ +# else + fWrite, /* Write to memory. */ + fWrite, /* force write access. */ +# endif + &pMemLnx->apPages[0], /* Page array. */ + papVMAs); /* vmas */ +#endif /* GET_USER_PAGES_API < KERNEL_VERSION(4, 6, 0) */ + if (rc == cPages) + { + /* + * Flush dcache (required?), protect against fork and _really_ pin the page + * table entries. get_user_pages() will protect against swapping out the + * pages but it will NOT protect against removing page table entries. This + * can be achieved with + * - using mlock / mmap(..., MAP_LOCKED, ...) from userland. This requires + * an appropriate limit set up with setrlimit(..., RLIMIT_MEMLOCK, ...). + * Usual Linux distributions support only a limited size of locked pages + * (e.g. 32KB). + * - setting the PageReserved bit (as we do in rtR0MemObjLinuxAllocPages() + * or by + * - setting the VM_LOCKED flag. This is the same as doing mlock() without + * a range check. + */ + /** @todo The Linux fork() protection will require more work if this API + * is to be used for anything but locking VM pages. */ + while (rc-- > 0) + { + flush_dcache_page(pMemLnx->apPages[rc]); + papVMAs[rc]->vm_flags |= VM_DONTCOPY | VM_LOCKED; + } + + LNX_MM_UP_READ(pTask->mm); + + RTMemFree(papVMAs); + + pMemLnx->Core.u.Lock.R0Process = R0Process; + pMemLnx->cPages = cPages; + Assert(!pMemLnx->fMappedToRing0); + *ppMem = &pMemLnx->Core; + + IPRT_LINUX_RESTORE_EFL_AC(); + return VINF_SUCCESS; + } + + /* + * Failed - we need to unlock any pages that we succeeded to lock. + */ + while (rc-- > 0) + { + if (!PageReserved(pMemLnx->apPages[rc])) + SetPageDirty(pMemLnx->apPages[rc]); +#if RTLNX_VER_MIN(4,6,0) + put_page(pMemLnx->apPages[rc]); +#else + page_cache_release(pMemLnx->apPages[rc]); +#endif + } + + LNX_MM_UP_READ(pTask->mm); + + RTMemFree(papVMAs); + rc = VERR_LOCK_FAILED; + } + + rtR0MemObjDelete(&pMemLnx->Core); + IPRT_LINUX_RESTORE_EFL_AC(); + return rc; +} + + +DECLHIDDEN(int) rtR0MemObjNativeLockKernel(PPRTR0MEMOBJINTERNAL ppMem, void *pv, size_t cb, uint32_t fAccess) +{ + IPRT_LINUX_SAVE_EFL_AC(); + void *pvLast = (uint8_t *)pv + cb - 1; + size_t const cPages = cb >> PAGE_SHIFT; + PRTR0MEMOBJLNX pMemLnx; + bool fLinearMapping; + int rc; + uint8_t *pbPage; + size_t iPage; + NOREF(fAccess); + + if ( !RTR0MemKernelIsValidAddr(pv) + || !RTR0MemKernelIsValidAddr(pv + cb)) + return VERR_INVALID_PARAMETER; + + /* + * The lower part of the kernel memory has a linear mapping between + * physical and virtual addresses. So we take a short cut here. This is + * assumed to be the cleanest way to handle those addresses (and the code + * is well tested, though the test for determining it is not very nice). + * If we ever decide it isn't we can still remove it. + */ +#if 0 + fLinearMapping = (unsigned long)pvLast < VMALLOC_START; +#else + fLinearMapping = (unsigned long)pv >= (unsigned long)__va(0) + && (unsigned long)pvLast < (unsigned long)high_memory; +#endif + + /* + * Allocate the memory object. + */ + pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(RT_UOFFSETOF_DYN(RTR0MEMOBJLNX, apPages[cPages]), RTR0MEMOBJTYPE_LOCK, pv, cb); + if (!pMemLnx) + { + IPRT_LINUX_RESTORE_EFL_AC(); + return VERR_NO_MEMORY; + } + + /* + * Gather the pages. + * We ASSUME all kernel pages are non-swappable and non-movable. + */ + rc = VINF_SUCCESS; + pbPage = (uint8_t *)pvLast; + iPage = cPages; + if (!fLinearMapping) + { + while (iPage-- > 0) + { + struct page *pPage = rtR0MemObjLinuxVirtToPage(pbPage); + if (RT_UNLIKELY(!pPage)) + { + rc = VERR_LOCK_FAILED; + break; + } + pMemLnx->apPages[iPage] = pPage; + pbPage -= PAGE_SIZE; + } + } + else + { + while (iPage-- > 0) + { + pMemLnx->apPages[iPage] = virt_to_page(pbPage); + pbPage -= PAGE_SIZE; + } + } + if (RT_SUCCESS(rc)) + { + /* + * Complete the memory object and return. + */ + pMemLnx->Core.u.Lock.R0Process = NIL_RTR0PROCESS; + pMemLnx->cPages = cPages; + Assert(!pMemLnx->fMappedToRing0); + *ppMem = &pMemLnx->Core; + + IPRT_LINUX_RESTORE_EFL_AC(); + return VINF_SUCCESS; + } + + rtR0MemObjDelete(&pMemLnx->Core); + IPRT_LINUX_RESTORE_EFL_AC(); + return rc; +} + + +DECLHIDDEN(int) rtR0MemObjNativeReserveKernel(PPRTR0MEMOBJINTERNAL ppMem, void *pvFixed, size_t cb, size_t uAlignment) +{ +#if RTLNX_VER_MIN(2,4,22) + IPRT_LINUX_SAVE_EFL_AC(); + const size_t cPages = cb >> PAGE_SHIFT; + struct page *pDummyPage; + struct page **papPages; + + /* check for unsupported stuff. */ + AssertMsgReturn(pvFixed == (void *)-1, ("%p\n", pvFixed), VERR_NOT_SUPPORTED); + if (uAlignment > PAGE_SIZE) + return VERR_NOT_SUPPORTED; + + /* + * Allocate a dummy page and create a page pointer array for vmap such that + * the dummy page is mapped all over the reserved area. + */ + pDummyPage = alloc_page(GFP_HIGHUSER | __GFP_NOWARN); + if (pDummyPage) + { + papPages = RTMemAlloc(sizeof(*papPages) * cPages); + if (papPages) + { + void *pv; + size_t iPage = cPages; + while (iPage-- > 0) + papPages[iPage] = pDummyPage; +# ifdef VM_MAP + pv = vmap(papPages, cPages, VM_MAP, PAGE_KERNEL_RO); +# else + pv = vmap(papPages, cPages, VM_ALLOC, PAGE_KERNEL_RO); +# endif + RTMemFree(papPages); + if (pv) + { + PRTR0MEMOBJLNX pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(sizeof(*pMemLnx), RTR0MEMOBJTYPE_RES_VIRT, pv, cb); + if (pMemLnx) + { + pMemLnx->Core.u.ResVirt.R0Process = NIL_RTR0PROCESS; + pMemLnx->cPages = 1; + pMemLnx->apPages[0] = pDummyPage; + *ppMem = &pMemLnx->Core; + IPRT_LINUX_RESTORE_EFL_AC(); + return VINF_SUCCESS; + } + vunmap(pv); + } + } + __free_page(pDummyPage); + } + IPRT_LINUX_RESTORE_EFL_AC(); + return VERR_NO_MEMORY; + +#else /* < 2.4.22 */ + /* + * Could probably use ioremap here, but the caller is in a better position than us + * to select some safe physical memory. + */ + return VERR_NOT_SUPPORTED; +#endif +} + + +DECLHIDDEN(int) rtR0MemObjNativeReserveUser(PPRTR0MEMOBJINTERNAL ppMem, RTR3PTR R3PtrFixed, size_t cb, size_t uAlignment, RTR0PROCESS R0Process) +{ + IPRT_LINUX_SAVE_EFL_AC(); + PRTR0MEMOBJLNX pMemLnx; + void *pv; + struct task_struct *pTask = rtR0ProcessToLinuxTask(R0Process); + if (!pTask) + return VERR_NOT_SUPPORTED; + + /* + * Check that the specified alignment is supported. + */ + if (uAlignment > PAGE_SIZE) + return VERR_NOT_SUPPORTED; + + /* + * Let rtR0MemObjLinuxDoMmap do the difficult bits. + */ + pv = rtR0MemObjLinuxDoMmap(R3PtrFixed, cb, uAlignment, pTask, RTMEM_PROT_NONE); + if (pv == (void *)-1) + { + IPRT_LINUX_RESTORE_EFL_AC(); + return VERR_NO_MEMORY; + } + + pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(sizeof(*pMemLnx), RTR0MEMOBJTYPE_RES_VIRT, pv, cb); + if (!pMemLnx) + { + rtR0MemObjLinuxDoMunmap(pv, cb, pTask); + IPRT_LINUX_RESTORE_EFL_AC(); + return VERR_NO_MEMORY; + } + + pMemLnx->Core.u.ResVirt.R0Process = R0Process; + *ppMem = &pMemLnx->Core; + IPRT_LINUX_RESTORE_EFL_AC(); + return VINF_SUCCESS; +} + + +DECLHIDDEN(int) rtR0MemObjNativeMapKernel(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJ pMemToMap, + void *pvFixed, size_t uAlignment, + unsigned fProt, size_t offSub, size_t cbSub) +{ + int rc = VERR_NO_MEMORY; + PRTR0MEMOBJLNX pMemLnxToMap = (PRTR0MEMOBJLNX)pMemToMap; + PRTR0MEMOBJLNX pMemLnx; + IPRT_LINUX_SAVE_EFL_AC(); + + /* Fail if requested to do something we can't. */ + AssertMsgReturn(pvFixed == (void *)-1, ("%p\n", pvFixed), VERR_NOT_SUPPORTED); + if (uAlignment > PAGE_SIZE) + return VERR_NOT_SUPPORTED; + + /* + * Create the IPRT memory object. + */ + if (!cbSub) + cbSub = pMemLnxToMap->Core.cb - offSub; + pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(sizeof(*pMemLnx), RTR0MEMOBJTYPE_MAPPING, NULL, cbSub); + if (pMemLnx) + { + if (pMemLnxToMap->cPages) + { +#if RTLNX_VER_MIN(2,4,22) + /* + * Use vmap - 2.4.22 and later. + */ + pgprot_t fPg = rtR0MemObjLinuxConvertProt(fProt, true /* kernel */); + /** @todo We don't really care too much for EXEC here... 5.8 always adds NX. */ + Assert(((offSub + cbSub) >> PAGE_SHIFT) <= pMemLnxToMap->cPages); +# ifdef VM_MAP + pMemLnx->Core.pv = vmap(&pMemLnxToMap->apPages[offSub >> PAGE_SHIFT], cbSub >> PAGE_SHIFT, VM_MAP, fPg); +# else + pMemLnx->Core.pv = vmap(&pMemLnxToMap->apPages[offSub >> PAGE_SHIFT], cbSub >> PAGE_SHIFT, VM_ALLOC, fPg); +# endif + if (pMemLnx->Core.pv) + { + pMemLnx->fMappedToRing0 = true; + rc = VINF_SUCCESS; + } + else + rc = VERR_MAP_FAILED; + +#else /* < 2.4.22 */ + /* + * Only option here is to share mappings if possible and forget about fProt. + */ + if (rtR0MemObjIsRing3(pMemToMap)) + rc = VERR_NOT_SUPPORTED; + else + { + rc = VINF_SUCCESS; + if (!pMemLnxToMap->Core.pv) + rc = rtR0MemObjLinuxVMap(pMemLnxToMap, !!(fProt & RTMEM_PROT_EXEC)); + if (RT_SUCCESS(rc)) + { + Assert(pMemLnxToMap->Core.pv); + pMemLnx->Core.pv = (uint8_t *)pMemLnxToMap->Core.pv + offSub; + } + } +#endif + } + else + { + /* + * MMIO / physical memory. + */ + Assert(pMemLnxToMap->Core.enmType == RTR0MEMOBJTYPE_PHYS && !pMemLnxToMap->Core.u.Phys.fAllocated); +#if RTLNX_VER_MIN(2,6,25) + /* + * ioremap() defaults to no caching since the 2.6 kernels. + * ioremap_nocache() has been removed finally in 5.6-rc1. + */ + pMemLnx->Core.pv = pMemLnxToMap->Core.u.Phys.uCachePolicy == RTMEM_CACHE_POLICY_MMIO + ? ioremap(pMemLnxToMap->Core.u.Phys.PhysBase + offSub, cbSub) + : ioremap_cache(pMemLnxToMap->Core.u.Phys.PhysBase + offSub, cbSub); +#else /* KERNEL_VERSION < 2.6.25 */ + pMemLnx->Core.pv = pMemLnxToMap->Core.u.Phys.uCachePolicy == RTMEM_CACHE_POLICY_MMIO + ? ioremap_nocache(pMemLnxToMap->Core.u.Phys.PhysBase + offSub, cbSub) + : ioremap(pMemLnxToMap->Core.u.Phys.PhysBase + offSub, cbSub); +#endif /* KERNEL_VERSION < 2.6.25 */ + if (pMemLnx->Core.pv) + { + /** @todo fix protection. */ + rc = VINF_SUCCESS; + } + } + if (RT_SUCCESS(rc)) + { + pMemLnx->Core.u.Mapping.R0Process = NIL_RTR0PROCESS; + *ppMem = &pMemLnx->Core; + IPRT_LINUX_RESTORE_EFL_AC(); + return VINF_SUCCESS; + } + rtR0MemObjDelete(&pMemLnx->Core); + } + + IPRT_LINUX_RESTORE_EFL_AC(); + return rc; +} + + +#ifdef VBOX_USE_PAE_HACK +/** + * Replace the PFN of a PTE with the address of the actual page. + * + * The caller maps a reserved dummy page at the address with the desired access + * and flags. + * + * This hack is required for older Linux kernels which don't provide + * remap_pfn_range(). + * + * @returns 0 on success, -ENOMEM on failure. + * @param mm The memory context. + * @param ulAddr The mapping address. + * @param Phys The physical address of the page to map. + */ +static int rtR0MemObjLinuxFixPte(struct mm_struct *mm, unsigned long ulAddr, RTHCPHYS Phys) +{ + int rc = -ENOMEM; + pgd_t *pgd; + + spin_lock(&mm->page_table_lock); + + pgd = pgd_offset(mm, ulAddr); + if (!pgd_none(*pgd) && !pgd_bad(*pgd)) + { + pmd_t *pmd = pmd_offset(pgd, ulAddr); + if (!pmd_none(*pmd)) + { + pte_t *ptep = pte_offset_map(pmd, ulAddr); + if (ptep) + { + pte_t pte = *ptep; + pte.pte_high &= 0xfff00000; + pte.pte_high |= ((Phys >> 32) & 0x000fffff); + pte.pte_low &= 0x00000fff; + pte.pte_low |= (Phys & 0xfffff000); + set_pte(ptep, pte); + pte_unmap(ptep); + rc = 0; + } + } + } + + spin_unlock(&mm->page_table_lock); + return rc; +} +#endif /* VBOX_USE_PAE_HACK */ + + +DECLHIDDEN(int) rtR0MemObjNativeMapUser(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJ pMemToMap, RTR3PTR R3PtrFixed, size_t uAlignment, + unsigned fProt, RTR0PROCESS R0Process, size_t offSub, size_t cbSub) +{ + struct task_struct *pTask = rtR0ProcessToLinuxTask(R0Process); + PRTR0MEMOBJLNX pMemLnxToMap = (PRTR0MEMOBJLNX)pMemToMap; + int rc = VERR_NO_MEMORY; + PRTR0MEMOBJLNX pMemLnx; +#ifdef VBOX_USE_PAE_HACK + struct page *pDummyPage; + RTHCPHYS DummyPhys; +#endif + IPRT_LINUX_SAVE_EFL_AC(); + + /* + * Check for restrictions. + */ + if (!pTask) + return VERR_NOT_SUPPORTED; + if (uAlignment > PAGE_SIZE) + return VERR_NOT_SUPPORTED; + +#ifdef VBOX_USE_PAE_HACK + /* + * Allocate a dummy page for use when mapping the memory. + */ + pDummyPage = alloc_page(GFP_USER | __GFP_NOWARN); + if (!pDummyPage) + { + IPRT_LINUX_RESTORE_EFL_AC(); + return VERR_NO_MEMORY; + } + SetPageReserved(pDummyPage); + DummyPhys = page_to_phys(pDummyPage); +#endif + + /* + * Create the IPRT memory object. + */ + Assert(!offSub || cbSub); + if (cbSub == 0) + cbSub = pMemLnxToMap->Core.cb; + pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(sizeof(*pMemLnx), RTR0MEMOBJTYPE_MAPPING, NULL, cbSub); + if (pMemLnx) + { + /* + * Allocate user space mapping. + */ + void *pv; + pv = rtR0MemObjLinuxDoMmap(R3PtrFixed, cbSub, uAlignment, pTask, fProt); + if (pv != (void *)-1) + { + /* + * Map page by page into the mmap area. + * This is generic, paranoid and not very efficient. + */ + pgprot_t fPg = rtR0MemObjLinuxConvertProt(fProt, false /* user */); + unsigned long ulAddrCur = (unsigned long)pv; + const size_t cPages = (offSub + cbSub) >> PAGE_SHIFT; + size_t iPage; + + LNX_MM_DOWN_WRITE(pTask->mm); + + rc = VINF_SUCCESS; + if (pMemLnxToMap->cPages) + { + for (iPage = offSub >> PAGE_SHIFT; iPage < cPages; iPage++, ulAddrCur += PAGE_SIZE) + { +#if RTLNX_VER_MAX(2,6,11) + RTHCPHYS Phys = page_to_phys(pMemLnxToMap->apPages[iPage]); +#endif +#if RTLNX_VER_MIN(2,6,0) || defined(HAVE_26_STYLE_REMAP_PAGE_RANGE) + struct vm_area_struct *vma = find_vma(pTask->mm, ulAddrCur); /* this is probably the same for all the pages... */ + AssertBreakStmt(vma, rc = VERR_INTERNAL_ERROR); +#endif +#if RTLNX_VER_MAX(2,6,0) && defined(RT_ARCH_X86) + /* remap_page_range() limitation on x86 */ + AssertBreakStmt(Phys < _4G, rc = VERR_NO_MEMORY); +#endif + +#if defined(VBOX_USE_INSERT_PAGE) && RTLNX_VER_MIN(2,6,22) + rc = vm_insert_page(vma, ulAddrCur, pMemLnxToMap->apPages[iPage]); + /* Thes flags help making 100% sure some bad stuff wont happen (swap, core, ++). + * See remap_pfn_range() in mm/memory.c */ +#if RTLNX_VER_MIN(3,7,0) + vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP; +#else + vma->vm_flags |= VM_RESERVED; +#endif +#elif RTLNX_VER_MIN(2,6,11) + rc = remap_pfn_range(vma, ulAddrCur, page_to_pfn(pMemLnxToMap->apPages[iPage]), PAGE_SIZE, fPg); +#elif defined(VBOX_USE_PAE_HACK) + rc = remap_page_range(vma, ulAddrCur, DummyPhys, PAGE_SIZE, fPg); + if (!rc) + rc = rtR0MemObjLinuxFixPte(pTask->mm, ulAddrCur, Phys); +#elif RTLNX_VER_MIN(2,6,0) || defined(HAVE_26_STYLE_REMAP_PAGE_RANGE) + rc = remap_page_range(vma, ulAddrCur, Phys, PAGE_SIZE, fPg); +#else /* 2.4 */ + rc = remap_page_range(ulAddrCur, Phys, PAGE_SIZE, fPg); +#endif + if (rc) + { + rc = VERR_NO_MEMORY; + break; + } + } + } + else + { + RTHCPHYS Phys; + if (pMemLnxToMap->Core.enmType == RTR0MEMOBJTYPE_PHYS) + Phys = pMemLnxToMap->Core.u.Phys.PhysBase; + else if (pMemLnxToMap->Core.enmType == RTR0MEMOBJTYPE_CONT) + Phys = pMemLnxToMap->Core.u.Cont.Phys; + else + { + AssertMsgFailed(("%d\n", pMemLnxToMap->Core.enmType)); + Phys = NIL_RTHCPHYS; + } + if (Phys != NIL_RTHCPHYS) + { + for (iPage = offSub >> PAGE_SHIFT; iPage < cPages; iPage++, ulAddrCur += PAGE_SIZE, Phys += PAGE_SIZE) + { +#if RTLNX_VER_MIN(2,6,0) || defined(HAVE_26_STYLE_REMAP_PAGE_RANGE) + struct vm_area_struct *vma = find_vma(pTask->mm, ulAddrCur); /* this is probably the same for all the pages... */ + AssertBreakStmt(vma, rc = VERR_INTERNAL_ERROR); +#endif +#if RTLNX_VER_MAX(2,6,0) && defined(RT_ARCH_X86) + /* remap_page_range() limitation on x86 */ + AssertBreakStmt(Phys < _4G, rc = VERR_NO_MEMORY); +#endif + +#if RTLNX_VER_MIN(2,6,11) + rc = remap_pfn_range(vma, ulAddrCur, Phys, PAGE_SIZE, fPg); +#elif defined(VBOX_USE_PAE_HACK) + rc = remap_page_range(vma, ulAddrCur, DummyPhys, PAGE_SIZE, fPg); + if (!rc) + rc = rtR0MemObjLinuxFixPte(pTask->mm, ulAddrCur, Phys); +#elif RTLNX_VER_MIN(2,6,0) || defined(HAVE_26_STYLE_REMAP_PAGE_RANGE) + rc = remap_page_range(vma, ulAddrCur, Phys, PAGE_SIZE, fPg); +#else /* 2.4 */ + rc = remap_page_range(ulAddrCur, Phys, PAGE_SIZE, fPg); +#endif + if (rc) + { + rc = VERR_NO_MEMORY; + break; + } + } + } + } + +#ifdef CONFIG_NUMA_BALANCING +# if RTLNX_VER_MAX(3,13,0) && RTLNX_RHEL_MAX(7,0) +# define VBOX_NUMA_HACK_OLD +# endif + if (RT_SUCCESS(rc)) + { + /** @todo Ugly hack! But right now we have no other means to + * disable automatic NUMA page balancing. */ +# ifdef RT_OS_X86 +# ifdef VBOX_NUMA_HACK_OLD + pTask->mm->numa_next_reset = jiffies + 0x7fffffffUL; +# endif + pTask->mm->numa_next_scan = jiffies + 0x7fffffffUL; +# else +# ifdef VBOX_NUMA_HACK_OLD + pTask->mm->numa_next_reset = jiffies + 0x7fffffffffffffffUL; +# endif + pTask->mm->numa_next_scan = jiffies + 0x7fffffffffffffffUL; +# endif + } +#endif /* CONFIG_NUMA_BALANCING */ + + LNX_MM_UP_WRITE(pTask->mm); + + if (RT_SUCCESS(rc)) + { +#ifdef VBOX_USE_PAE_HACK + __free_page(pDummyPage); +#endif + pMemLnx->Core.pv = pv; + pMemLnx->Core.u.Mapping.R0Process = R0Process; + *ppMem = &pMemLnx->Core; + IPRT_LINUX_RESTORE_EFL_AC(); + return VINF_SUCCESS; + } + + /* + * Bail out. + */ + rtR0MemObjLinuxDoMunmap(pv, cbSub, pTask); + } + rtR0MemObjDelete(&pMemLnx->Core); + } +#ifdef VBOX_USE_PAE_HACK + __free_page(pDummyPage); +#endif + + IPRT_LINUX_RESTORE_EFL_AC(); + return rc; +} + + +DECLHIDDEN(int) rtR0MemObjNativeProtect(PRTR0MEMOBJINTERNAL pMem, size_t offSub, size_t cbSub, uint32_t fProt) +{ +# ifdef IPRT_USE_ALLOC_VM_AREA_FOR_EXEC + /* + * Currently only supported when we've got addresses PTEs from the kernel. + */ + PRTR0MEMOBJLNX pMemLnx = (PRTR0MEMOBJLNX)pMem; + if (pMemLnx->pArea && pMemLnx->papPtesForArea) + { + pgprot_t const fPg = rtR0MemObjLinuxConvertProt(fProt, true /*fKernel*/); + size_t const cPages = (offSub + cbSub) >> PAGE_SHIFT; + pte_t **papPtes = pMemLnx->papPtesForArea; + size_t i; + + for (i = offSub >> PAGE_SHIFT; i < cPages; i++) + { + set_pte(papPtes[i], mk_pte(pMemLnx->apPages[i], fPg)); + } + preempt_disable(); + __flush_tlb_all(); + preempt_enable(); + return VINF_SUCCESS; + } +# elif defined(IPRT_USE_APPLY_TO_PAGE_RANGE_FOR_EXEC) + PRTR0MEMOBJLNX pMemLnx = (PRTR0MEMOBJLNX)pMem; + if ( pMemLnx->fExecutable + && pMemLnx->fMappedToRing0) + { + LNXAPPLYPGRANGE Args; + Args.pMemLnx = pMemLnx; + Args.fPg = rtR0MemObjLinuxConvertProt(fProt, true /*fKernel*/); + int rcLnx = apply_to_page_range(current->active_mm, (unsigned long)pMemLnx->Core.pv + offSub, cbSub, + rtR0MemObjLinuxApplyPageRange, (void *)&Args); + if (rcLnx) + return VERR_NOT_SUPPORTED; + + return VINF_SUCCESS; + } +# endif + + NOREF(pMem); + NOREF(offSub); + NOREF(cbSub); + NOREF(fProt); + return VERR_NOT_SUPPORTED; +} + + +DECLHIDDEN(RTHCPHYS) rtR0MemObjNativeGetPagePhysAddr(PRTR0MEMOBJINTERNAL pMem, size_t iPage) +{ + PRTR0MEMOBJLNX pMemLnx = (PRTR0MEMOBJLNX)pMem; + + if (pMemLnx->cPages) + return page_to_phys(pMemLnx->apPages[iPage]); + + switch (pMemLnx->Core.enmType) + { + case RTR0MEMOBJTYPE_CONT: + return pMemLnx->Core.u.Cont.Phys + (iPage << PAGE_SHIFT); + + case RTR0MEMOBJTYPE_PHYS: + return pMemLnx->Core.u.Phys.PhysBase + (iPage << PAGE_SHIFT); + + /* the parent knows */ + case RTR0MEMOBJTYPE_MAPPING: + return rtR0MemObjNativeGetPagePhysAddr(pMemLnx->Core.uRel.Child.pParent, iPage); + + /* cPages > 0 */ + case RTR0MEMOBJTYPE_LOW: + case RTR0MEMOBJTYPE_LOCK: + case RTR0MEMOBJTYPE_PHYS_NC: + case RTR0MEMOBJTYPE_PAGE: + default: + AssertMsgFailed(("%d\n", pMemLnx->Core.enmType)); + /* fall thru */ + + case RTR0MEMOBJTYPE_RES_VIRT: + return NIL_RTHCPHYS; + } +} + |